TABLE OF CONTENTS VOLUME II OF II
FOR THE:

DANIEL BUILDING RENOVATION
J.S. Bridwell Activities Center
& Cannedy Greek Commons
FOR:
Midwestern State University
Wichita Falls, Texas
BYS Project No. 18071

PROJECT MANUAL

<table>
<thead>
<tr>
<th>SECTIONS</th>
<th>PAGES</th>
</tr>
</thead>
<tbody>
<tr>
<td>DIVISION 21: FIRE SUPPRESSION</td>
<td></td>
</tr>
<tr>
<td>210519 Sleeves and Sleeve Seals for Fire-Suppression Piping</td>
<td>210519.1 – 210519.5</td>
</tr>
<tr>
<td>210518 Escutcheons for Fire-Suppression Piping</td>
<td>210518.1 - 210518.3</td>
</tr>
<tr>
<td>211313 Wet-Pipe Sprinkler Systems</td>
<td>211313.1 – 211313.25</td>
</tr>
<tr>
<td>DIVISION 22: PLUMBING</td>
<td></td>
</tr>
<tr>
<td>220500 Common Work Results for Plumbing</td>
<td>220500.1 – 220500.13</td>
</tr>
<tr>
<td>220517 Sleeves and Sleeve Seals for Plumbing Piping</td>
<td>220517.1 – 220517.5</td>
</tr>
<tr>
<td>220518 Escutcheons for Plumbing Piping</td>
<td>220518.1 – 220518.2</td>
</tr>
<tr>
<td>220519 Meters and Gages for Plumbing Piping</td>
<td>220519.1 – 220519.5</td>
</tr>
<tr>
<td>220523 General Duty Valves for Plumbing Piping</td>
<td>220523.1 – 220523.31</td>
</tr>
<tr>
<td>220529 Hangers and Supports for Plumbing Piping and Equipment</td>
<td>220529.1 – 220529.13</td>
</tr>
<tr>
<td>220553 Identification for Plumbing Piping and Equipment</td>
<td>220553.1 – 220553.5</td>
</tr>
<tr>
<td>220719 Plumbing Piping Insulation</td>
<td>220719.1 – 220719.27</td>
</tr>
<tr>
<td>221116 Domestic Water Piping</td>
<td>221116.1 – 221116.18</td>
</tr>
<tr>
<td>221119 Domestic Water Piping Specialties</td>
<td>221119.1 – 221119.14</td>
</tr>
<tr>
<td>221316 Sanitary Waste and Vent Piping</td>
<td>221316.1 – 221316.11</td>
</tr>
<tr>
<td>221413 Storm Drainage Piping</td>
<td>221413.1 – 221413.10</td>
</tr>
<tr>
<td>223300 Electric, Domestic Water Heaters</td>
<td>223300.1 – 223300.11</td>
</tr>
<tr>
<td>SECTION</td>
<td>TITLE</td>
</tr>
<tr>
<td>---------</td>
<td>-------</td>
</tr>
<tr>
<td>DIVISION 23: HEATING, VENTILATION AND AIR CONDITIONING</td>
<td></td>
</tr>
<tr>
<td>230513 Common Motor Requirements for HVAC Equipment</td>
<td></td>
</tr>
<tr>
<td>230523 General Duty Valves for HVAC Piping</td>
<td></td>
</tr>
<tr>
<td>230529 Hangers and Supports for HVAC Equipment</td>
<td></td>
</tr>
<tr>
<td>230553 Identification for HVAC Equipment and Duct</td>
<td></td>
</tr>
<tr>
<td>230593 Testing, Adjusting, and Balancing for HVAC</td>
<td></td>
</tr>
<tr>
<td>230713 Duct Insulation</td>
<td></td>
</tr>
<tr>
<td>230719 HVAC Piping Insulation</td>
<td></td>
</tr>
<tr>
<td>232113 Hydronic Piping</td>
<td></td>
</tr>
<tr>
<td>232123 Hydronic Pumps</td>
<td></td>
</tr>
<tr>
<td>232300 Refrigerant Piping</td>
<td></td>
</tr>
<tr>
<td>233133 Metal Ducts</td>
<td></td>
</tr>
<tr>
<td>233423 HVAC Power Ventilators</td>
<td></td>
</tr>
<tr>
<td>233713 Diffusers, Registers, and Grilles</td>
<td></td>
</tr>
<tr>
<td>237313 Modular Indoor Central Station Air Handling Units</td>
<td></td>
</tr>
<tr>
<td>238126 Ductless Split System Air Conditioners</td>
<td></td>
</tr>
<tr>
<td>DIVISION 26: ELECTRICAL</td>
<td></td>
</tr>
<tr>
<td>260500 Common Work Results for Electrical</td>
<td></td>
</tr>
<tr>
<td>260519 Low-Voltage Electrical Power Conductors and Cables</td>
<td></td>
</tr>
<tr>
<td>260526 Grounding and Bonding for Electrical Systems</td>
<td></td>
</tr>
<tr>
<td>260529 Hangers and Supports for Electrical Systems</td>
<td></td>
</tr>
<tr>
<td>260533 Raceways and Boxes for Electrical Systems</td>
<td></td>
</tr>
<tr>
<td>260544 Sleeves and Sleeve Seals for Electrical Raceways and Cabling</td>
<td></td>
</tr>
<tr>
<td>260553 Identification for Electrical Systems</td>
<td></td>
</tr>
<tr>
<td>262726 Wire Devices</td>
<td></td>
</tr>
<tr>
<td>262813 Fuses</td>
<td></td>
</tr>
<tr>
<td>262816 Enclosed Switches and Circuit Breakers</td>
<td></td>
</tr>
<tr>
<td>265119 Led Interior Lighting</td>
<td></td>
</tr>
<tr>
<td>265619 Led Exterior Lighting</td>
<td></td>
</tr>
<tr>
<td>283111 Digital, Addressable Fire-Alarm System</td>
<td></td>
</tr>
<tr>
<td>DIVISION 27: COMMUNICATIONS</td>
<td></td>
</tr>
<tr>
<td>270500 Common Work Results for Communications</td>
<td></td>
</tr>
<tr>
<td>270528 Pathways for Communication Systems</td>
<td></td>
</tr>
<tr>
<td>270544 Sleeves and Sleeve Seals for Communications Pathways and Cabling</td>
<td></td>
</tr>
<tr>
<td>271100 Communications Equipment Room Fittings</td>
<td></td>
</tr>
<tr>
<td>271300 Communications Backbone Cabling</td>
<td></td>
</tr>
<tr>
<td>271500 Communications Horizontal Cabling</td>
<td></td>
</tr>
</tbody>
</table>
SECTION 210517 SLEEVES AND SLEEVE SEALS FOR FIRE-SUPPRESSION PIPING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:

1. Sleeves.
2. Stack-sleeve fittings.
3. Sleeve-seal systems.
4. Sleeve-seal fittings.
5. Grout.

1.3 SUBMITTALS

A. Product Data: For each type of product indicated.

PART 2 - PRODUCTS

2.1 SLEEVES

A. Cast-Iron Wall Pipes: Cast or fabricated of cast or ductile iron and equivalent to ductile-iron pressure pipe, with plain ends and integral waterstop unless otherwise indicated.

B. Galvanized-Steel Wall Pipes: ASTM A 53/A 53M, Schedule 40, with plain ends and welded steel collar; zinc coated.

C. Galvanized-Steel-Pipe Sleeves: ASTM A 53/A 53M, Type E, Grade B, Schedule 40, zinc coated, with plain ends.

D. Galvanized-Steel-Sheet Sleeves: 0.0239-inch minimum thickness; round tube closed with welded longitudinal joint.

E. Molded-PE or -PP Sleeves: Removable, tapered-cup shaped, and smooth outer surface with nailing flange for attaching to wooden forms.
2.2 STACK-SLEEVE FITTINGS

A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:

B. Description: Manufactured, cast-iron sleeve with integral clamping flange. Include clamping ring, bolts, and nuts for membrane flashing.

1. Underdeck Clamp: Clamping ring with setscrews.

2.3 SLEEVE-SEAL SYSTEMS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. Advance Products & Systems, Inc.
2. CALPICO, Inc.
3. Metraflex Company (The).
4. Pipeline Seal and Insulator, Inc.
5. Proco Products, Inc.

B. Description: Modular sealing-element unit, designed for field assembly, for filling annular space between piping and sleeve.

1. Sealing Elements: EPDM-rubber interlocking links shaped to fit surface of pipe. Include type and number required for pipe material and size of pipe.
2. Pressure Plates: Stainless steel.
3. Connecting Bolts and Nuts: Stainless steel of length required to secure pressure plates to sealing elements.

2.4 SLEEVE-SEAL FITTINGS

A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:

1. Presealed Systems.

B. Description: Manufactured plastic, sleeve-type, waterstop assembly made for imbedding in concrete slab or wall. Unit has plastic or rubber waterstop collar with center opening to match piping OD.

2.5 GROUT

B. Characteristics: Nonshrink; recommended for interior and exterior applications.

C. Design Mix: 5000-psi, 28-day compressive strength.

D. Packaging: Premixed and factory packaged.

PART 3 - EXECUTION

3.1 SLEEVE INSTALLATION

A. Install sleeves for piping passing through penetrations in floors, partitions, roofs, and walls.

B. For sleeves that will have sleeve-seal system installed, select sleeves of size large enough to provide 1-inch annular clear space between piping and concrete slabs and walls.
 1. Sleeves are not required for core-drilled holes.

C. Install sleeves for pipes passing through interior partitions.
 1. Cut sleeves to length for mounting flush with both surfaces.
 2. Install sleeves that are large enough to provide 1/4-inch annular clear space between sleeve and pipe or pipe insulation.
 3. Seal annular space between sleeve and piping or piping insulation; use joint sealants appropriate for size, depth, and location of joint. Comply with requirements for sealants specified in Division 07 Section "Joint Sealants."

D. Fire-Barrier Penetrations: Maintain indicated fire rating of walls, partitions, ceilings, and floors at pipe penetrations. Seal pipe penetrations with firestop materials. Comply with requirements for firestopping specified in Division 07 Section "Penetration Firestopping."

3.2 STACK-SLEEVE-FITTING INSTALLATION

A. Install stack-sleeve fittings in new slabs as slabs are constructed.
 1. Install fittings that are large enough to provide 1/4-inch annular clear space between sleeve and pipe or pipe insulation.
 2. Secure flashing between clamping flanges for pipes penetrating floors with membrane waterproofing. Comply with requirements for flashing specified in Division 07 Section "Sheet Metal Flashing and Trim."
 3. Install section of cast-iron soil pipe to extend sleeve to 2 inches above finished floor level.
 4. Extend cast-iron sleeve fittings below floor slab as required to secure clamping ring if ring is specified.
 5. Using grout, seal the space around outside of stack-sleeve fittings.
B. Fire-Barrier Penetrations: Maintain indicated fire rating of floors at pipe penetrations. Seal pipe penetrations with firestop materials. Comply with requirements for firestopping specified in Division 07 Section "Penetration Firestopping."

3.3 SLEEVE-SEAL-SYSTEM INSTALLATION

A. Install sleeve-seal systems in sleeves in exterior concrete walls and slabs-on-grade at service piping entries into building.

B. Select type, size, and number of sealing elements required for piping material and size and for sleeve ID or hole size. Position piping in center of sleeve. Center piping in penetration, assemble sleeve-seal system components, and install in annular space between piping and sleeve. Tighten bolts against pressure plates that cause sealing elements to expand and make a watertight seal.

3.4 SLEEVE-SEAL-FITTING INSTALLATION

A. Install sleeve-seal fittings in new walls and slabs as they are constructed.

B. Assemble fitting components of length to be flush with both surfaces of concrete slabs and walls. Position waterstop flange to be centered in concrete slab or wall.

C. Secure nailing flanges to concrete forms.

D. Using grout, seal the space around outside of sleeve-seal fittings.

3.5 SLEEVE AND SLEEVE-SEAL SCHEDULE

A. Use sleeves and sleeve seals for the following piping-penetration applications:

1. Exterior Concrete Walls above Grade:
 a. Piping Smaller Than NPS 6: Cast-iron wall sleeves.
 b. Piping NPS 6 and Larger: Cast-iron wall sleeves.

2. Exterior Concrete Walls below Grade:
 a. Piping Smaller Than NPS 6: Cast-iron wall sleeves with sleeve-seal system.
 1) Select sleeve size to allow for 1-inch annular clear space between piping and sleeve for installing sleeve-seal system.
 b. Piping NPS 6 and Larger: Cast-iron wall sleeves with sleeve-seal system.
 1) Select sleeve size to allow for 1-inch annular clear space between piping and sleeve for installing sleeve-seal system.
3. Concrete Slabs-on-Grade:
 a. Piping Smaller Than NPS 6: Cast-iron wall sleeves with sleeve-seal system.
 1) Select sleeve size to allow for 1-inch annular clear space between piping and sleeve for installing sleeve-seal system.
 b. Piping NPS 6 and Larger: Cast-iron wall sleeves with sleeve-seal system.
 1) Select sleeve size to allow for 1-inch annular clear space between piping and sleeve for installing sleeve-seal system.

4. Concrete Slabs above Grade:
 a. Piping Smaller Than NPS 6: Stack-sleeve fittings.
 b. Piping NPS 6 and Larger: Stack-sleeve fittings.

5. Interior Partitions:

END OF SECTION
SECTION 210518
ESCUTCHEONS FOR FIRE-SUPPRESSION PIPING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:
 1. Escutcheons.
 2. Floor plates.

1.3 SUBMITTALS

A. Product Data: For each type of product indicated.

PART 2 - PRODUCTS

2.1 ESCUTCHEONS

A. One-Piece, Cast-Brass Type: With polished, chrome-plated and rough-brass finish and setscrew fastener.
B. One-Piece, Deep-Pattern Type: Deep-drawn, box-shaped brass with chrome-plated finish and spring-clip fasteners.
C. One-Piece, Stamped-Steel Type: With chrome-plated finish and spring-clip fasteners.
D. Split-Casting Brass Type: With polished, chrome-plated and rough-brass finish and with concealed hinge and setscrew.
E. Split-Plate, Stamped-Steel Type: With chrome-plated finish, concealed and exposed-rivet hinge, and spring-clip fasteners.

2.2 FLOOR PLATES

A. One-Piece Floor Plates: Cast-iron flange with holes for fasteners.
B. Split-Casting Floor Plates: Cast brass with concealed hinge.
PART 3 - EXECUTION

3.1 INSTALLATION

A. Install escutcheons for piping penetrations of walls, ceilings, and finished floors.

B. Install escutcheons with ID to closely fit around pipe, tube, and insulation of piping and with OD that completely covers opening.

1. Escutcheons for New Piping:
 a. Piping with Fitting or Sleeve Protruding from Wall: One-piece, deep-pattern type.
 b. Chrome-Plated Piping: One-piece, cast-brass or split-casting brass type with polished, chrome-plated finish.
 c. Insulated Piping: One-piece, stamped-steel type or split-plate, stamped-steel type with concealed hinge.
 d. Bare Piping at Wall and Floor Penetrations in Finished Spaces: One-piece, cast-brass or split-casting brass type with polished, chrome-plated finish.
 e. Bare Piping at Wall and Floor Penetrations in Finished Spaces: One-piece, stamped-steel type or split-plate, stamped-steel type with concealed hinge.
 f. Bare Piping at Ceiling Penetrations in Finished Spaces: One-piece, cast-brass or split-casting brass type with polished, chrome-plated finish.
 g. Bare Piping at Ceiling Penetrations in Finished Spaces: One-piece, stamped-steel type or split-plate, stamped-steel type with concealed hinge.
 h. Bare Piping in Unfinished Service Spaces: One-piece, cast-brass or split-casting brass type with rough-brass finish.
 i. Bare Piping in Unfinished Service Spaces: One-piece, stamped-steel type or split-plate, stamped-steel type with concealed hinge.
 j. Bare Piping in Equipment Rooms: One-piece, cast-brass or split-casting brass type with rough-brass finish.
 k. Bare Piping in Equipment Rooms: One-piece, stamped-steel type or split-plate, stamped-steel type with concealed hinge.

2. Escutcheons for Existing Piping:
 a. Chrome-Plated Piping: Split-casting brass type with polished, chrome-plated finish.
 b. Insulated Piping: Split-plate, stamped-steel type with concealed hinge.
 c. Bare Piping at Wall and Floor Penetrations in Finished Spaces: Split-casting brass type with polished, chrome-plated finish.
 d. Bare Piping at Wall and Floor Penetrations in Finished Spaces: Split-plate, stamped-steel type with concealed hinge.
 e. Bare Piping at Ceiling Penetrations in Finished Spaces: Split-casting brass type with polished, chrome-plated finish.
 f. Bare Piping in Unfinished Service Spaces: Split-plate, stamped-steel type with concealed hinge.
 g. Bare Piping in Equipment Rooms: Split-plate, stamped-steel type with concealed hinge.

C. Install floor plates for piping penetrations of equipment-room floors.
D. Install floor plates with ID to closely fit around pipe, tube, and insulation of piping and with OD that completely covers opening.

1. New Piping: One-piece, floor-plate type.
2. Existing Piping: Split-casting, floor-plate type.

3.2 FIELD QUALITY CONTROL

A. Replace broken and damaged escutcheons and floor plates using new materials.

END OF SECTION
SECTION 211313 WET-PIPE SPRINKLER SYSTEMS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:

1. Pipes, fittings, and specialties.
2. Fire-protection valves.
3. Fire-department connections.
4. Sprinklers.
5. Alarm devices.
6. Pressure gages.

1.3 DEFINITIONS

A. High-Pressure Sprinkler Piping: Wet-pipe sprinkler system piping designed to operate at working pressure higher than standard 175 psig, but not higher than 250 psig.

B. Standard-Pressure Sprinkler Piping: Wet-pipe sprinkler system piping designed to operate at working pressure of 175 psig maximum.

1.4 SYSTEM DESCRIPTIONS

A. Wet-Pipe Sprinkler System: Automatic sprinklers are attached to piping containing water and that is connected to water supply through alarm valve. Water discharges immediately from sprinklers when they are opened. Sprinklers open when heat melts fusible link or destroys frangible device. Hose connections are included if indicated.

B. Deluge Sprinkler System: Open sprinklers are attached to piping connected to water supply through deluge valve. Fire-detection system, in same area as sprinklers, opens valve. Water flows into piping system and discharges from attached sprinklers when valve opens.

1.5 PERFORMANCE REQUIREMENTS

A. Standard-Pressure Piping System Component: Listed for 175-psig minimum working pressure.

B. High-Pressure Piping System Component: Listed for 250-psig minimum working pressure.
C. Delegated Design: Design sprinkler system(s), including comprehensive engineering analysis by a qualified professional engineer, using performance requirements and design criteria indicated.

1. Available fire-hydrant flow test records indicate the following conditions shown on plan.

D. Sprinkler system design shall be approved by authorities having jurisdiction.

1. Margin of Safety for Available Water Flow and Pressure: 10 percent, including losses through water-service piping, valves, and backflow preventers.
2. Sprinkler Occupancy Hazard Classifications:
 a. Automobile Parking Areas: Ordinary Hazard, Group 1.
 b. Building Service Areas: Ordinary Hazard, Group 1.
 c. Churches: Light Hazard.
 d. Electrical Equipment Rooms: Ordinary Hazard, Group 1.
 e. Dry Cleaners: Ordinary Hazard, Group 2.
 f. General Storage Areas: Ordinary Hazard, Group 1.
 g. Laundries: Ordinary Hazard, Group 1.
 h. Libraries except Stack Areas: Light Hazard.
 i. Library Stack Areas: Ordinary Hazard, Group 2.
 k. Mechanical Equipment Rooms: Ordinary Hazard, Group 1.
 l. Office and Public Areas: Light Hazard.
 m. Plastics Processing Areas: Extra Hazard, Group 2.
 n. Printing Plants: Extra Hazard, Group 1.
 o. Repair Garages: Ordinary Hazard, Group 2.
 q. Restaurant Service Areas: Ordinary Hazard, Group 1.
 r. Solvent Cleaning Areas: Extra Hazard, Group 2.
 s. Upholstering Plants: Extra Hazard, Group 1.

3. Minimum Density for Automatic-Sprinkler Piping Design:
 a. Residential (Dwelling) Occupancy: 0.05 gpm over 400-sq. ft. area.
 b. Light-Hazard Occupancy: 0.10 gpm over 1500-sq. ft. area.
 c. Ordinary-Hazard, Group 1 Occupancy: 0.15 gpm over 1500-sq. ft. area.
 d. Ordinary-Hazard, Group 2 Occupancy: 0.20 gpm over 1500-sq. ft. area.
 e. Extra-Hazard, Group 1 Occupancy: 0.30 gpm over 2500-sq. ft. area.
 f. Extra-Hazard, Group 2 Occupancy: 0.40 gpm over 2500-sq. ft. area.
 g. Special Occupancy Hazard: As determined by authorities having jurisdiction.

4. Minimum Density for Deluge-Sprinkler Piping Design:
 a. Ordinary-Hazard, Group 1 Occupancy: 0.15 gpm over entire area.
 b. Ordinary-Hazard, Group 2 Occupancy: 0.20 gpm over entire area.
 c. Extra-Hazard, Group 1 Occupancy: 0.30 gpm over entire area.
 d. Extra-Hazard, Group 2 Occupancy: 0.40 gpm over entire area.
 e. Special Occupancy Hazard: As determined by authorities having jurisdiction.

5. Maximum Protection Area per Sprinkler:
a. Residential Areas: 400 sq. ft.
b. Office Spaces: 225 sq. ft.
c. Storage Areas: 130 sq. ft.
d. Mechanical Equipment Rooms: 130 sq. ft.
e. Electrical Equipment Rooms: 130 sq. ft.
f. Other Areas: According to NFPA 13 recommendations unless otherwise indicated.

6. Total Combined Hose-Stream Demand Requirement: According to NFPA 13 unless otherwise indicated:
 a. Light-Hazard Occupancies: 100 gpm for 30 minutes.
 b. Ordinary-Hazard Occupancies: 250 gpm for 60 to 90 minutes.
 c. Extra-Hazard Occupancies: 500 gpm for 90 to 120 minutes.

1.6 SUBMITTALS

A. Product Data: For each type of product indicated. Include rated capacities, operating characteristics, electrical characteristics, and furnished specialties and accessories.

B. LEED Submittal:
 1. Product Data for Credit EQ 4.1: For solvent cements and adhesive primers, including printed statement of VOC content and chemical components.

C. Shop Drawings: For wet-pipe sprinkler systems. Include plans, elevations, sections, details, and attachments to other work.
 1. Wiring Diagrams: For power, signal, and control wiring.

D. Delegated-Design Submittal: For sprinkler systems indicated to comply with performance requirements and design criteria, including analysis data signed and sealed by the qualified professional engineer responsible for their preparation.

E. Coordination Drawings: Sprinkler systems, drawn to scale, on which the following items are shown and coordinated with each other, using input from installers of the items involved:
 1. Domestic water piping.
 2. Compressed air piping.
 3. HVAC hydronic piping.
 4. Items penetrating finished ceiling include the following:
 a. Lighting fixtures.
 b. Air outlets and inlets.

F. Qualification Data: For qualified Installer and professional engineer.

G. Approved Sprinkler Piping Drawings: Working plans, prepared according to NFPA 13, that have been approved by authorities having jurisdiction, including hydraulic calculations if applicable.

H. Welding certificates.
I. Fire-hydrant flow test report.

J. Field Test Reports and Certificates: Indicate and interpret test results for compliance with performance requirements and as described in NFPA 13. Include "Contractor's Material and Test Certificate for Aboveground Piping."

K. Field quality-control reports.

L. Operation and Maintenance Data: For sprinkler specialties to include in emergency, operation, and maintenance manuals.

1.7 QUALITY ASSURANCE

A. Installer Qualifications:
 1. Installer's responsibilities include designing, fabricating, and installing sprinkler systems and providing professional engineering services needed to assume engineering responsibility. Base calculations on results of fire-hydrant flow test.
 a. Engineering Responsibility: Preparation of working plans, calculations, and field test reports by a qualified professional engineer.

B. Welding Qualifications: Qualify procedures and operators according to ASME Boiler and Pressure Vessel Code.

C. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

D. NFPA Standards: Sprinkler system equipment, specialties, accessories, installation, and testing shall comply with the following:
 1. NFPA 13, "Installation of Sprinkler Systems."
 2. NFPA 13R, "Installation of Sprinkler Systems in Residential Occupancies up to and Including Four Stories in Height."
 3. NFPA 24, "Installation of Private Fire Service Mains and Their Appurtenances."

1.8 PROJECT CONDITIONS

A. Interruption of Existing Sprinkler Service: Do not interrupt sprinkler service to facilities occupied by Owner or others unless permitted under the following conditions and then only after arranging to provide temporary sprinkler service according to requirements indicated:
 1. Notify Construction Manager no fewer than two days in advance of proposed interruption of sprinkler service.
 2. Do not proceed with interruption of sprinkler service without Construction Manager's written permission.
1.9 COORDINATION

A. Coordinate layout and installation of sprinklers with other construction that penetrates ceilings, including light fixtures, HVAC equipment, and partition assemblies.

1.10 EXTRA MATERIALS

A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.

1. Sprinkler Cabinets: Finished, wall-mounted, steel cabinet with hinged cover, and with space for minimum of six spare sprinklers plus sprinkler wrench. Include number of sprinklers required by NFPA 13 and sprinkler wrench. Include separate cabinet with sprinklers and wrench for each type of sprinkler used on Project.

PART 2 - PRODUCTS

2.1 PIPING MATERIALS

A. Comply with requirements in "Piping Schedule" Article for applications of pipe, tube, and fitting materials, and for joining methods for specific services, service locations, and pipe sizes.

2.2 STEEL PIPE AND FITTINGS

A. Standard Weight, Galvanized- and Black-Steel Pipe: ASTM A 53/A 53M, Type E, Grade B. Pipe ends may be factory or field formed to match joining method.

B. Schedule 30, Galvanized- and Black-Steel Pipe: ASTM A 135; ASTM A 795/A 795M, Type E; or ASME B36.10M, wrought steel; with wall thickness not less than Schedule 30 and not more than Schedule 40. Pipe ends may be factory or field formed to match joining method.

C. Thinwall Galvanized- and Black-Steel Pipe: ASTM A 135 or ASTM A 795/A 795M, threadable, with wall thickness less than Schedule 30 and equal to or greater than Schedule 10. Pipe ends may be factory or field formed to match joining method.

D. Schedule 10, Black-Steel Pipe: ASTM A 135 or ASTM A 795/A 795M, Schedule 10 in NPS 5 and smaller; and NFPA 13-specified wall thickness in NPS 6 to NPS 10, plain end.

F. Galvanized and Uncoated, Steel Couplings: ASTM A 865, threaded.

H. Malleable- or Ductile-Iron Unions: UL 860.

J. Steel Flanges and Flanged Fittings: ASME B16.5, Class 150.

L. Grooved-Joint, Steel-Pipe Appurtenances:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Anvil International, Inc.
 b. Corcoran Piping System Co.
 c. National Fittings, Inc.
 d. Shurjoint Piping Products.
 e. Tyco Fire & Building Products LP.
 f. Victaulic Company.

2. Pressure Rating: 175 psig 250 psig minimum.
4. Grooved-End-Pipe Couplings for Steel Piping: AWWA C606 and UL 213, rigid pattern, unless otherwise indicated, for steel-pipe dimensions. Include ferrous housing sections, EPDM-rubber gasket, and bolts and nuts.

M. Steel Pressure-Seal Fittings: UL 213, FM-approved, 175-psig pressure rating with steel housing, rubber O-rings, and pipe stop; for use with fitting manufacturers’ pressure-seal tools.

1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 a. Victaulic Company.

2.3 PIPING JOINING MATERIALS

A. Pipe-Flange Gasket Materials: AWWA C110, rubber, flat face, 1/8 inch thick or ASME B16.21, nonmetallic and asbestos free.

1. Class 125, Cast-Iron Flanges and Class 150, Bronze Flat-Face Flanges: Full-face gaskets.
2. Class 250, Cast-Iron Flanges and Class 300, Steel Raised-Face Flanges: Ring-type gaskets.

B. Metal, Pipe-Flange Bolts and Nuts: ASME B18.2.1, carbon steel unless otherwise indicated.

C. Brazing Filler Metals: AWS A5.8/A5.8M, BCuP Series, copper-phosphorus alloys for general-duty brazing unless otherwise indicated.

D. Welding Filler Metals: Comply with AWS D10.12M/D10.12 for welding materials appropriate for wall thickness and chemical analysis of steel pipe being welded.
2.4 LISTED FIRE-PROTECTION VALVES

A. General Requirements:

1. Valves shall be UL listed or FM approved.
3. Minimum Pressure Rating for High-Pressure Piping: 250 psig.

B. Ball Valves:

1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 a. Anvil International, Inc.
 b. Victaulic Company.
2. Standard: UL 1091 except with ball instead of disc.
3. Valves NPS 1-1/2 and Smaller: Bronze body with threaded ends.
4. Valves NPS 2 and NPS 2-1/2: Bronze body with threaded ends or ductile-iron body with grooved ends.
5. Valves NPS 3: Ductile-iron body with grooved ends.

C. Bronze Butterfly Valves:

1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 a. Fivalco Inc.
 b. Global Safety Products, Inc.
 c. Milwaukee Valve Company.
2. Standard: UL 1091.
5. End Connections: Threaded.

D. Iron Butterfly Valves:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Anvil International, Inc.
 b. Fivalco Inc.
 c. Global Safety Products, Inc.
 d. Kennedy Valve; a division of McWane, Inc.
 e. Milwaukee Valve Company.
 f. NIBCO INC.
 g. Pratt, Henry Company.
 h. Shurjoint Piping Products.
i. Tyco Fire & Building Products LP.
j. Victaulic Company.

2. Standard: UL 1091.
4. Body Material: Cast or ductile iron.
5. Style: Lug or wafer.

E. Check Valves:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. AFAC Inc.
 b. Anvil International, Inc.
 c. Crane Co.; Crane Valve Group; Crane Valves.
 d. Crane Co.; Crane Valve Group; Jenkins Valves.
 e. Crane Co.; Crane Valve Group; Stockham Division.
 g. Fire Protection Products, Inc.
 h. Globe Fire Sprinkler Corporation.
 i. Matco-Norca.
 j. Metraflex, Inc.
 k. Milwaukee Valve Company.
 l. Mueller Co.; Water Products Division.
 m. NIBCO INC.
 n. Potter Roemer.
 o. Reliable Automatic Sprinkler Co., Inc.
 p. Tyco Fire & Building Products LP.
 q. Venus Fire Protection Ltd.
 r. Victaulic Company.
 s. Viking Corporation.
 t. Watts Water Technologies, Inc.

4. Type: Swing check.
5. Body Material: Cast iron.
6. End Connections: Flanged or grooved.

F. Bronze OS&Y Gate Valves:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Crane Co.; Crane Valve Group; Crane Valves.
 b. Crane Co.; Crane Valve Group; Stockham Division.
 c. Milwaukee Valve Company.
 d. NIBCO INC.
 e. United Brass Works, Inc.
5. End Connections: Threaded.

G. Iron OS&Y Gate Valves:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. American Cast Iron Pipe Company; Waterous Company Subsidiary.
 b. American Valve, Inc.
 c. Crane Co.; Crane Valve Group; Crane Valves.
 d. Crane Co.; Crane Valve Group; Jenkins Valves.
 e. Crane Co.; Crane Valve Group; Stockham Division.
 f. Milwaukee Valve Company.
 g. Mueller Co.; Water Products Division.
 h. NIBCO INC.
 i. Tyco Fire & Building Products LP.
 j. United Brass Works, Inc.
 k. Watts Water Technologies, Inc.

4. Body Material: Cast or ductile iron.
5. End Connections: Flanged or grooved.

H. Indicating-Type Butterfly Valves:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Anvil International, Inc.
 b. Global Safety Products, Inc.
 c. Kennedy Valve; a division of McWane, Inc.
 d. Milwaukee Valve Company.
 e. NIBCO INC.
 f. Tyco Fire & Building Products LP.
 g. Victaulic Company.

2. Standard: UL 1091.
4. Valves NPS 2 and Smaller:
 a. Valve Type: Ball or butterfly.
 b. Body Material: Bronze.
 c. End Connections: Threaded.

5. Valves NPS 2-1/2 and Larger:
 a. Valve Type: Butterfly.
b. Body Material: Cast or ductile iron.
c. End Connections: Flanged, grooved, or wafer.

I. NRS Gate Valves:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. American Cast Iron Pipe Company; Waterous Company Subsidiary.
 b. American Valve, Inc.
 c. Crane Co.; Crane Valve Group; Stockham Division.
 d. Kennedy Valve; a division of McWane, Inc.
 e. Mueller Co.; Water Products Division.
 f. NIBCO INC.
 g. Tyco Fire & Building Products LP.

5. Stem: Nonrising.
6. End Connections: Flanged or grooved.

J. Indicator Posts:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. American Cast Iron Pipe Company; Waterous Company Subsidiary.
 b. American Valve, Inc.
 c. Crane Co.; Crane Valve Group; Stockham Division.
 d. Kennedy Valve; a division of McWane, Inc.
 e. Mueller Co.; Water Products Division.
 f. NIBCO INC.
 g. Tyco Fire & Building Products LP.

3. Type: Horizontal for wall mounting.
4. Body Material: Cast iron with extension rod and locking device.

2.5 TRIM AND DRAIN VALVES

A. General Requirements:

2. Pressure Rating: 175 psig minimum.
B. Angle Valves:

1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:

 a. Fire Protection Products, Inc.
 b. United Brass Works, Inc.

C. Ball Valves:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

 a. Affiliated Distributors.
 b. Anvil International, Inc.
 c. Conbraco Industries, Inc.; Apollo Valves.
 d. Fire-End & Croker Corporation.
 e. Fire Protection Products, Inc.
 f. Flowserve.
 g. Jomar International, Ltd.
 h. Kennedy Valve; a division of McWane, Inc.
 i. Kitz Corporation.
 j. Metso Automation USA Inc.
 k. Milwaukee Valve Company.
 l. NIBCO INC.
 m. Potter Roemer.
 n. Red-White Valve Corporation.
 o. Southern Manufacturing Group.
 p. Stewart, M. A. and Sons Ltd.
 q. Tyco Fire & Building Products LP.
 r. Victaulic Company.
 s. Watts Water Technologies, Inc.

D. Globe Valves:

1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:

 a. Fire Protection Products, Inc.
 b. United Brass Works, Inc.

E. Plug Valves:

1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:

 a. Southern Manufacturing Group.
2.6 SPECIALTY VALVES

A. General Requirements:

2. **Pressure Rating:**
 a. Standard-Pressure Piping Specialty Valves: 175 psig minimum.
 b. High-Pressure Piping Specialty Valves: 250 psig minimum.
3. **Body Material:** Cast or ductile iron.
4. **Size:** Same as connected piping.
5. **End Connections:** Flanged or grooved.

B. Alarm Valves:

1. **Manufacturers:** Subject to compliance with requirements, provide products by one of the following:
 a. AFAC Inc.
 c. Reliable Automatic Sprinkler Co., Inc.
 d. Tyco Fire & Building Products LP.
 e. Venus Fire Protection Ltd.
 f. Victaulic Company.
 g. Viking Corporation.
2. **Standard:** UL 193.
3. **Design:** For horizontal or vertical installation.
4. **Include trim sets for bypass, drain, electrical sprinkler alarm switch, pressure gages, retarding chamber, and fill-line attachment with strainer.**
5. **Drip Cup Assembly:** Pipe drain without valves and separate from main drain piping.

C. Automatic (Ball Drip) Drain Valves:

1. **Manufacturers:** Subject to compliance with requirements, provide products by one of the following:
 a. AFAC Inc.
 b. Reliable Automatic Sprinkler Co., Inc.
 c. Tyco Fire & Building Products LP.
2. **Standard:** UL 1726.
3. **Pressure Rating:** 175 psig minimum.
4. **Type:** Automatic draining, ball check.
5. **Size:** NPS 3/4.
6. **End Connections:** Threaded.
2.7 FIRE-DEPARTMENT CONNECTIONS

A. Exposed-Type, Fire-Department Connection:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

a. AFAC Inc.
c. Fire-End & Croker Corporation.
d. Fire Protection Products, Inc.
e. GMR International Equipment Corporation.
f. Guardian Fire Equipment, Inc.
g. Tyco Fire & Building Products LP.
h. Wilson & Cousins Inc.

3. Type: Exposed, projecting, for wall mounting.
4. Pressure Rating: [175 psig minimum] [300 psig].
6. Inlets: Brass with threads according to NFPA 1963 and matching local fire-department sizes and threads. Include extension pipe nipples, brass lugged swivel connections, and check devices or clappers.
7. Caps: Brass, lugged type, with gasket and chain.
8. Escutcheon Plate: Round, brass, wall type.
10. Number of Inlets: Two
11. Escutcheon Plate Marking: Similar to "[AUTO SPKR & STANDPIPE] [AUTO SPKR]."
13. Outlet Size: NPS 6

B. Flush-Type, Fire-Department Connection:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

a. AFAC Inc.
c. GMR International Equipment Corporation.
d. Guardian Fire Equipment, Inc.
e. Potter Roemer.

3. Type: Flush, for wall mounting.
4. Pressure Rating: [175 psig minimum] [300 psig].
6. Inlets: Brass with threads according to NFPA 1963 and matching local fire-department sizes and threads. Include extension pipe nipples, brass lugged swivel connections, and check devices or clappers.
7. Caps: Brass, lugged type, with gasket and chain.
8. Escutcheon Plate: Rectangular, brass, wall type.
10. Body Style: Vertical
11. Number of Inlets: Two
12. Outlet Location: [Back] [Bottom] [Left side] [Right side] [Top].
13. Escutcheon Plate Marking: Similar to "[AUTO SPKR & STANDPIPE] [AUTO SPKR]."
14. Finish: [Polished chrome plated] [Rough brass or bronze] [Rough chrome plated].
15. Outlet Size: NPS 6

2.8 SPRINKLER SPECIALTY PIPE FITTINGS

A. Branch Outlet Fittings:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Anvil International, Inc.
 b. National Fittings, Inc.
 c. Shurjoint Piping Products.
 d. Tyco Fire & Building Products LP.
 e. Victaulic Company.

5. Type: Mechanical-T and -cross fittings.
6. Configurations: Snap-on and strapless, ductile-iron housing with branch outlets.
7. Size: Of dimension to fit onto sprinkler main and with outlet connections as required to match connected branch piping.
8. Branch Outlets: Grooved, plain-end pipe, or threaded.

B. Flow Detection and Test Assemblies:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. AGF Manufacturing Inc.
 b. Reliable Automatic Sprinkler Co., Inc.
 c. Tyco Fire & Building Products LP.
 d. Victaulic Company.

4. Body Material: Cast- or ductile-iron housing with orifice, sight glass, and integral test valve.
5. Size: Same as connected piping.
6. Inlet and Outlet: Threaded.

C. Branch Line Testers:
1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 b. Fire-End & Croker Corporation.
 c. Potter Roemer.

2. Standard: UL 199.
5. Size: Same as connected piping.
6. Inlet: Threaded.
7. Drain Outlet: Threaded and capped.
8. Branch Outlet: Threaded, for sprinkler.

D. Sprinkler Inspector's Test Fittings:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. AGF Manufacturing Inc.
 b. Triple R Specialty.
 c. Tyco Fire & Building Products LP.
 d. Victaulic Company.
 e. Viking Corporation.

4. Body Material: Cast- or ductile-iron housing with sight glass.
5. Size: Same as connected piping.
6. Inlet and Outlet: Threaded.

E. Adjustable Drop Nipples:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. CECA, LLC.
 b. Corcoran Piping System Co.
 c. Merit Manufacturing; a division of Anvil International, Inc.

5. Size: Same as connected piping.
7. Inlet and Outlet: Threaded.

F. Flexible, Sprinkler Hose Fittings:
1. **Manufacturers:** Subject to compliance with requirements, provide products by one of the following:

 a. Fivalco Inc.
 b. FlexHead Industries, Inc.
 c. Gateway Tubing, Inc.

2. **Standard:** UL 1474.

3. **Type:** Flexible hose for connection to sprinkler, and with bracket for connection to ceiling grid.

4. **Pressure Rating:** 175 psig minimum.

5. **Size:** Same as connected piping, for sprinkler.

2.9 SPRINKLERS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. AFAC Inc.
3. Reliable Automatic Sprinkler Co., Inc.
4. Tyco Fire & Building Products LP.
5. Venus Fire Protection Ltd.

B. General Requirements:

2. **Pressure Rating for Residential Sprinklers:** 175 psig maximum.
3. **Pressure Rating for Automatic Sprinklers:** 175 psig minimum.
4. **Pressure Rating for High-Pressure Automatic Sprinklers:** 250 psig minimum.

C. Automatic Sprinklers with Heat-Responsive Element:

1. **Early-Suppression, Fast-Response Applications:** UL 1767.
2. **Nonresidential Applications:** UL 199.
3. **Residential Applications:** UL 1626.
4. **Characteristics:** Nominal 1/2-inch orifice with Discharge Coefficient K of 5.6, and for "Ordinary" temperature classification rating unless otherwise indicated or required by application.

D. Sprinkler Finishes:

1. Chrome plated.
2. Bronze.
3. Painted.

E. Special Coatings:
1. Wax.
2. Lead.
3. Corrosion-resistant paint.

F. Sprinkler Escutcheons: Materials, types, and finishes for the following sprinkler mounting applications. Escutcheons for concealed, flush, and recessed-type sprinklers are specified with sprinklers.

1. Ceiling Mounting: Chrome-plated steel, one piece, flat.
2. Sidewall Mounting: Chrome-plated steel, one piece, flat.

G. Sprinkler Guards:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Reliable Automatic Sprinkler Co., Inc.
 b. Tyco Fire & Building Products LP.
 c. Victaulic Company.
 d. Viking Corporation.

2. Standard: UL 199.
3. Type: Wire cage with fastening device for attaching to sprinkler.

2.10 ALARM DEVICES

A. Alarm-device types shall match piping and equipment connections.

B. Water-Motor-Operated Alarm:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 b. Tyco Fire & Building Products LP.
 c. Victaulic Company.
 d. Viking Corporation.

2. Standard: UL 753.
3. Type: Mechanically operated, with Pelton wheel.
5. Size: 10-inch diameter.
6. Components: Shaft length, bearings, and sleeve to suit wall construction.
8. Outlet: NPS 1 drain connection.

C. Electrically Operated Alarm Bell:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
a. Fire-Lite Alarms, Inc.; a Honeywell company.
b. Notifier; a Honeywell company.
c. Potter Electric Signal Company.

3. Type: Vibrating, metal alarm bell.
4. Size: 8-inch minimum diameter.
5. Finish: Red-enamel factory finish, suitable for outdoor use.

D. Water-Flow Indicators:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. ADT Security Services, Inc.
 b. McDonnell & Miller; ITT Industries.
 c. Potter Electric Signal Company.
 d. System Sensor; a Honeywell company.
 e. Viking Corporation.
 f. Watts Industries (Canada) Inc.

4. Components: Two single-pole, double-throw circuit switches for isolated alarm and auxiliary contacts, 7 A, 125-V ac and 0.25 A, 24-V dc; complete with factory-set, field-adjustable retard element to prevent false signals and tamperproof cover that sends signal if removed.
5. Type: Paddle operated.
7. Design Installation: Horizontal or vertical.

E. Pressure Switches:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. AFAC Inc.
 b. Barksdale, Inc.
 c. Detroit Switch, Inc.
 d. Potter Electric Signal Company.
 e. System Sensor; a Honeywell company.
 f. Tyco Fire & Building Products LP.
 g. United Electric Controls Co.
 h. Viking Corporation.

3. Type: Electrically supervised water-flow switch with retard feature.
5. Design Operation: Rising pressure signals water flow.

F. Valve Supervisory Switches:
1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Fire-Lite Alarms, Inc.; a Honeywell company.
 b. Kennedy Valve; a division of McWane, Inc.
 c. Potter Electric Signal Company.
 d. System Sensor; a Honeywell company.

3. Type: Electrically supervised.
5. Design: Signals that controlled valve is in other than fully open position.

G. Indicator-Post Supervisory Switches:
 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 b. System Sensor; a Honeywell company.

3. Type: Electrically supervised.
5. Design: Signals that controlled indicator-post valve is in other than fully open position.

2.11 PRESSURE GAGES

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. AMETEK; U.S. Gauge Division.
 2. Ashcroft, Inc.
 4. WIKA Instrument Corporation.

B. Standard: UL 393.

C. Dial Size: 3-1/2- to 4-1/2-inch diameter.

D. Pressure Gage Range: 0 to 300 psig.

E. Water System Piping Gage: Include "WATER" or "AIR/WATER" label on dial face.

F. Air System Piping Gage: Include retard feature and "AIR" or "AIR/WATER" label on dial face.
PART 3 - EXECUTION

3.1 PREPARATION

A. Perform fire-hydrant flow test according to NFPA 13 and NFPA 291. Use results for system design calculations required in "Quality Assurance" Article.

B. Report test results promptly and in writing.

3.2 SERVICE-ENTRANCE PIPING

A. Connect sprinkler piping to water-service piping for service entrance to building. Comply with requirements for exterior piping in Division 21 Section "Facility Fire-Suppression Water-Service Piping."

B. Install shutoff valve, backflow preventer, pressure gage, drain, and other accessories indicated at connection to water-service piping. Comply with requirements for backflow preventers in Division 21 Section "Facility Fire-Suppression Water-Service Piping."

C. Install shutoff valve, check valve, pressure gage, and drain at connection to water service.

3.3 WATER-SUPPLY CONNECTIONS

A. Connect sprinkler piping to building's interior water-distribution piping. Comply with requirements for interior piping in Division 22 Section "Domestic Water Piping."

B. Install shutoff valve, backflow preventer, pressure gage, drain, and other accessories indicated at connection to water-distribution piping. Comply with requirements for backflow preventers in Division 22 Section "Domestic Water Piping Specialties."

C. Install shutoff valve, check valve, pressure gage, and drain at connection to water supply.

3.4 PIPING INSTALLATION

A. Locations and Arrangements: Drawing plans, schematics, and diagrams indicate general location and arrangement of piping. Install piping as indicated, as far as practical.

1. Deviations from approved working plans for piping require written approval from authorities having jurisdiction. File written approval with Architect before deviating from approved working plans.

B. Piping Standard: Comply with requirements for installation of sprinkler piping in NFPA 13.

C. Use listed fittings to make changes in direction, branch takeoffs from mains, and reductions in pipe sizes.

D. Install unions adjacent to each valve in pipes NPS 2 and smaller.
E. Install flanges, flange adapters, or couplings for grooved-end piping on valves, apparatus, and equipment having NPS 2-1/2 and larger end connections.

F. Install "Inspector's Test Connections" in sprinkler system piping, complete with shutoff valve, and sized and located according to NFPA 13.

G. Install sprinkler piping with drains for complete system drainage.

H. Install sprinkler control valves, test assemblies, and drain risers adjacent to standpipes when sprinkler piping is connected to standpipes.

I. Install automatic (ball drip) drain valve at each check valve for fire-department connection, to drain piping between fire-department connection and check valve. Install drain piping to and spill over floor drain or to outside building.

J. Install alarm devices in piping systems.

K. Install hangers and supports for sprinkler system piping according to NFPA 13. Comply with requirements for hanger materials in NFPA 13.

L. Install pressure gages on riser or feed main, at each sprinkler test connection, and at top of each standpipe. Include pressure gages with connection not less than NPS 1/4 and with soft metal seated globe valve, arranged for draining pipe between gage and valve. Install gages to permit removal, and install where they will not be subject to freezing.

M. Fill sprinkler system piping with water.

N. Install electric heating cables and pipe insulation on sprinkler piping in areas subject to freezing. Comply with requirements for heating cables in Division 21 "Heat Tracing for Fire-Suppression Piping" and for piping insulation in Division 21 Section "Fire-Suppression Systems Insulation."

O. Install sleeves for piping penetrations of walls, ceilings, and floors. Comply with requirements for sleeves specified in Division 21 Section "Sleeves and Sleeve Seals for Fire-Suppression Piping."

P. Install sleeve seals for piping penetrations of concrete walls and slabs. Comply with requirements for sleeve seals specified in Division 21 Section "Sleeves and Sleeve Seals for Fire-Suppression Piping."

Q. Install escutcheons for piping penetrations of walls, ceilings, and floors. Comply with requirements for escutcheons specified in Division 21 Section "Escutcheons for Fire-Suppression Piping."

3.5 JOINT CONSTRUCTION

A. Install couplings, flanges, flanged fittings, unions, nipples, and transition and special fittings that have finish and pressure ratings same as or higher than system's pressure rating for aboveground applications unless otherwise indicated.

B. Install unions adjacent to each valve in pipes NPS 2 and smaller.
C. Install flanges, flange adapters, or couplings for grooved-end piping on valves, apparatus, and equipment having NPS 2-1/2 and larger end connections.

D. Ream ends of pipes and tubes and remove burrs. Bevel plain ends of steel pipe.

E. Remove scale, slag, dirt, and debris from inside and outside of pipes, tubes, and fittings before assembly.

F. Flanged Joints: Select appropriate gasket material in size, type, and thickness suitable for water service. Join flanges with gasket and bolts according to ASME B31.9.

G. Threaded Joints: Thread pipe with tapered pipe threads according to ASME B1.20.1. Cut threads full and clean using sharp dies. Ream threaded pipe ends to remove burrs and restore full ID. Join pipe fittings and valves as follows:

1. Apply appropriate tape or thread compound to external pipe threads.
2. Damaged Threads: Do not use pipe or pipe fittings with threads that are corroded or damaged.

H. Twist-Locked Joints: Insert plain end of steel pipe into plain-end-pipe fitting. Rotate retainer lugs one-quarter turn or tighten retainer pin.

I. Steel-Piping, Pressure-Sealed Joints: Join lightwall steel pipe and steel pressure-seal fittings with tools recommended by fitting manufacturer.

J. Welded Joints: Construct joints according to AWS D10.12M/D10.12, using qualified processes and welding operators according to "Quality Assurance" Article.

1. Shop weld pipe joints where welded piping is indicated. Do not use welded joints for galvanized-steel pipe.

K. Steel-Piping, Cut-Grooved Joints: Cut square-edge groove in end of pipe according to AWWA C606. Assemble coupling with housing, gasket, lubricant, and bolts. Join steel pipe and grooved-end fittings according to AWWA C606 for steel-pipe joints.

L. Steel-Piping, Roll-Grooved Joints: Roll rounded-edge groove in end of pipe according to AWWA C606. Assemble coupling with housing, gasket, lubricant, and bolts. Join steel pipe and grooved-end fittings according to AWWA C606 for steel-pipe grooved joints.

M. Steel-Piping, Pressure-Sealed Joints: Join Schedule 5 steel pipe and steel pressure-seal fittings with tools recommended by fitting manufacturer.

N. Dissimilar-Material Piping Joints: Make joints using adapters compatible with materials of both piping systems.

3.6 VALVE AND SPECIALTIES INSTALLATION

A. Install listed fire-protection valves, trim and drain valves, specialty valves and trim, controls, and specialties according to NFPA 13 and authorities having jurisdiction.
B. Install listed fire-protection shutoff valves supervised open, located to control sources of water supply except from fire-department connections. Install permanent identification signs indicating portion of system controlled by each valve.

C. Install check valve in each water-supply connection. Install backflow preventers instead of check valves in potable-water-supply sources.

D. Specialty Valves:
 1. General Requirements: Install in vertical position for proper direction of flow, in main supply to system.
 3. Deluge Valves: Install in vertical position, in proper direction of flow, and in main supply to deluge system. Install trim sets for drain, priming level, alarm connections, ball drip valves, pressure gages, priming chamber attachment, and fill-line attachment.

3.7 SPRINKLER INSTALLATION
A. Install sprinklers in suspended ceilings in center of narrow dimension of acoustical ceiling panels.

B. Install dry-type sprinklers with water supply from heated space. Do not install pendent or sidewall, wet-type sprinklers in areas subject to freezing.

C. Install sprinklers into flexible, sprinkler hose fittings and install hose into bracket on ceiling grid.

3.8 FIRE-DEPARTMENT CONNECTION INSTALLATION
A. Install wall-type, fire-department connections.

B. Install automatic (ball drip) drain valve at each check valve for fire-department connection.

3.9 IDENTIFICATION
A. Install labeling and pipe markers on equipment and piping according to requirements in NFPA 13.

B. Identify system components, wiring, cabling, and terminals. Comply with requirements for identification specified in Division 26 Section "Identification for Electrical Systems."

3.10 FIELD QUALITY CONTROL
A. Perform tests and inspections.

B. Tests and Inspections:
1. **Leak Test:** After installation, charge systems and test for leaks. Repair leaks and retest until no leaks exist.

2. Test and adjust controls and safeties. Replace damaged and malfunctioning controls and equipment.

3. Flush, test, and inspect sprinkler systems according to NFPA 13, "Systems Acceptance" Chapter.

4. Energize circuits to electrical equipment and devices.

5. Start and run excess-pressure pumps.

6. Coordinate with fire-alarm tests. Operate as required.

7. Coordinate with fire-pump tests. Operate as required.

8. Verify that equipment hose threads are same as local fire-department equipment.

C. Sprinkler piping system will be considered defective if it does not pass tests and inspections.

D. Prepare test and inspection reports.

3.11 CLEANING

A. Clean dirt and debris from sprinklers.

B. Remove and replace sprinklers with paint other than factory finish.

3.12 DEMONSTRATION

A. Engage a factory-authorized service representative to train Owner's maintenance personnel to adjust, operate, and maintain specialty valves.

3.13 PIPING SCHEDULE

A. Piping between Fire-Department Connections and Check Valves: Galvanized, standard-weight steel pipe with threaded ends; cast-iron threaded fittings; and threaded joints.

B. Sprinkler specialty fittings may be used, downstream of control valves, instead of specified fittings.

C. Standard-pressure, wet-pipe sprinkler system, NPS 2 and smaller, shall be one of the following:

1. Standard-weight or Schedule 30, black-steel pipe with threaded ends; uncoated, gray-iron threaded fittings; and threaded joints.

2. Standard-weight or Schedule 30, galvanized-steel pipe with threaded ends; galvanized, gray-iron threaded fittings; and threaded joints.

3. Standard-weight or Schedule 30, black-steel pipe with plain ends; uncoated, plain-end-pipe fittings; and twist-locked joints.

4. Standard-weight or Schedule 30, galvanized-steel pipe with plain ends; galvanized, plain-end-pipe fittings; and twist-locked joints.

5. Standard-weight or Schedule 30, black-steel pipe with cut- or roll-grooved ends; uncoated, grooved-end fittings for steel piping; grooved-end-pipe couplings for steel piping; and grooved joints.
6. Standard-weight or Schedule 30, galvanized-steel pipe with cut-grooved ends; galvanized, grooved-end fittings for steel piping; grooved-end-pipe couplings for steel piping; and grooved joints.
7. Standard-weight or Schedule 30, black-steel pipe with plain ends; steel welding fittings; and welded joints.

D. Standard-pressure, wet-pipe sprinkler system, NPS 2-1/2 to NPS 4, shall be one of the following:
1. Standard-weight or Schedule 30, black-steel pipe with threaded ends; uncoated, gray-iron threaded fittings; and threaded joints.
2. Standard-weight or Schedule 30, galvanized-steel pipe with threaded ends; galvanized, gray-iron threaded fittings; and threaded joints.
3. Standard-weight or Schedule 30, black-steel pipe with cut- or roll-grooved ends; uncoated, grooved-end fittings for steel piping; grooved-end-pipe couplings for steel piping; and grooved joints.
4. Standard-weight or Schedule 30, galvanized-steel pipe with cut-grooved ends; galvanized, grooved-end fittings for steel piping; grooved-end-pipe couplings for steel piping; and grooved joints.
5. Standard-weight or Schedule 30, black-steel pipe with plain ends; steel welding fittings; and welded joints.
6. Thinwall or Schedule 10 black-steel pipe with roll-grooved ends; uncoated, grooved-end fittings for steel piping; grooved-end-pipe couplings for steel piping; and grooved joints.
7. Thinwall or Schedule 10 black-steel pipe with plain ends; welding fittings; and welded joints.

E. Standard-pressure, wet-pipe sprinkler system, NPS 5 and larger, shall be one of the following:
1. Standard-weight or Schedule 30, black-steel pipe with threaded ends; uncoated, gray-iron threaded fittings; and threaded joints.
2. Standard-weight or Schedule 30, galvanized-steel pipe with threaded ends; galvanized, gray-iron threaded fittings; and threaded joints.
3. Standard-weight or Schedule 30, black-steel pipe with cut- or roll-grooved ends; uncoated, grooved-end fittings for steel piping; grooved-end-pipe couplings for steel piping; and grooved joints.
4. Standard-weight or Schedule 30, galvanized-steel pipe with cut-grooved ends; galvanized, grooved-end fittings for steel piping; grooved-end-pipe couplings for steel piping; and grooved joints.
5. Standard-weight or Schedule 30, black-steel pipe with plain ends; steel welding fittings; and welded joints.
6. Thinwall or Schedule 10 black-steel pipe with roll-grooved ends; uncoated, grooved-end fittings for steel piping; grooved-end-pipe couplings for steel piping; and grooved joints.
7. Thinwall or Schedule 10 black-steel pipe with plain ends; welding fittings; and welded joints.

3.14 SPRINKLER SCHEDULE: Refer to plans.

END OF SECTION
SECTION 220500

COMMON WORK RESULTS FOR PLUMBING

PART 1 - GENERAL

1.1 SUMMARY

A. This Section includes the following:

1. Piping materials and installation instructions common to most piping systems.
2. Transition fittings.
3. Dielectric fittings.
4. Mechanical sleeve seals.
5. Sleeves.
7. Grout.
8. Equipment installation requirements common to equipment sections.
10. Concrete bases.
11. Supports and anchorages.

1.2 DEFINITIONS

A. Finished Spaces: Spaces other than mechanical and electrical equipment rooms, furred spaces, pipe chases, unheated spaces immediately below roof, spaces above ceilings, unexcavated spaces, crawlspace, and tunnels.

B. Exposed, Interior Installations: Exposed to view indoors. Examples include finished occupied spaces and mechanical equipment rooms.

C. Exposed, Exterior Installations: Exposed to view outdoors or subject to outdoor ambient temperatures and weather conditions. Examples include rooftop locations.

D. Concealed, Interior Installations: Concealed from view and protected from physical contact by building occupants. Examples include above ceilings and in chases.

E. Concealed, Exterior Installations: Concealed from view and protected from weather conditions and physical contact by building occupants but subject to outdoor ambient temperatures. Examples include installations within unheated shelters.

F. The following are industry abbreviations for plastic materials:

2. CPVC: Chlorinated polyvinyl chloride plastic.
3. PE: Polyethylene plastic.
4. PVC: Polyvinyl chloride plastic.

G. The following are industry abbreviations for rubber materials:
1. EPDM: Ethylene-propylene-diene terpolymer rubber.
2. NBR: Acrylonitrile-butadiene rubber.

1.3 SUBMITTALS

A. Product Data: For the following:
 1. Transition fittings.
 2. Dielectric fittings.
 3. Mechanical sleeve seals.
 4. Escutcheons.

B. Welding certificates.

1.4 QUALITY ASSURANCE

A. Steel Support Welding: Qualify processes and operators according to AWS D1.1, "Structural Welding Code--Steel."

B. Steel Pipe Welding: Qualify processes and operators according to ASME Boiler and Pressure Vessel Code: Section IX, "Welding and Brazing Qualifications."

 1. Comply with provisions in ASME B31 Series, "Code for Pressure Piping."
 2. Certify that each welder has passed AWS qualification tests for welding processes involved and that certification is current.

C. Electrical Characteristics for Plumbing Equipment: Equipment of higher electrical characteristics may be furnished provided such proposed equipment is approved in writing and connecting electrical services, circuit breakers, and conduit sizes are appropriately modified. If minimum energy ratings or efficiencies are specified, equipment shall comply with requirements.

1.5 DELIVERY, STORAGE, AND HANDLING

A. Deliver pipes and tubes with factory-applied end caps. Maintain end caps through shipping, storage, and handling to prevent pipe end damage and to prevent entrance of dirt, debris, and moisture.

B. Store plastic pipes protected from direct sunlight. Support to prevent sagging and bending.

1.6 COORDINATION

A. Arrange for pipe spaces, chases, slots, and openings in building structure during progress of construction, to allow for plumbing installations.

B. Coordinate installation of required supporting devices and set sleeves in poured-in-place concrete and other structural components as they are constructed.
C. Coordinate requirements for access panels and doors for plumbing items requiring access that are concealed behind finished surfaces. Access panels and doors are specified in Division 08 Section "Access Doors and Frames."

PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. In other Part 2 articles where subparagraph titles below introduce lists, the following requirements apply for product selection:

1. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the manufacturers specified.
2. Manufacturers: Subject to compliance with requirements, provide products by the manufacturers specified.

2.2 PIPE, TUBE, AND FITTINGS

A. Refer to individual Division 22 piping Sections for pipe, tube, and fitting materials and joining methods.

B. Pipe Threads: ASME B1.20.1 for factory-threaded pipe and pipe fittings.

2.3 JOINING MATERIALS

A. Refer to individual Division 22 piping Sections for special joining materials not listed below.

B. Pipe-Flange Gasket Materials: Suitable for chemical and thermal conditions of piping system contents.

1. ASME B16.21, nonmetallic, flat, asbestos-free, 1/8-inch maximum thickness unless thickness or specific material is indicated.
 a. Full-Face Type: For flat-face, Class 125, cast-iron and cast-bronze flanges.
 b. Narrow-Face Type: For raised-face, Class 250, cast-iron and steel flanges.

2. AWWA C110, rubber, flat face, 1/8 inch thick, unless otherwise indicated; and full-face or ring type, unless otherwise indicated.

C. Flange Bolts and Nuts: ASME B18.2.1, carbon steel, unless otherwise indicated.

D. Plastic, Pipe-Flange Gasket, Bolts, and Nuts: Type and material recommended by piping system manufacturer, unless otherwise indicated.

E. Solder Filler Metals: ASTM B 32, lead-free alloys. Include water-flushable flux according to ASTM B 813.
F. Brazing Filler Metals: AWS A5.8, BCuP Series, copper-phosphorus alloys for general-duty brazing, unless otherwise indicated; and AWS A5.8, BAg1, silver alloy for refrigerant piping, unless otherwise indicated.

G. Welding Filler Metals: Comply with AWS D10.12 for welding materials appropriate for wall thickness and chemical analysis of steel pipe being welded.

H. Solvent Cements for Joining Plastic Piping:
 1. ABS Piping: ASTM D 2235.
 2. CPVC Piping: ASTM F 493.
 3. PVC Piping: ASTM D 2564. Include primer according to ASTM F 656.
 4. PVC to ABS Piping Transition: ASTM D 3138.

I. Fiberglass Pipe Adhesive: As furnished or recommended by pipe manufacturer.

2.4 TRANSITION FITTINGS

A. AWWA Transition Couplings: Same size as, and with pressure rating at least equal to and with ends compatible with, piping to be joined.
 1. Manufacturers:
 b. Dresser Industries, Inc.; DMD Div.
 c. Ford Meter Box Company, Incorporated (The); Pipe Products Div.
 d. JCM Industries.
 e. Smith-Blair, Inc.
 f. Viking Johnson.
 2. Underground Piping NPS 1-1/2 and Smaller: Manufactured fitting or coupling.
 4. Aboveground Pressure Piping: Pipe fitting.

B. Plastic-to-Metal Transition Fittings: CPVC and PVC one-piece fitting with manufacturer's Schedule 80 equivalent dimensions; one end with threaded brass insert, and one solvent-cement-joint end.
 1. Available Manufacturers:
 a. Eslon Thermoplastics.

C. Plastic-to-Metal Transition Adaptors: One-piece fitting with manufacturer's SDR 11 equivalent dimensions; one end with threaded brass insert, and one solvent-cement-joint end.
 1. Available Manufacturers:
 a. Thompson Plastics, Inc.
D. Plastic-to-Metal Transition Unions: MSS SP-107, CPVC and PVC four-part union. Include brass end, solvent-cement-joint end, rubber O-ring, and union nut.

1. Available Manufacturers:
 a. NIBCO INC.
 b. NIBCO, Inc.; Chemtrol Div.

E. Flexible Transition Couplings for Underground Nonpressure Drainage Piping: ASTM C 1173 with elastomeric sleeve, ends same size as piping to be joined, and corrosion-resistant metal band on each end.

1. Available Manufacturers:
 b. Fernco, Inc.
 d. Plastic Oddities, Inc.

2.5 DIELECTRIC FITTINGS

A. Description: Combination fitting of copper alloy and ferrous materials with threaded, solder-joint, plain, or weld-neck end connections that match piping system materials.

B. Insulating Material: Suitable for system fluid, pressure, and temperature.

C. Dielectric Unions: Factory-fabricated, union assembly, for 250-psig minimum working pressure at 180 deg F.

1. Available Manufacturers:
 a. Capitol Manufacturing Co.
 b. Central Plastics Company.
 c. Eclipse, Inc.
 d. Epco Sales, Inc.

D. Dielectric Flanges: Factory-fabricated, companion-flange assembly, for 150- or 300-psig minimum working pressure as required to suit system pressures.

1. Available Manufacturers:
 a. Capitol Manufacturing Co.
 b. Central Plastics Company.
 c. Epco Sales, Inc.
E. Dielectric-Flange Kits: Companion-flange assembly for field assembly. Include flanges, full-face- or ring-type neoprene or phenolic gasket, phenolic or polyethylene bolt sleeves, phenolic washers, and steel backing washers.

1. Available Manufacturers:
 a. Advance Products & Systems, Inc.
 b. Calpico, Inc.
 c. Central Plastics Company.
 d. Pipeline Seal and Insulator, Inc.

2. Separate companion flanges and steel bolts and nuts shall have 150- or 300-psig minimum working pressure where required to suit system pressures.

F. Dielectric Couplings: Galvanized-steel coupling with inert and noncorrosive, thermoplastic lining; threaded ends; and 300-psig minimum working pressure at 225 deg F.

1. Available Manufacturers:
 a. Calpico, Inc.
 b. Lochinvar Corp.

G. Dielectric Nipples: Electroplated steel nipple with inert and noncorrosive, thermoplastic lining; plain, threaded, or grooved ends; and 300-psig minimum working pressure at 225 deg F.

1. Available Manufacturers:
 a. Perfection Corp.
 b. Precision Plumbing Products, Inc.
 c. Sioux Chief Manufacturing Co., Inc.
 d. Victaulic Co. of America.

2.6 MECHANICAL SLEEVE SEALS

A. Description: Modular sealing element unit, designed for field assembly, to fill annular space between pipe and sleeve.

1. Available Manufacturers:
 a. Advance Products & Systems, Inc.
 b. Calpico, Inc.
 c. Metraflex Co.
 d. Pipeline Seal and Insulator, Inc.

2. Sealing Elements: EPDM interlocking links shaped to fit surface of pipe. Include type and number required for pipe material and size of pipe.

3. Pressure Plates: Stainless steel. Include two for each sealing element.

4. Connecting Bolts and Nuts: Stainless steel of length required to secure pressure plates to sealing elements. Include one for each sealing element.
2.7 SLEEVES

A. Galvanized-Steel Sheet: 0.0239-inch minimum thickness; round tube closed with welded longitudinal joint.

B. Steel Pipe: ASTM A 53, Type E, Grade B, Schedule 40, galvanized, plain ends.

C. Cast Iron: Cast or fabricated "wall pipe" equivalent to ductile-iron pressure pipe, with plain ends and integral waterstop, unless otherwise indicated.

D. Stack Sleeve Fittings: Manufactured, cast-iron sleeve with integral clamping flange. Include clamping ring and bolts and nuts for membrane flashing.
 1. Underdeck Clamp: Clamping ring with set screws.

2.8 ESCUTCHEONS

A. Description: Manufactured wall and ceiling escutcheons and floor plates, with an ID to closely fit around pipe, tube, and insulation of insulated piping and an OD that completely covers opening.

B. One-Piece, Deep-Pattern Type: Deep-drawn, box-shaped brass with polished chrome-plated finish.

C. One-Piece, Cast-Brass Type: With set screw.
 1. Finish: Polished chrome-plated.

D. Split-Casting, Cast-Brass Type: With concealed hinge and set screw.
 1. Finish: Polished chrome-plated.

E. One-Piece, Stamped-Steel Type: With set screw or spring clips and chrome-plated finish.

F. Split-Plate, Stamped-Steel Type: With concealed hinge, set screw or spring clips, and chrome-plated finish.

G. One-Piece, Floor-Plate Type: Cast-iron floor plate.

H. Split-Casting, Floor-Plate Type: Cast brass with concealed hinge and set screw.

2.9 GROUT

A. Description: ASTM C 1107, Grade B, nonshrink and nonmetallic, dry hydraulic-cement grout.
 2. Design Mix: 5000-psi, 28-day compressive strength.
PART 3 - EXECUTION

3.1 PIPING SYSTEMS - COMMON REQUIREMENTS

A. Install piping according to the following requirements and Division 22 Sections specifying piping systems.

B. Drawing plans, schematics, and diagrams indicate general location and arrangement of piping systems. Indicated locations and arrangements were used to size pipe and calculate friction loss, expansion, pump sizing, and other design considerations. Install piping as indicated unless deviations to layout are approved on Coordination Drawings.

C. Install piping in concealed locations, unless otherwise indicated and except in equipment rooms and service areas.

D. Install piping indicated to be exposed and piping in equipment rooms and service areas at right angles or parallel to building walls. Diagonal runs are prohibited unless specifically indicated otherwise.

E. Install piping above accessible ceilings to allow sufficient space for ceiling panel removal.

F. Install piping to permit valve servicing.

G. Install piping at indicated slopes.

H. Install piping free of sags and bends.

I. Install fittings for changes in direction and branch connections.

J. Install piping to allow application of insulation.

K. Select system components with pressure rating equal to or greater than system operating pressure.

L. Install escutcheons for penetrations of walls, ceilings, and floors according to the following:

1. New Piping:
 a. Piping with Fitting or Sleeve Protruding from Wall: One-piece, deep-pattern type.
 b. Chrome-Plated Piping: One-piece, cast-brass type with polished chrome-plated finish.
 c. Insulated Piping: One-piece, stamped-steel type with spring clips.
 d. Bare Piping at Wall and Floor Penetrations in Finished Spaces: One-piece, cast-brass type with polished chrome-plated finish.
 e. Bare Piping at Wall and Floor Penetrations in Finished Spaces: One-piece, stamped-steel type.
 f. Bare Piping at Ceiling Penetrations in Finished Spaces: One-piece, cast-brass type with polished chrome-plated finish.
 g. Bare Piping at Ceiling Penetrations in Finished Spaces: One-piece, stamped-steel type and set screw.
h. Bare Piping in Unfinished Service Spaces: One-piece, cast-brass type with rough-brass finish.
i. Bare Piping in Unfinished Service Spaces: One-piece, stamped-steel type with concealed or exposed-rivet hinge and set screw or spring clips.
j. Bare Piping in Equipment Rooms: One-piece, cast-brass type.
k. Bare Piping in Equipment Rooms: One-piece, stamped-steel type with set screw or spring clips.
l. Bare Piping at Floor Penetrations in Equipment Rooms: One-piece, floor-plate type.

M. Sleeves are not required for core-drilled holes.

N. Permanent sleeves are not required for holes formed by removable PE sleeves.

O. Install sleeves for pipes passing through concrete and masonry walls and concrete floor and roof slabs.

P. Install sleeves for pipes passing through concrete and masonry walls, gypsum-board partitions, and concrete floor and roof slabs.

1. Cut sleeves to length for mounting flush with both surfaces.
 a. Exception: Extend sleeves installed in floors of mechanical equipment areas or other wet areas 2 inches above finished floor level. Extend cast-iron sleeve fittings below floor slab as required to secure clamping ring if ring is specified.

2. Install sleeves in new walls and slabs as new walls and slabs are constructed.
3. Install sleeves that are large enough to provide 1/4-inch annular clear space between sleeve and pipe or pipe insulation. Use the following sleeve materials:
 a. Steel Pipe Sleeves: For pipes smaller than NPS 6.
 b. Steel Sheet Sleeves: For pipes NPS 6 and larger, penetrating gypsum-board partitions.
 c. Stack Sleeve Fittings: For pipes penetrating floors with membrane waterproofing. Secure flashing between clamping flanges. Install section of cast-iron soil pipe to extend sleeve to 2 inches above finished floor level. Refer to Division 07 Section "Sheet Metal Flashing and Trim" for flashing.

 1) Seal space outside of sleeve fittings with grout.

4. Except for underground wall penetrations, seal annular space between sleeve and pipe or pipe insulation, using joint sealants appropriate for size, depth, and location of joint. Refer to Division 07 Section "Joint Sealants" for materials and installation.

Q. Aboveground, Exterior-Wall Pipe Penetrations: Seal penetrations using sleeves and mechanical sleeve seals. Select sleeve size to allow for 1-inch annular clear space between pipe and sleeve for installing mechanical sleeve seals.

1. Install steel pipe for sleeves smaller than 6 inches in diameter.
2. Install cast-iron "wall pipes" for sleeves 6 inches and larger in diameter.
3. Mechanical Sleeve Seal Installation: Select type and number of sealing elements required for pipe material and size. Position pipe in center of sleeve. Assemble mechanical sleeve seals and install in annular space between pipe and sleeve. Tighten bolts against pressure plates that cause sealing elements to expand and make watertight seal.

R. Underground, Exterior-Wall Pipe Penetrations: Install cast-iron "wall pipes" for sleeves. Seal pipe penetrations using mechanical sleeve seals. Select sleeve size to allow for 1-inch annular clear space between pipe and sleeve for installing mechanical sleeve seals.

1. Mechanical Sleeve Seal Installation: Select type and number of sealing elements required for pipe material and size. Position pipe in center of sleeve. Assemble mechanical sleeve seals and install in annular space between pipe and sleeve. Tighten bolts against pressure plates that cause sealing elements to expand and make watertight seal.

S. Fire-Barrier Penetrations: Maintain indicated fire rating of walls, partitions, ceilings, and floors at pipe penetrations. Seal pipe penetrations with firestop materials. Refer to Division 07 Section "Penetration Firestopping" for materials.

T. Verify final equipment locations for roughing-in.

U. Refer to equipment specifications in other Sections of these Specifications for roughing-in requirements.

3.2 PIPING JOINT CONSTRUCTION

A. Join pipe and fittings according to the following requirements and Division 22 Sections specifying piping systems.

B. Ream ends of pipes and tubes and remove burrs. Bevel plain ends of steel pipe.

C. Remove scale, slag, dirt, and debris from inside and outside of pipe and fittings before assembly.

D. Soldered Joints: Apply ASTM B 813, water-flushable flux, unless otherwise indicated, to tube end. Construct joints according to ASTM B 828 or CDA's "Copper Tube Handbook," using lead-free solder alloy complying with ASTM B 32.

F. Threaded Joints: Thread pipe with tapered pipe threads according to ASME B1.20.1. Cut threads full and clean using sharp dies. Ream threaded pipe ends to remove burrs and restore full ID. Join pipe fittings and valves as follows:

1. Apply appropriate tape or thread compound to external pipe threads unless dry seal threading is specified.
2. Damaged Threads: Do not use pipe or pipe fittings with threads that are corroded or damaged. Do not use pipe sections that have cracked or open welds.
G. Welded Joints: Construct joints according to AWS D10.12, using qualified processes and welding operators according to Part 1 "Quality Assurance" Article.

H. Flanged Joints: Select appropriate gasket material, size, type, and thickness for service application. Install gasket concentrically positioned. Use suitable lubricants on bolt threads.

I. Plastic Piping Solvent-Cement Joints: Clean and dry joining surfaces. Join pipe and fittings according to the following:
 1. Comply with ASTM F 402 for safe-handling practice of cleaners, primers, and solvent cements.
 2. ABS Piping: Join according to ASTM D 2235 and ASTM D 2661 Appendixes.
 3. CPVC Piping: Join according to ASTM D 2846/D 2846M Appendix.
 4. PVC Pressure Piping: Join schedule number ASTM D 1785, PVC pipe and PVC socket fittings according to ASTM D 2672. Join other-than-schedule-number PVC pipe and socket fittings according to ASTM D 2855.
 5. PVC Nonpressure Piping: Join according to ASTM D 2855.
 6. PVC to ABS Nonpressure Transition Fittings: Join according to ASTM D 3138 Appendix.

J. Plastic Pressure Piping Gasketed Joints: Join according to ASTM D 3139.

K. Plastic Nonpressure Piping Gasketed Joints: Join according to ASTM D 3212.

L. PE Piping Heat-Fusion Joints: Clean and dry joining surfaces by wiping with clean cloth or paper towels. Join according to ASTM D 2657.
 1. Plain-End Pipe and Fittings: Use butt fusion.
 2. Plain-End Pipe and Socket Fittings: Use socket fusion.

3.3 PIPING CONNECTIONS

A. Make connections according to the following, unless otherwise indicated:
 1. Install unions, in piping NPS 2 and smaller, adjacent to each valve and at final connection to each piece of equipment.
 2. Install flanges, in piping NPS 2-1/2 and larger, adjacent to flanged valves and at final connection to each piece of equipment.
 3. Dry Piping Systems: Install dielectric unions and flanges to connect piping materials of dissimilar metals.

3.4 EQUIPMENT INSTALLATION - COMMON REQUIREMENTS

A. Install equipment to allow maximum possible headroom unless specific mounting heights are not indicated.
B. Install equipment level and plumb, parallel and perpendicular to other building systems and components in exposed interior spaces, unless otherwise indicated.

C. Install plumbing equipment to facilitate service, maintenance, and repair or replacement of components. Connect equipment for ease of disconnecting, with minimum interference to other installations. Extend grease fittings to accessible locations.

D. Install equipment to allow right of way for piping installed at required slope.

3.5 PAINTING

A. Painting of plumbing systems, equipment, and components is specified in Division 09 Sections "Interior Painting" and "Exterior Painting."

B. Damage and Touchup: Repair marred and damaged factory-painted finishes with materials and procedures to match original factory finish.

3.6 CONCRETE BASES

A. Concrete Bases: Anchor equipment to concrete base according to equipment manufacturer's written instructions and according to seismic codes at Project.

1. Construct concrete bases of dimensions indicated, but not less than 4 inches larger in both directions than supported unit.
2. Install dowel rods to connect concrete base to concrete floor. Unless otherwise indicated, install dowel rods on 18-inch centers around the full perimeter of the base.
3. Install epoxy-coated anchor bolts for supported equipment that extend through concrete base, and anchor into structural concrete floor.
4. Place and secure anchorage devices. Use supported equipment manufacturer's setting drawings, templates, diagrams, instructions, and directions furnished with items to be embedded.
5. Install anchor bolts to elevations required for proper attachment to supported equipment.
6. Install anchor bolts according to anchor-bolt manufacturer's written instructions.
7. Use 3000-psi, 28-day compressive-strength concrete and reinforcement as specified in Division 03 Section "Cast-in-Place Concrete."

3.7 ERECTION OF METAL SUPPORTS AND ANCHORAGES

A. Refer to Division 05 Section "Metal Fabrications" for structural steel.

B. Cut, fit, and place miscellaneous metal supports accurately in location, alignment, and elevation to support and anchor plumbing materials and equipment.

C. Field Welding: Comply with AWS D1.1.
3.8 ERECTION OF WOOD SUPPORTS AND ANCHORAGES

A. Cut, fit, and place wood grounds, nailers, blocking, and anchorages to support, and anchor plumbing materials and equipment.

B. Select fastener sizes that will not penetrate members if opposite side will be exposed to view or will receive finish materials. Tighten connections between members. Install fasteners without splitting wood members.

C. Attach to substrates as required to support applied loads.

3.9 GROUTING

A. Mix and install grout for plumbing equipment base bearing surfaces, pump and other equipment base plates, and anchors.

B. Clean surfaces that will come into contact with grout.

C. Provide forms as required for placement of grout.

D. Avoid air entrapment during placement of grout.

E. Place grout, completely filling equipment bases.

F. Place grout on concrete bases and provide smooth bearing surface for equipment.

G. Place grout around anchors.

H. Cure placed grout.

END OF SECTION
SECTION 220517 SLEEVES AND SLEEVE SEALS FOR PLUMBING PIPING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:

1. Sleeves.
2. Stack-sleeve fittings.
3. Sleeve-seal systems.
4. Sleeve-seal fittings.
5. Grout.

1.3 SUBMITTALS

A. Product Data: For each type of product indicated.

PART 2 - PRODUCTS

2.1 SLEEVES

A. Cast-Iron Wall Pipes: Cast or fabricated of cast or ductile iron and equivalent to ductile-iron pressure pipe, with plain ends and integral waterstop unless otherwise indicated.

B. Galvanized-Steel Wall Pipes: ASTM A 53/A 53M, Schedule 40, with plain ends and welded steel collar; zinc coated.

C. Galvanized-Steel-Pipe Sleeves: ASTM A 53/A 53M, Type E, Grade B, Schedule 40, zinc coated, with plain ends.

D. Galvanized-Steel-Sheet Sleeves: 0.0239-inch minimum thickness; round tube closed with welded longitudinal joint.

E. Molded-PE or -PP Sleeves: Removable, tapered-cup shaped, and smooth outer surface with nailing flange for attaching to wooden forms.
2.2 STACK-SLEEVE FITTINGS

A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:

B. Description: Manufactured, cast-iron sleeve with integral clamping flange. Include clamping ring, bolts, and nuts for membrane flashing.

1. Underdeck Clamp: Clamping ring with setscrews.

2.3 SLEEVE-SEAL SYSTEMS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. Advance Products & Systems, Inc.
2. CALPICO, Inc.
3. Metraflex Company (The).
4. Pipeline Seal and Insulator, Inc.
5. Proco Products, Inc.

B. Description: Modular sealing-element unit, designed for field assembly, for filling annular space between piping and sleeve.

1. Sealing Elements: EPDM-rubber interlocking links shaped to fit surface of pipe. Include type and number required for pipe material and size of pipe.
2. Pressure Plates: Stainless steel.
3. Connecting Bolts and Nuts: Stainless steel of length required to secure pressure plates to sealing elements.

2.4 SLEEVE-SEAL FITTINGS

A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:

1. Presealed Systems.

B. Description: Manufactured plastic, sleeve-type, waterstop assembly made for imbedding in concrete slab or wall. Unit has plastic or rubber waterstop collar with center opening to match piping OD.

2.5 GROUT

B. Characteristics: Nonshrink; recommended for interior and exterior applications.
C. Design Mix: 5000-psi, 28-day compressive strength.
D. Packaging: Premixed and factory packaged.

PART 3 - EXECUTION

3.1 SLEEVE INSTALLATION

A. Install sleeves for piping passing through penetrations in floors, partitions, roofs, and walls.

B. For sleeves that will have sleeve-seal system installed, select sleeves of size large enough to provide 1-inch annular clear space between piping and concrete slabs and walls.
 1. Sleeves are not required for core-drilled holes.

C. Install sleeves in concrete floors, concrete roof slabs, and concrete walls as new slabs and walls are constructed.
 1. Permanent sleeves are not required for holes in slabs formed by molded-PE or -PP sleeves.
 2. Cut sleeves to length for mounting flush with both surfaces.
 a. Exception: Extend sleeves installed in floors of mechanical equipment areas or other wet areas 2 inches above finished floor level.
 3. Using grout, seal the space outside of sleeves in slabs and walls without sleeve-seal system.

D. Install sleeves for pipes passing through interior partitions.
 1. Cut sleeves to length for mounting flush with both surfaces.
 2. Seal annular space between sleeve and piping or piping insulation; use joint sealants appropriate for size, depth, and location of joint. Comply with requirements for sealants specified in Division 07 Section "Joint Sealants."

E. Fire-BARRIER Penetrations: Maintain indicated fire rating of walls, partitions, ceilings, and floors at pipe penetrations. Seal pipe penetrations with firestop materials. Comply with requirements for firestopping specified in Division 07 Section "Penetration Firestopping."

3.2 STACK-SLEEVE-FITTING INSTALLATION

A. Install stack-sleeve fittings in new slabs as slabs are constructed.
 1. Install fittings that are large enough to provide 1/4-inch annular clear space between sleeve and pipe or pipe insulation.
 2. Secure flashing between clamping flanges for pipes penetrating floors with membrane waterproofing. Comply with requirements for flashing specified in Division 07 Section "Sheet Metal Flashing and Trim."
3. Install section of cast-iron soil pipe to extend sleeve to 2 inches above finished floor level.
4. Extend cast-iron sleeve fittings below floor slab as required to secure clamping ring if ring is specified.
5. Using grout, seal the space around outside of stack-sleeve fittings.

B. Fire-Barrier Penetrations: Maintain indicated fire rating of floors at pipe penetrations. Seal pipe penetrations with firestop materials. Comply with requirements for firestopping specified in Division 07 Section "Penetration Firestopping."

3.3 SLEEVE-SEAL-SYSTEM INSTALLATION
A. Install sleeve-seal systems in sleeves in exterior concrete walls and slabs-on-grade at service piping entries into building.

B. Select type, size, and number of sealing elements required for piping material and size and for sleeve ID or hole size. Position piping in center of sleeve. Center piping in penetration, assemble sleeve-seal system components, and install in annular space between piping and sleeve. Tighten bolts against pressure plates that cause sealing elements to expand and make a watertight seal.

3.4 SLEEVE-SEAL-FITTING INSTALLATION
A. Install sleeve-seal fittings in new walls and slabs as they are constructed.

B. Assemble fitting components of length to be flush with both surfaces of concrete slabs and walls. Position waterstop flange to be centered in concrete slab or wall.

C. Secure nailing flanges to concrete forms.

D. Using grout, seal the space around outside of sleeve-seal fittings.

3.5 SLEEVE AND SLEEVE-SEAL SCHEDULE
A. Use sleeves and sleeve seals for the following piping-penetration applications:

1. Exterior Concrete Walls above Grade:
 a. Piping Smaller Than NPS 6: Cast-iron wall sleeves.
 b. Piping NPS 6 and Larger: Cast-iron wall sleeves.

2. Exterior Concrete Walls below Grade:
 a. Piping Smaller Than NPS 6: Cast-iron wall sleeves with sleeve-seal system.
 1) Select sleeve size to allow for 1-inch annular clear space between piping and sleeve for installing sleeve-seal system.
 b. Piping NPS 6 and Larger: Cast-iron wall sleeves with sleeve-seal system.
1) Select sleeve size to allow for 1-inch annular clear space between piping and sleeve for installing sleeve-seal system.

3. Concrete Slabs-on-Grade:
 a. Piping Smaller Than NPS 6: Cast-iron wall sleeves with sleeve-seal system.
 1) Select sleeve size to allow for 1-inch annular clear space between piping and sleeve for installing sleeve-seal system.
 b. Piping NPS 6 and Larger: Cast-iron wall sleeves with sleeve-seal system.
 1) Select sleeve size to allow for 1-inch annular clear space between piping and sleeve for installing sleeve-seal system.

4. Concrete Slabs above Grade:
 b. Piping NPS 6 and Larger: Galvanized-steel-pipe sleeves.

5. Interior Partitions:

END OF SECTION
SECTION 220518 ESCUTCHEONS FOR PLUMBING PIPING

PART 1 - GENERAL

1.1 SUMMARY
 A. Section Includes:
 1. Escutcheons.
 2. Floor plates.

1.2 SUBMITTALS
 A. Product Data: For each type of product indicated.

PART 2 - PRODUCTS

2.1 ESCUTCHEONS
 A. One-Piece, Cast-Brass Type: With polished, chrome-plated and rough-brass finish and setscrew fastener.
 B. One-Piece, Deep- Pattern Type: Deep-drawn, box-shaped brass with chrome-plated finish and spring-clip fasteners.
 C. One-Piece, Stamped-Steel Type: With chrome-plated finish and spring-clip fasteners.
 D. Split-Casting Brass Type: With polished, chrome-plated and rough-brass finish and with concealed hinge and setscrew.
 E. Split-Plate, Stamped-Steel Type: With chrome-plated finish, concealed and exposed-rivet hinge, and spring-clip fasteners.

2.2 FLOOR PLATES
 A. One-Piece Floor Plates: Cast-iron flange with holes for fasteners.
 B. Split-Casting Floor Plates: Cast brass with concealed hinge.
PART 3 - EXECUTION

3.1 INSTALLATION

A. Install escutcheons for piping penetrations of walls, ceilings, and finished floors.

B. Install escutcheons with ID to closely fit around pipe, tube, and insulation of insulated piping and with OD that completely covers opening.

1. Escutcheons for New Piping:
 a. Piping with Fitting or Sleeve Protruding from Wall: One-piece, deep-pattern type.
 b. Chrome-Plated Piping: One-piece, cast-brass type with polished, chrome-plated finish.
 c. Insulated Piping: One-piece, stamped-steel type or split-plate, stamped-steel type with concealed hinge.
 d. Bare Piping at Wall and Floor Penetrations in Finished Spaces: One-piece, stamped-steel type or split-plate, stamped-steel type with concealed hinge.
 e. Bare Piping at Ceiling Penetrations in Finished Spaces: One-piece, stamped-steel type or split-plate, stamped-steel type with concealed hinge.
 f. Bare Piping in Unfinished Service Spaces: One-piece, stamped-steel type or split-plate, stamped-steel type with concealed hinge.
 g. Bare Piping in Equipment Rooms: One-piece, stamped-steel type or split-plate, stamped-steel type with concealed hinge.

C. Install floor plates for piping penetrations of equipment-room floors.

D. Install floor plates with ID to closely fit around pipe, tube, and insulation of piping and with OD that completely covers opening.

1. New Piping: One-piece, floor-plate type.
2. Existing Piping: Split-casting, floor-plate type.

3.2 FIELD QUALITY CONTROL

A. Replace broken and damaged escutcheons and floor plates using new materials.

END OF SECTION
PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:
 1. Thermometers.
 2. Gages.
 3. Test plugs.

1.3 DEFINITIONS

A. CR: Chlorosulfonated polyethylene synthetic rubber.
B. EPDM: Ethylene-propylene-diene terpolymer rubber.

1.4 SUBMITTALS

A. Product Data: For each type of product indicated; include performance curves.
B. Shop Drawings: Schedule for thermometers and gages indicating manufacturer's number, scale range, and location for each.
C. Product Certificates: For each type of thermometer and gage, signed by product manufacturer.

PART 2 - PRODUCTS

2.1 METAL-CASE, LIQUID-IN-GLASS THERMOMETERS

A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 1. Palmer - Wahl Instruments Inc.
 2. Trerice, H. O. Co.
 3. Weiss Instruments, Inc.
 4. Weksler Instruments Operating Unit; Dresser Industries; Instrument Div.
B. Case: Die-cast aluminum or brass, 7 inches long.
C. Tube: Red or blue reading, mercury or organic-liquid filled, with magnifying lens.

D. Tube Background: Satin-faced, nonreflective aluminum with permanently etched scale markings.

E. Window: Glass.

F. Connector: Adjustable type, 180 degrees in vertical plane, 360 degrees in horizontal plane, with locking device.

G. Stem: Copper-plated steel, aluminum, or brass for thermowell installation and of length to suit installation.

H. Accuracy: Plus or minus 1 percent of range or plus or minus 1 scale division to maximum of 1.5 percent of range.

2.2 BIMETALLIC-ACTUATED DIAL THERMOMETERS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

2. Ernst Gage Co.
3. Eugene Ernst Products Co.
5. Miljoco Corp.
6. NANMAC Corporation.
7. Noshok, Inc.
8. Palmer - Wahl Instruments Inc.
9. REO TEMP Instrument Corporation.
10. Tel-Tru Manufacturing Company.
11. Trerice, H. O. Co.
12. Weiss Instruments, Inc.
13. Weksler Instruments Operating Unit; Dresser Industries; Instrument Div.
14. WIKA Instrument Corporation.
15. Winters Instruments.

B. Description: Direct-mounting, bimetallic-actuated dial thermometers complying with ASME B40.3.

C. Case: Liquid-filled type, stainless steel with 3-inch diameter.

D. Element: Bimetal coil.

E. Dial: Satin-faced, nonreflective aluminum with permanently etched scale markings.

F. Pointer: Red or other dark-color metal.

G. Window: Glass.

H. Ring: Stainless steel.
I. Connector: Adjustable angle type.

J. Stem: Metal, for thermowell installation and of length to suit installation.

K. Accuracy: Plus or minus 1 percent of range or plus or minus 1 scale division to maximum of 1.5 percent of range.

2.3 THERMOWELLS

A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:

1. AMETEK, Inc.; U.S. Gauge Div.
3. Ernst Gage Co.
5. Miljoco Corp.
6. NANMAC Corporation.
7. Noshok, Inc.
8. Palmer - Wahl Instruments Inc.
9. REO TEMP Instrument Corporation.
10. Tel-Tru Manufacturing Company.
11. Trerice, H. O. Co.
12. Weiss Instruments, Inc.
13. Weksler Instruments Operating Unit; Dresser Industries; Instrument Div.
14. WIKA Instrument Corporation.
15. Winters Instruments.

B. Manufacturers: Same as manufacturer of thermometer being used.

C. Description: Pressure-tight, socket-type metal fitting made for insertion into piping and of type, diameter, and length required to hold thermometer.

2.4 PRESSURE GAGES

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. AMETEK, Inc.; U.S. Gauge Div.
3. Ernst Gage Co.
4. Eugene Ernst Products Co.
5. KOBOLD Instruments, Inc.
7. Miljoco Corp.
8. Noshok, Inc.
10. REO TEMP Instrument Corporation.
11. Trerice, H. O. Co.
12. Weiss Instruments, Inc.
13. Weksler Instruments Operating Unit; Dresser Industries; Instrument Div.
14. WIKA Instrument Corporation.
15. Winters Instruments.

B. Pressure-Gage Fittings:

1. Valves: NPS 1/4 brass or stainless-steel needle type.
2. Snubbers: ASME B40.5, NPS 1/4 brass bushing with corrosion-resistant, porous-metal disc of material suitable for system fluid and working pressure.

2.5 TEST PLUGS

A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:

1. Flow Design, Inc.
2. MG Piping Products Co.
4. Peterson Equipment Co., Inc.
5. Sisco Manufacturing Co.

B. Description: Corrosion-resistant brass or stainless-steel body with core inserts and gasketed and threaded cap, with extended stem for units to be installed in insulated piping.

C. Minimum Pressure and Temperature Rating: 500 psig at 200 deg F.

D. Core Inserts: One or two self-sealing rubber valves.

1. Insert material for water service at 20 to 200 deg F shall be CR.
2. Insert material for water service at minus 30 to plus 275 deg F shall be EPDM.

E. Test Kit: Furnish one test kit(s) containing one pressure gage and adaptor, one thermometer(s), and carrying case. Pressure gage, adapter probes, and thermometer sensing elements shall be of diameter to fit test plugs and of length to project into piping.

1. Pressure Gage: Small bourdon-tube insertion type with 2- to 3-inch-diameter dial and probe. Dial range shall be 0 to 200 psig.
2. Low-Range Thermometer: Small bimetallic insertion type with 1- to 2-inch-diameter dial and tapered-end sensing element. Dial ranges shall be 25 to 125 deg F.
3. High-Range Thermometer: Small bimetallic insertion type with 1- to 2-inch-diameter dial and tapered-end sensing element. Dial ranges shall be 0 to 220 deg F.
4. Carrying case shall have formed instrument padding.
PART 3 - EXECUTION

3.1 THERMOMETER APPLICATIONS

A. Install liquid-in-glass thermometers in the outlet of each domestic, hot-water storage tank.

B. Install liquid-filled-case-type, bimetallic-actuated dial thermometers at suction and discharge of each pump.

C. Provide the following temperature ranges for thermometers:
 1. Domestic Hot Water: 30 to 180 deg F, with 2-degree scale divisions.
 2. Domestic Cold Water: 0 to 100 deg F, with 2-degree scale divisions.

3.2 GAGE APPLICATIONS

A. Install dry-case-type pressure gages for discharge of each pressure-reducing valve.

B. Install liquid-filled-case-type pressure gages at suction and discharge of each pump.

3.3 INSTALLATIONS

A. Install direct-mounting thermometers and adjust vertical and tilted positions.

B. Install remote-mounting dial thermometers on panel, with tubing connecting panel and thermometer bulb supported to prevent kinks. Use minimum tubing length.

C. Install thermowells with socket extending one-third of diameter of pipe and in vertical position in piping tees where thermometers are indicated.

D. Install direct-mounting pressure gages in piping tees with pressure gage located on pipe at most readable position.

E. Install remote-mounting pressure gages on panel.

F. Install needle-valve and snubber fitting in piping for each pressure gage.

G. Install test plugs in tees in piping.

H. Install permanent indicators on walls or brackets in accessible and readable positions.

I. Install connection fittings for attachment to portable indicators in accessible locations.

J. Install thermometers and gages adjacent to machines and equipment to allow service and maintenance for thermometers, gages, machines, and equipment.

K. Adjust faces of thermometers and gages to proper angle for best visibility.

END OF SECTION
PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:
 1. Bronze angle valves.
 2. Brass ball valves.
 3. Bronze ball valves.
 4. Iron ball valves.
 5. Iron, single-flange butterfly valves.
 7. Bronze lift check valves.
 8. Bronze swing check valves.
 10. Iron swing check valves with closure control.
 13. Iron, plate-type check valves.
 15. Iron gate valves.
 16. Bronze globe valves.
 17. Iron globe valves.
 18. Lubricated plug valves.

B. Related Sections:
 1. Division 22 plumbing piping Sections for specialty valves applicable to those Sections only.
 2. Division 22 Section "Identification for Plumbing Piping and Equipment" for valve tags and schedules.
 3. Division 33 water distribution piping Sections for general-duty and specialty valves for site construction piping.

1.3 DEFINITIONS

A. CWP: Cold working pressure.

B. EPDM: Ethylene propylene copolymer rubber.
C. NBR: Acrylonitrile-butadiene, Buna-N, or nitrile rubber.

D. NRS: Nonrising stem.

E. OS&Y: Outside screw and yoke.

F. RS: Rising stem.

G. SWP: Steam working pressure.

1.4 SUBMITTALS

A. Product Data: For each type of valve indicated.

1.5 QUALITY ASSURANCE

A. Source Limitations for Valves: Obtain each type of valve from single source from single manufacturer.

B. ASME Compliance:
 1. ASME B16.10 and ASME B16.34 for ferrous valve dimensions and design criteria.
 2. ASME B31.1 for power piping valves.
 3. ASME B31.9 for building services piping valves.

C. NSF Compliance: NSF 61 for valve materials for potable-water service.

1.6 DELIVERY, STORAGE, AND HANDLING

A. Prepare valves for shipping as follows:
 1. Protect internal parts against rust and corrosion.
 2. Protect threads, flange faces, grooves, and weld ends.
 3. Set angle, gate, and globe valves closed to prevent rattling.
 4. Set ball and plug valves open to minimize exposure of functional surfaces.
 5. Set butterfly valves closed or slightly open.
 6. Block check valves in either closed or open position.

B. Use the following precautions during storage:
 1. Maintain valve end protection.
 2. Store valves indoors and maintain at higher than ambient dew point temperature. If outdoor storage is necessary, store valves off the ground in watertight enclosures.

C. Use sling to handle large valves; rig sling to avoid damage to exposed parts. Do not use handwheels or stems as lifting or rigging points.
PART 2 - PRODUCTS

2.1 GENERAL REQUIREMENTS FOR VALVES

A. Refer to valve schedule articles for applications of valves.

B. Valve Pressure and Temperature Ratings: Not less than indicated and as required for system pressures and temperatures.

C. Valve Sizes: Same as upstream piping unless otherwise indicated.

D. Valve Actuator Types:
 1. Handwheel: For valves other than quarter-turn types.
 2. Handlever: For quarter-turn valves NPS 6 and smaller except plug valves.
 3. Wrench: For plug valves with square heads. Furnish Owner with 1 wrench for every 5 plug valves, for each size square plug-valve head.
 4. Chainwheel: Device for attachment to valve handwheel, stem, or other actuator; of size and with chain for mounting height, as indicated in the "Valve Installation" Article.

E. Valves in Insulated Piping: With 2-inch stem extensions and the following features:
 1. Gate Valves: With rising stem.
 2. Ball Valves: With extended operating handle of non-thermal-conductive material, and protective sleeve that allows operation of valve without breaking the vapor seal or disturbing insulation.

F. Valve-End Connections:
 1. Flanged: With flanges according to ASME B16.1 for iron valves.
 2. Solder Joint: With sockets according to ASME B16.18.
 3. Threaded: With threads according to ASME B1.20.1.

G. Valve Bypass and Drain Connections: MSS SP-45.

2.2 BRONZE ANGLE VALVES

A. Class 125, Bronze Angle Valves with Bronze Disc:
 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 a. Hammond Valve.
 b. Milwaukee Valve Company.
 2. Description:
 a. Standard: MSS SP-80, Type 1.
b. CWP Rating: 200 psig.
d. Ends: Threaded.
e. Stem and Disc: Bronze.
f. Packing: Asbestos free.
g. Handwheel: Malleable iron, bronze, or aluminum.

B. Class 125, Bronze Angle Valves with Nonmetallic Disc:

1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 a. American Valve, Inc.
 b. NIBCO INC.

2. Description:
 a. Standard: MSS SP-80, Type 2.
 b. CWP Rating: 200 psig.
 d. Ends: Threaded.
 e. Stem: Bronze.
 f. Disc: PTFE or TFE.
 g. Packing: Asbestos free.
 h. Handwheel: Malleable iron, bronze, or aluminum.

C. Class 150, Bronze Angle Valves with Bronze Disc:

1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 a. Crane Co.; Crane Valve Group; Stockham Division.
 b. Kitz Corporation.

2. Description:
 a. Standard: MSS SP-80, Type 1.
 b. CWP Rating: 300 psig.
 d. Ends: Threaded.
 e. Stem and Disc: Bronze.
 f. Packing: Asbestos free.
 g. Handwheel: Malleable iron, bronze, or aluminum.

D. Class 150, Bronze Angle Valves with Nonmetallic Disc:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
a. Crane Co.; Crane Valve Group; Crane Valves.
b. Crane Co.; Crane Valve Group; Jenkins Valves.
c. Crane Co.; Crane Valve Group; Stockham Division.
d. Hammond Valve.
e. Milwaukee Valve Company.
f. NIBCO INC.
g. Powell Valves.

2. Description:

a. Standard: MSS SP-80, Type 2.
b. CWP Rating: 300 psig.
d. Ends: Threaded.
e. Stem: Bronze.
f. Disc: PTFE or TFE.
g. Packing: Asbestos free.
h. Handwheel: Malleable iron, bronze, or aluminum.

2.3 BRASS BALL VALVES

A. Two-Piece, Full-Port, Brass Ball Valves with Brass Trim:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

a. Crane Co.; Crane Valve Group; Crane Valves.
b. Crane Co.; Crane Valve Group; Jenkins Valves.
c. DynaQuip Controls.
d. Flow-Tek, Inc.; a subsidiary of Bray International, Inc.
e. Hammond Valve.
f. Jamesbury; a subsidiary of Metso Automation.
g. Jomar International, LTD.
h. Kitz Corporation.
i. Legend Valve.
j. Marwin Valve; a division of Richards Industries.
k. Milwaukee Valve Company.
l. NIBCO INC.
m. Red-White Valve Corporation.
n. RuB Inc.

2. Description:

b. SWP Rating: 150 psig.
c. CWP Rating: 600 psig.
d. Body Design: Two piece.
e. Body Material: Forged brass.
f. Ends: Threaded.
g. Seats: PTFE or TFE.
h. Stem: Brass.

i. Ball: Chrome-plated brass.

j. Port: Full.

B. Two-Piece, Full-Port, Brass Ball Valves with Stainless-Steel Trim:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

 a. Crane Co.; Crane Valve Group; Crane Valves.
 b. Crane Co.; Crane Valve Group; Jenkins Valves.
 c. Flow-Tek, Inc.; a subsidiary of Bray International, Inc.
 d. Hammond Valve.
 e. Jamesbury; a subsidiary of Metso Automation.
 f. Kitz Corporation.
 g. Marwin Valve; a division of Richards Industries.
 h. Milwaukee Valve Company.
 i. RuB Inc.
 j. Insert manufacturer's name.

2. Description:

 b. SWP Rating: 150 psig.
 c. CWP Rating: 600 psig.
 d. Body Design: Two piece.
 e. Body Material: Forged brass.
 f. Ends: Threaded.
 g. Seats: PTFE or TFE.
 h. Stem: Stainless steel.
 i. Ball: Stainless steel, vented.
 j. Port: Full.

2.4 BRONZE BALL VALVES

A. Two-Piece, Full-Port, Bronze Ball Valves with Bronze Trim:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

 a. American Valve, Inc.
 b. Conbraco Industries, Inc.; Apollo Valves.
 c. Crane Co.; Crane Valve Group; Crane Valves.
 d. Hammond Valve.
 e. Lance Valves; a division of Advanced Thermal Systems, Inc.
 f. Legend Valve.
 g. Milwaukee Valve Company.
 h. NIBCO INC.
 i. Red-White Valve Corporation.
 j. Watts Regulator Co.; a division of Watts Water Technologies, Inc.
2. Description:
 b. SWP Rating: 150 psig.
 c. CWP Rating: 600 psig.
 d. Body Design: Two piece.
 e. Body Material: Bronze.
 f. Ends: Threaded.
 g. Seats: PTFE or TFE.
 h. Stem: Bronze.
 i. Ball: Chrome-plated brass.
 j. Port: Full.

B. Two-Piece, Full-Port, Bronze Ball Valves with Stainless-Steel Trim:
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 b. Crane Co.; Crane Valve Group; Crane Valves.
 c. Hammond Valve.
 d. Lance Valves; a division of Advanced Thermal Systems, Inc.
 e. Milwaukee Valve Company.
 f. NIBCO INC.
 g. Watts Regulator Co.; a division of Watts Water Technologies, Inc.

2. Description:
 b. SWP Rating: 150 psig.
 c. CWP Rating: 600 psig.
 d. Body Design: Two piece.
 e. Body Material: Bronze.
 f. Ends: Threaded.
 g. Seats: PTFE or TFE.
 h. Stem: Stainless steel.
 i. Ball: Stainless steel, vented.
 j. Port: Full.

2.5 IRON BALL VALVES

A. Class 125, Iron Ball Valves:
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. American Valve, Inc.
 b. Conbraco Industries, Inc.; Apollo Valves.
 c. Kitz Corporation.
 d. Sure Flow Equipment Inc.
2. Description:
 b. CWP Rating: 200 psig.
 d. Body Material: ASTM A 126, gray iron.
 e. Ends: Flanged.
 f. Seats: PTFE or TFE.
 g. Stem: Stainless steel.
 h. Ball: Stainless steel.
 i. Port: Full.

2.6 IRON, SINGLE-FLANGE BUTTERFLY VALVES

A. 200 CWP, Iron, Single-Flange Butterfly Valves with EPDM Seat and Aluminum-Bronze Disc:
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. ABZ Valve and Controls; a division of ABZ Manufacturing, Inc.
 b. Conbraco Industries, Inc.; Apollo Valves.
 c. Cooper Cameron Valves; a division of Cooper Cameron Corporation.
 d. Crane Co.; Crane Valve Group; Jenkins Valves.
 e. Crane Co.; Crane Valve Group; Stockham Division.
 f. DeZurik Water Controls.
 g. Flo Fab Inc.
 h. Hammond Valve.
 i. Kitz Corporation.
 j. Legend Valve.
 k. Milwaukee Valve Company.
 l. NIBCO INC.
 m. Norriseal; a Dover Corporation company.
 n. Red-White Valve Corporation.
 o. Spence Strainers International; a division of CIRCOR International, Inc.
 p. Watts Regulator Co.; a division of Watts Water Technologies, Inc.
 2. Description:
 a. Standard: MSS SP-67, Type I.
 b. CWP Rating: 200 psig.
 c. Body Design: Lug type; suitable for bidirectional dead-end service at rated pressure without use of downstream flange.
 d. Body Material: ASTM A 126, cast iron or ASTM A 536, ductile iron.
 e. Seat: EPDM.
 f. Stem: One- or two-piece stainless steel.
 g. Disc: Aluminum bronze.

B. 200 CWP, Iron, Single-Flange Butterfly Valves with NBR Seat and Aluminum-Bronze Disc:
1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. ABZ Valve and Controls; a division of ABZ Manufacturing, Inc.
 b. Conbraco Industries, Inc.; Apollo Valves.
 c. Cooper Cameron Valves; a division of Cooper Cameron Corporation.
 d. Crane Co.; Crane Valve Group; Jenkins Valves.
 e. Crane Co.; Crane Valve Group; Stockham Division.
 f. DeZurik Water Controls.
 g. Flo Fab Inc.
 h. Hammond Valve.
 i. Kitz Corporation.
 j. Legend Valve.
 k. Milwaukee Valve Company.
 l. NIBCO INC.
 m. Norriseal; a Dover Corporation company.
 n. Red-White Valve Corporation.
 o. Spence Strainers International; a division of CIRCOR International, Inc.
 p. Watts Regulator Co.; a division of Watts Water Technologies, Inc.

2. Description:
 a. Standard: MSS SP-67, Type I.
 b. CWP Rating: 200 psig.
 c. Body Design: Lug type; suitable for bidirectional dead-end service at rated pressure without use of downstream flange.
 d. Body Material: ASTM A 126, cast iron or ASTM A 536, ductile iron.
 e. Seat: NBR.
 f. Stem: One- or two-piece stainless steel.
 g. Disc: Aluminum bronze.

C. 200 CWP, Iron, Single-Flange Butterfly Valves with EPDM Seat and Ductile-Iron Disc:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. ABZ Valve and Controls; a division of ABZ Manufacturing, Inc.
 b. American Valve, Inc.
 c. Conbraco Industries, Inc.; Apollo Valves.
 d. Cooper Cameron Valves; a division of Cooper Cameron Corporation.
 e. Crane Co.; Crane Valve Group; Center Line.
 f. Crane Co.; Crane Valve Group; Stockham Division.
 g. DeZurik Water Controls.
 h. Flo Fab Inc.
 i. Hammond Valve.
 j. Kitz Corporation.
 k. Legend Valve.
 l. Milwaukee Valve Company.
 m. Mueller Steam Specialty; a division of SPX Corporation.
 n. NIBCO INC.
 o. Norriseal; a Dover Corporation company.
Spence Strainers International; a division of CIRCOR International, Inc.
Sure Flow Equipment Inc.
Watts Regulator Co.; a division of Watts Water Technologies, Inc.

2. Description:
 a. Standard: MSS SP-67, Type I.
 b. CWP Rating: 200 psig.
 c. Body Design: Lug type; suitable for bidirectional dead-end service at rated pressure without use of downstream flange.
 d. Body Material: ASTM A 126, cast iron or ASTM A 536, ductile iron.
 e. Seat: EPDM.
 f. Stem: One- or two-piece stainless steel.
 g. Disc: Nickel-plated or -coated ductile iron.

D. 200 CWP, Iron, Single-Flange Butterfly Valves with NBR Seat and Ductile-Iron Disc:
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. ABZ Valve and Controls; a division of ABZ Manufacturing, Inc.
 b. American Valve, Inc.
 c. Conbraco Industries, Inc.; Apollo Valves.
 d. Cooper Cameron Valves; a division of Cooper Cameron Corporation.
 e. Crane Co.; Crane Valve Group; Center Line.
 f. Crane Co.; Crane Valve Group; Stockham Division.
 g. DeZurik Water Controls.
 h. Flo Fab Inc.
 i. Hammond Valve.
 j. Kitz Corporation.
 k. Legend Valve.
 l. Milwaukee Valve Company.
 m. Mueller Steam Specialty; a division of SPX Corporation.
 n. NIBCO INC.
 o. Norriseal; a Dover Corporation company.
 q. Sure Flow Equipment Inc.
 r. Watts Regulator Co.; a division of Watts Water Technologies, Inc.

2. Description:
 a. Standard: MSS SP-67, Type I.
 b. CWP Rating: 200 psig.
 c. Body Design: Lug type; suitable for bidirectional dead-end service at rated pressure without use of downstream flange.
 d. Body Material: ASTM A 126, cast iron or ASTM A 536, ductile iron.
 e. Seat: NBR.
 f. Stem: One- or two-piece stainless steel.
 g. Disc: Nickel-plated or -coated ductile iron.

E. 200 CWP, Iron, Single-Flange Butterfly Valves with EPDM Seat and Stainless-Steel Disc:
1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

 a. ABZ Valve and Controls; a division of ABZ Manufacturing, Inc.
 b. American Valve, Inc.
 c. Conbraco Industries, Inc.; Apollo Valves.
 d. Cooper Cameron Valves; a division of Cooper Cameron Corporation.
 e. Crane Co.; Crane Valve Group; Jenkins Valves.
 f. Crane Co.; Crane Valve Group; Stockham Division.
 g. DeZurik Water Controls.
 h. Flo Fab Inc.
 i. Hammond Valve.
 j. Kitz Corporation.
 k. Legend Valve.
 l. Milwaukee Valve Company.
 m. Mueller Steam Specialty; a division of SPX Corporation.
 n. NIBCO INC.
 o. Norriseal; a Dover Corporation company.
 q. Spence Strainers International; a division of CIRCOR International, Inc.
 r. Sure Flow Equipment Inc.
 s. Watts Regulator Co.; a division of Watts Water Technologies, Inc.

2. Description:

 a. Standard: MSS SP-67, Type I.
 b. CWP Rating: 200 psig.
 c. Body Design: Lug type; suitable for bidirectional dead-end service at rated pressure without use of downstream flange.
 d. Body Material: ASTM A 126, cast iron or ASTM A 536, ductile iron.
 e. Seat: EPDM.
 f. Stem: One- or two-piece stainless steel.
 g. Disc: Stainless steel.

F. 200 CWP, Iron, Single-Flange Butterfly Valves with NBR Seat and Stainless-Steel Disc:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

 a. ABZ Valves and Controls; A div. of ABZ Manufacturing, Inc.
 b. American Valve, Inc.
 c. Conbraco Industries, Inc.; Apollo Valves.
 d. Cooper Cameron Valves; A div. of Cooper Cameron Corp.
 e. Crane Co.; Crane Valve Group; Jenkins Valves.
 f. Crane Co.; Crane Valve Group; Stockham Div.
 g. DeZurik Water Controls.
 h. Flo Fab Inc.
 i. Hammond Valve.
 j. Kitz Corporation.
 k. Legend Valve.
 l. Milwaukee Valve Company.
m. Mueller Steam Specialty; a division of SPX Corporation.

n. NIBCO INC.
o. Norriseal; a Dover Corporation company.
q. Spence Strainers International; a division of CIRCOR International, Inc.
r. Sure Flow Equipment Inc.
s. Watts Regulator Co.; a division of Watts Water Technologies, Inc.

2. Description:

a. Standard: MSS SP-67, Type I.
b. CWP Rating: 200 psig.
c. Body Design: Lug type; suitable for bidirectional dead-end service at rated pressure without use of downstream flange.
d. Body Material: ASTM A 126, cast iron or ASTM A 536, ductile iron.
e. Seat: NBR.
f. Stem: One- or two-piece stainless steel.
g. Disc: Stainless steel.

2.7 BRONZE LIFT CHECK VALVES

A. Class 125, Lift Check Valves with Bronze Disc:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

 a. Crane Co.; Crane Valve Group; Crane Valves.
 b. Crane Co.; Crane Valve Group; Jenkins Valves.
 c. Crane Co.; Crane Valve Group; Stockham Division.

2. Description:

 a. Standard: MSS SP-80, Type 1.
 b. CWP Rating: 200 psig.
 e. Ends: Threaded.
 f. Disc: Bronze.

B. Class 125, Lift Check Valves with Nonmetallic Disc:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

 a. Flo Fab Inc.
 b. Hammond Valve.
 c. Kitz Corporation.
 d. Milwaukee Valve Company.
 e. Mueller Steam Specialty; a division of SPX Corporation.
 f. NIBCO INC.
g. Red-White Valve Corporation.
h. Watts Regulator Co.; a division of Watts Water Technologies, Inc.

2. Description:
 a. Standard: MSS SP-80, Type 2.
 b. CWP Rating: 200 psig.
 e. Ends: Threaded.
 f. Disc: NBR, PTFE, or TFE.

2.8 BRONZE SWING CHECK VALVES

A. Class 125, Bronze Swing Check Valves with Bronze Disc:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. American Valve, Inc.
 b. Crane Co.; Crane Valve Group; Crane Valves.
 c. Crane Co.; Crane Valve Group; Jenkins Valves.
 d. Crane Co.; Crane Valve Group; Stockham Division.
 e. Hammond Valve.
 f. Kitz Corporation.
 g. Milwaukee Valve Company.
 h. NIBCO INC.
 i. Powell Valves.
 j. Red-White Valve Corporation.
 k. Watts Regulator Co.; a division of Watts Water Technologies, Inc.
 l. Zy-Tech Global Industries, Inc.

2. Description:
 a. Standard: MSS SP-80, Type 3.
 b. CWP Rating: 200 psig.
 c. Body Design: Horizontal flow.
 e. Ends: Threaded.
 f. Disc: Bronze.

B. Class 125, Bronze Swing Check Valves with Nonmetallic Disc:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Crane Co.; Crane Valve Group; Crane Valves.
 b. Crane Co.; Crane Valve Group; Jenkins Valves.
 c. Crane Co.; Crane Valve Group; Stockham Division.
 d. Hammond Valve.
2. Description:
 a. Standard: MSS SP-80, Type 4.
 b. CWP Rating: 200 psig.
 c. Body Design: Horizontal flow.
 e. Ends: Threaded.
 f. Disc: PTFE or TFE.

C. Class 150, Bronze Swing Check Valves with Bronze Disc:
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. American Valve, Inc.
 b. Crane Co.; Crane Valve Group; Crane Valves.
 c. Crane Co.; Crane Valve Group; Jenkins Valves.
 d. Crane Co.; Crane Valve Group; Stockham Division.
 e. Kitz Corporation.
 f. Milwaukee Valve Company.
 g. NIBCO INC.
 h. Red-White Valve Corporation.
 i. Zy-Tech Global Industries, Inc.

2. Description:
 a. Standard: MSS SP-80, Type 3.
 b. CWP Rating: 300 psig.
 c. Body Design: Horizontal flow.
 e. Ends: Threaded.
 f. Disc: Bronze.

D. Class 150, Bronze Swing Check Valves with Nonmetallic Disc:
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Crane Co.; Crane Valve Group; Crane Valves.
 b. Crane Co.; Crane Valve Group; Jenkins Valves.
 c. Hammond Valve.
 d. Milwaukee Valve Company.
 e. NIBCO INC.
 f. Watts Regulator Co.; a division of Watts Water Technologies, Inc.
2. Description:
 a. Standard: MSS SP-80, Type 4.
 b. CWP Rating: 300 psig.
 c. Body Design: Horizontal flow.
 e. Ends: Threaded.
 f. Disc: PTFE or TFE.

2.9 IRON SWING CHECK VALVES

A. Class 125, Iron Swing Check Valves with Metal Seats:
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Crane Co.; Crane Valve Group; Crane Valves.
 b. Crane Co.; Crane Valve Group; Jenkins Valves.
 c. Crane Co.; Crane Valve Group; Stockham Division.
 d. Hammond Valve.
 e. Kitz Corporation.
 f. Legend Valve.
 g. Milwaukee Valve Company.
 h. NIBCO INC.
 i. Powell Valves.
 j. Red-White Valve Corporation.
 k. Sure Flow Equipment Inc.
 l. Watts Regulator Co.; a division of Watts Water Technologies, Inc.
 m. Zy-Tech Global Industries, Inc.

2. Description:
 a. Standard: MSS SP-71, Type I.
 b. CWP Rating: 200 psig.
 c. Body Design: Clear or full waterway.
 d. Body Material: ASTM A 126, gray iron with bolted bonnet.
 e. Ends: Flanged.
 f. Trim: Bronze.
 g. Gasket: Asbestos free.

B. Class 125, Iron Swing Check Valves with Nonmetallic-to-Metal Seats:
 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 a. Crane Co.; Crane Valve Group; Crane Valves.
 b. Crane Co.; Crane Valve Group; Stockham Division.

2. Description:
a. Standard: MSS SP-71, Type I.
b. CWP Rating: 200 psig.
c. Body Design: Clear or full waterway.
d. Body Material: ASTM A 126, gray iron with bolted bonnet.
e. Ends: Flanged.
f. Trim: Composition.
g. Seat Ring: Bronze.
h. Disc Holder: Bronze.
i. Disc: PTFE or TFE.
j. Gasket: Asbestos free.

C. Class 250, Iron Swing Check Valves with Metal Seats:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Crane Co.; Crane Valve Group; Crane Valves.
 b. Crane Co.; Crane Valve Group; Jenkins Valves.
 c. Crane Co.; Crane Valve Group; Stockham Division.
 d. Hammond Valve.
 e. Milwaukee Valve Company.
 f. NIBCO INC.
 g. Watts Regulator Co.; a division of Watts Water Technologies, Inc.

2. Description:
 a. Standard: MSS SP-71, Type I.
 b. CWP Rating: 500 psig.
 c. Body Design: Clear or full waterway.
 d. Body Material: ASTM A 126, gray iron with bolted bonnet.
 e. Ends: Flanged.
 f. Trim: Bronze.
 g. Gasket: Asbestos free.

2.10 IRON, CENTER-GUIDED CHECK VALVES

A. Class 125, Iron, Compact-Wafer, Center-Guided Check Valves with Metal Seat:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Anvil International, Inc.
 b. APCO Willamette Valve and Primer Corporation.
 c. Crispin Valve.
 d. DFT Inc.
 e. Flo Fab Inc.
 f. GA Industries, Inc.
 g. Hammond Valve.
 h. Metraflex, Inc.
 i. Milwaukee Valve Company.
j. Mueller Steam Specialty; a division of SPX Corporation.

k. NIBCO INC.

l. Spence Strainers International; a division of CIRCOR International, Inc.

m. Sure Flow Equipment Inc.

n. Val-Matic Valve & Manufacturing Corp.

o. Watts Regulator Co.; a division of Watts Water Technologies, Inc.

2. Description:

b. CWP Rating: 200 psig.

d. Style: Compact wafer.

e. Seat: Bronze.

B. Class 125, Iron, Globe, Center-Guided Check Valves with Metal Seat:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

a. APCO Willamette Valve and Primer Corporation.

b. Crispin Valve.

c. DFT Inc.

d. Flomatic Corporation.

e. Hammond Valve.

f. Metraflex, Inc.

g. Milwaukee Valve Company.

h. Mueller Steam Specialty; a division of SPX Corporation.

i. NIBCO INC.

j. Spence Strainers International; a division of CIRCOR International, Inc.

k. Sure Flow Equipment Inc.

l. Val-Matic Valve & Manufacturing Corp.

m. Watts Regulator Co.; a division of Watts Water Technologies, Inc.

2. Description:

b. CWP Rating: 200 psig.

d. Style: Globe, spring loaded.

e. Ends: Flanged.

f. Seat: Bronze.

C. Class 150, Iron, Compact-Wafer, Center-Guided Check Valves with Metal Seat:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

a. APCO Willamette Valve and Primer Corporation.

b. Crispin Valve.

c. Val-Matic Valve & Manufacturing Corp.
2. Description:
 b. CWP Rating: 300 psig.
 d. Style: Compact wafer.
 e. Seat: Bronze.

D. Class 150, Iron, Globe, Center-Guided Check Valves with Metal Seat:
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. APCO Willamette Valve and Primer Corporation.
 b. Crispin Valve.
 c. Val-Matic Valve & Manufacturing Corp.

2. Description:
 b. CWP Rating: 300 psig.
 d. Style: Globe, spring loaded.
 e. Ends: Flanged.
 f. Seat: Bronze.

E. Class 250, Iron, Compact-Wafer, Center-Guided Check Valves with Metal Seat:
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. APCO Willamette Valve and Primer Corporation.
 b. Crispin Valve.
 c. DFT Inc.
 d. Flo Fab Inc.
 e. Hammond Valve.
 f. Metraflex, Inc.
 g. Milwaukee Valve Company.
 h. NIBCO INC.
 i. Sure Flow Equipment Inc.
 j. Val-Matic Valve & Manufacturing Corp.

2. Description:
 b. CWP Rating: 400 psig.
 d. Style: Compact wafer, spring loaded.
 e. Seat: Bronze.

F. Class 250, Iron, Globe, Center-Guided Check Valves with Metal Seat:
1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. APCO Willamette Valve and Primer Corporation.
 b. Crispin Valve.
 c. DFT Inc.
 d. Flomatic Corporation.
 e. Hammond Valve.
 f. Metraflex, Inc.
 g. Milwaukee Valve Company.
 h. Mueller Steam Specialty; a division of SPX Corporation.
 i. NIBCO INC.
 j. Val-Matic Valve & Manufacturing Corp.

2. Description:
 b. CWP Rating: 400 psig.
 c. Body Material: ASTM A 125, gray iron.
 d. Style: Globe, spring loaded.
 e. Ends: Flanged.
 f. Seat: Bronze.

G. Class 125, Iron, Compact-Wafer, Center-Guided Check Valves with Resilient Seat:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. APCO Willamette Valve and Primer Corporation.
 b. Crispin Valve.
 c. DFT Inc.
 d. Flo Fab Inc.
 e. Hammond Valve.
 f. Milwaukee Valve Company.
 g. NIBCO INC.
 h. Spence Strainers International; a division of CIRCOR International, Inc.
 i. Sure Flow Equipment Inc.
 j. Val-Matic Valve & Manufacturing Corp.

2. Description:
 b. CWP Rating: 200 psig.
 d. Style: Compact wafer.
 e. Seat: EPDM or NBR.

H. Class 125, Iron, Globe, Center-Guided Check Valves with Resilient Seat:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
a. Anvil International, Inc.
b. APCO Willamette Valve and Primer Corporation.
c. Crispin Valve.
d. DFT Inc.
e. GA Industries, Inc.
f. Hammond Valve.
g. Milwaukee Valve Company.
h. NIBCO INC.
i. Sure Flow Equipment Inc.
j. Val-Matic Valve & Manufacturing Corp.

2. Description:
 b. CWP Rating: 200 psig.
 d. Style: Globe, spring loaded.
 e. Ends: Flanged.
 f. Seat: EPDM or NBR.

I. Class 150, Iron, Compact-Wafer, Center-Guided Check Valves with Resilient Seat:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. APCO Willamette Valve and Primer Corporation.
 b. Crispin Valve.
 c. Val-Matic Valve & Manufacturing Corp.

2. Description:
 b. CWP Rating: 300 psig.
 d. Style: Compact wafer.
 e. Seat: EPDM or NBR.

J. Class 150, Iron, Globe, Center-Guided Check Valves with Resilient Seat:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. APCO Willamette Valve and Primer Corporation.
 b. Crispin Valve.
 c. DFT Inc.
 d. Val-Matic Valve & Manufacturing Corp.

2. Description:
 b. CWP Rating: 300 psig.
d. Style: Globe, spring loaded.
e. Ends: Flanged.
f. Seat: EPDM or NBR.

K. Class 250, Iron, Compact-Wafer, Center-Guided Check Valves with Resilient Seat:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

 a. APCO Willamette Valve and Primer Corporation.
 b. Crispin Valve.
 c. DFT Inc.
 d. Flo Fab Inc.
 e. Hammond Valve.
 f. Milwaukee Valve Company.
 g. NIBCO INC.
 h. Sure Flow Equipment Inc.
 i. Val-Matic Valve & Manufacturing Corp.

2. Description:

 b. CWP Rating: 400 psig.
 d. Style: Compact wafer, spring loaded.
 e. Seat: EPDM or NBR.

L. Class 250, Iron, Globe, Center-Guided Check Valves with Resilient Seat:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

 a. APCO Willamette Valve and Primer Corporation.
 b. Crispin Valve.
 c. DFT Inc.
 d. Hammond Valve.
 e. Milwaukee Valve Company.
 f. NIBCO INC.
 g. Val-Matic Valve & Manufacturing Corp.

2. Description:

 b. CWP Rating: 400 psig.
 d. Style: Globe, spring loaded.
 e. Ends: Flanged.
 f. Seat: EPDM or NBR.
2.11 IRON, PLATE-TYPE CHECK VALVES

A. Class 125, Iron, Dual-Plate Check Valves with Metal Seat:
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. APCO Willamette Valve and Primer Corporation.
 b. Crane Co.; Crane Valve Group; Crane Valves.
 c. Flomatic Corporation.
 d. Mueller Steam Specialty; a division of SPX Corporation.

2. Description:
 b. CWP Rating: 200 psig.
 d. Body Material: ASTM A 126, gray iron.
 e. Seat: Bronze.

B. Class 150, Iron, Dual-Plate Check Valves with Metal Seat:
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. APCO Willamette Valve and Primer Corporation.
 b. Crane Co.; Crane Valve Group; Crane Valves.
 c. Mueller Steam Specialty; a division of SPX Corporation.
 d. Val-Matic Valve & Manufacturing Corp.

2. Description:
 b. CWP Rating: 300 psig.
 e. Seat: Bronze.

C. Class 250, Iron, Dual-Plate Check Valves with Metal Seat:
 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 a. APCO Willamette Valve and Primer Corporation.
 b. Crane Co.; Crane Valve Group; Crane Valves.

2. Description:
 b. CWP Rating: 400 psig.
d. Body Material: ASTM A 126, gray iron.
e. Seat: Bronze.

D. Class 125, Iron, Single-Plate Check Valves with Resilient Seat:

1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 a. Flo Fab Inc.
 b. Sure Flow Equipment Inc.

2. Description:
 b. CWP Rating: 200 psig.
 d. Body Material: ASTM A 126, gray iron.
 e. Seat: EPDM or NBR.

E. Class 125, Iron, Dual-Plate Check Valves with Resilient Seat:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. APCO Willamette Valve and Primer Corporation.
 b. Cooper Cameron Valves TVB Techno.
 c. Crane Co.; Crane Valve Group; Crane Valves.
 d. Crane Co.; Crane Valve Group; Stockham Division.
 e. NIBCO INC.
 f. Spence Strainers International; a division of CIRCOR International, Inc.
 g. Sure Flow Equipment Inc.
 h. Watts Regulator Co.; a division of Watts Water Technologies, Inc.

2. Description:
 b. CWP Rating: 200 psig.
 d. Body Material: ASTM A 126, gray iron.
 e. Seat: EPDM or NBR.

F. Class 150, Iron, Dual-Plate Check Valves with Resilient Seat:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. APCO Willamette Valve and Primer Corporation.
 b. Crane Co.; Crane Valve Group; Crane Valves.
 c. Crane Co.; Crane Valve Group; Jenkins Valves.
d. Val-Matic Valve & Manufacturing Corp.

2. Description:
 b. CWP Rating: 300 psig.
 e. Seat: EPDM or NBR.

G. Class 250, Iron, Wafer, Single-Plate Check Valves with Resilient Seat:
 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 a. Sure Flow Equipment Inc.

2. Description:
 b. CWP Rating: 400 psig.
 d. Body Material: ASTM A 126, gray iron.
 e. Seat: EPDM or NBR.

H. Class 250, Iron, Dual-Plate Check Valves with Resilient Seat:
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. APCO Willamette Valve and Primer Corporation.
 b. Crane Co.; Crane Valve Group; Crane Valves.
 c. Sure Flow Equipment Inc.

2. Description:
 b. CWP Rating: 400 psig.
 d. Body Material: ASTM A 126, gray iron.
 e. Seat: EPDM or NBR.

2.12 BRONZE GLOBE VALVES

A. Class 125, Bronze Globe Valves with Bronze Disc:
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
a. Crane Co.; Crane Valve Group; Crane Valves.
b. Crane Co.; Crane Valve Group; Stockham Division.
c. Hammond Valve.
d. Kitz Corporation.
e. Milwaukee Valve Company.
f. NIBCO INC.
g. Powell Valves.
h. Red-White Valve Corporation.
i. Watts Regulator Co.; a division of Watts Water Technologies, Inc.
j. Zy-Tech Global Industries, Inc.

2. Description:

a. Standard: MSS SP-80, Type 1.
b. CWP Rating: 200 psig.
d. Ends: Threaded or solder joint.
e. Stem and Disc: Bronze.
f. Packing: Asbestos free.
g. Handwheel: Malleable iron, bronze, or aluminum.

B. Class 125, Bronze Globe Valves with Nonmetallic Disc:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

a. Crane Co.; Crane Valve Group; Crane Valves.
b. Crane Co.; Crane Valve Group; Stockham Division.
c. NIBCO INC.
d. Red-White Valve Corporation.

2. Description:

a. Standard: MSS SP-80, Type 2.
b. CWP Rating: 200 psig.
d. Ends: Threaded or solder joint.
e. Stem: Bronze.
f. Disc: PTFE or TFE.
g. Packing: Asbestos free.
h. Handwheel: Malleable iron, bronze, or aluminum.

C. Class 150, Bronze Globe Valves with Nonmetallic Disc:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

a. Crane Co.; Crane Valve Group; Crane Valves.
b. Hammond Valve.
c. Kitz Corporation.
d. Milwaukee Valve Company.
2. Description:

a. Standard: MSS SP-80, Type 2.
b. CWP Rating: 300 psig.
d. Ends: Threaded.
e. Stem: Bronze.
f. Disc: PTFE or TFE.
g. Packing: Asbestos free.
h. Handwheel: Malleable iron, bronze, or aluminum.

2.13 IRON GLOBE VALVES

A. Class 125, Iron Globe Valves:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

 a. Crane Co.; Crane Valve Group; Crane Valves.
 b. Crane Co.; Crane Valve Group; Jenkins Valves.
 c. Crane Co.; Crane Valve Group; Stockham Division.
 d. Hammond Valve.
 e. Kitz Corporation.
 f. Milwaukee Valve Company.
 g. NIBCO INC.
 h. Powell Valves.
 i. Red-White Valve Corporation.
 j. Watts Regulator Co.; a division of Watts Water Technologies, Inc.
 k. Zy-Tech Global Industries, Inc.

2. Description:

 a. Standard: MSS SP-85, Type I.
 b. CWP Rating: 200 psig.
 c. Body Material: ASTM A 126, gray iron with bolted bonnet.
 d. Ends: Flanged.
 e. Trim: Bronze.
 f. Packing and Gasket: Asbestos free.

B. Class 250, Iron Globe Valves:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
a. Crane Co.; Crane Valve Group; Crane Valves.
b. Crane Co.; Crane Valve Group; Jenkins Valves.
c. Crane Co.; Crane Valve Group; Stockham Division.
d. Hammond Valve.
e. Milwaukee Valve Company.
f. NIBCO INC.
g. Watts Regulator Co.; a division of Watts Water Technologies, Inc.

2. Description:

a. Standard: MSS SP-85, Type I.
b. CWP Rating: 500 psig.
c. Body Material: ASTM A 126, gray iron with bolted bonnet.
d. Ends: Flanged.
e. Trim: Bronze.
f. Packing and Gasket: Asbestos free.

2.14 LUBRICATED PLUG VALVES

A. Class 125, Regular-Gland, Lubricated Plug Valves with Threaded Ends:

1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:

2. Description:

a. Standard: MSS SP-78, Type II.
b. CWP Rating: 200 psig.
c. Body Material: ASTM A 48/A 48M or ASTM A 126, cast iron with lubrication-sealing system.
d. Pattern: Regular or short.
e. Plug: Cast iron or bronze with sealant groove.

B. Class 125, Regular-Gland, Lubricated Plug Valves with Flanged Ends:

1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:

2. Description:

a. Standard: MSS SP-78, Type II.
b. CWP Rating: 200 psig.
c. Body Material: ASTM A 48/A 48M or ASTM A 126, cast iron with lubrication-sealing system.
d. Pattern: Regular or short.
e. Plug: Cast iron or bronze with sealant groove.

C. Class 250, Regular-Gland, Lubricated Plug Valves with Threaded Ends:

1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:

2. Description:
 a. Standard: MSS SP-78, Type II.
 b. CWP Rating: 400 psig.
 c. Body Material: ASTM A 48/A 48M or ASTM A 126, cast iron with lubrication-sealing system.
 d. Pattern: Regular or short.
 e. Plug: Cast iron or bronze with sealant groove.

D. Class 250, Regular-Gland, Lubricated Plug Valves with Flanged Ends:

1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:

2. Description:
 a. Standard: MSS SP-78, Type II.
 b. CWP Rating: 400 psig.
 c. Body Material: ASTM A 48/A 48M or ASTM A 126, cast iron with lubrication-sealing system.
 d. Pattern: Regular or short.
 e. Plug: Cast iron or bronze with sealant groove.

E. Class 250, Cylindrical, Lubricated Plug Valves with Threaded Ends:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Homestead Valve; a division of Olson Technologies, Inc.
 b. Milliken Valve Company.
 c. R & M Energy Systems; a unit of Robbins & Myers, Inc.

2. Description:
 a. Standard: MSS SP-78, Type IV.
 b. CWP Rating: 400 psig.
PART 3 - EXECUTION

3.1 EXAMINATION
A. Examine valve interior for cleanliness, freedom from foreign matter, and corrosion. Remove special packing materials, such as blocks, used to prevent disc movement during shipping and handling.
B. Operate valves in positions from fully open to fully closed. Examine guides and seats made accessible by such operations.
C. Examine threads on valve and mating pipe for form and cleanliness.
D. Examine mating flange faces for conditions that might cause leakage. Check bolting for proper size, length, and material. Verify that gasket is of proper size, that its material composition is suitable for service, and that it is free from defects and damage.
E. Do not attempt to repair defective valves; replace with new valves.

3.2 VALVE INSTALLATION
A. Install valves with unions or flanges at each piece of equipment arranged to allow service, maintenance, and equipment removal without system shutdown.
B. Locate valves for easy access and provide separate support where necessary.
C. Install valves in horizontal piping with stem at or above center of pipe.
D. Install valves in position to allow full stem movement.
E. Install chainwheels on operators for ball butterfly gate globe and plug valves NPS 4 and larger and more than 96 inches above floor. Extend chains to 60 inches above finished floor.
F. Install check valves for proper direction of flow and as follows:
 1. Swing Check Valves: In horizontal position with hinge pin level.
 2. Center-Guided and Plate-Type Check Valves: In horizontal or vertical position, between flanges.
 3. Lift Check Valves: With stem upright and plumb.
3.3 ADJUSTING

A. Adjust or replace valve packing after piping systems have been tested and put into service but before final adjusting and balancing. Replace valves if persistent leaking occurs.

3.4 GENERAL REQUIREMENTS FOR VALVE APPLICATIONS

A. If valve applications are not indicated, use the following:

1. Shutoff Service: Ball, butterfly valves.
3. Throttling Service: Globe, ball, or butterfly valves.
4. Pump-Discharge Check Valves:
 a. NPS 2 and Smaller: Bronze swing check valves with bronze or nonmetallic disc.
 b. NPS 2-1/2 and Larger for Domestic Water: Iron swing check valves with lever and weight or with spring or iron, center-guided, metal or resilient-seat check valves.
 c. NPS 2-1/2 and Larger for Sanitary Waste and Storm Drainage: Iron swing check valves with lever and weight or spring.

B. If valves with specified SWP classes or CWP ratings are not available, the same types of valves with higher SWP classes or CWP ratings may be substituted.

C. Select valves, except wafer types, with the following end connections:

1. For Copper Tubing, NPS 2 and Smaller: Threaded ends except where solder-joint valve-end option is indicated in valve schedules below.
2. For Copper Tubing, NPS 2-1/2 to NPS 4: Flanged ends except where threaded valve-end option is indicated in valve schedules below.
3. For Copper Tubing, NPS 5 and Larger: Flanged ends.
4. For Steel Piping, NPS 2 and Smaller: Threaded ends.
5. For Steel Piping, NPS 2-1/2 to NPS 4: Flanged ends except where threaded valve-end option is indicated in valve schedules below.
6. For Steel Piping, NPS 5 and Larger: Flanged ends.

3.5 DOMESTIC, HOT- AND COLD-WATER VALVE SCHEDULE

A. Pipe NPS 2 and Smaller:

1. Bronze and Brass Valves: May be provided with solder-joint ends instead of threaded ends.
2. Bronze Angle Valves: Class 125, bronze disc.
3. Ball Valves: Two piece, full port, brass or bronze with brass trim.
4. Bronze Swing Check Valves: Class 125, bronze disc.
5. Bronze Gate Valves: Class 125, NRS.

B. Pipe NPS 2-1/2 and Larger:
1. Iron Valves, NPS 2-1/2 to NPS 4: May be provided with threaded ends instead of flanged ends.
2. Iron Ball Valves: Class 150.
4. Iron Swing Check Valves: Class 125, nonmetallic-to-metal seats.
5. Iron Swing Check Valves with Closure Control: Class 125, lever and spring.
6. Iron, Center-Guided Check Valves: Class 125, compact-wafer, seat.
7. Iron, Plate-Type Check Valves: Class 125; single plate; metal seat.
8. Iron Gate Valves: Class 125, NRS.
SECTION 220529 HANGERS AND SUPPORTS FOR PLUMBING PIPING AND EQUIPMENT

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. This Section includes the following hangers and supports for plumbing system piping and equipment:

1. Steel pipe hangers and supports.
2. Trapeze pipe hangers.
3. Fiberglass pipe hangers.
4. Metal framing systems.
5. Fiberglass strut systems.
6. Thermal-hanger shield inserts.
7. Fastener systems.
8. Pipe stands.
9. Pipe positioning systems.
10. Equipment supports.

B. Related Sections include the following:

1. Division 05 Section "Metal Fabrications" for structural-steel shapes and plates for trapeze hangers for pipe and equipment supports.
2. Division 21 Section "Water-Based Fire-Suppression Systems" for pipe hangers for fire-suppression piping.
3. Division 22 Section "Expansion Fittings and Loops for Plumbing Piping" for pipe guides and anchors.
4. Division 22 Section "Vibration and Seismic Controls for Plumbing Piping and Equipment" for vibration isolation devices.

1.3 DEFINITIONS

A. MSS: Manufacturers Standardization Society for The Valve and Fittings Industry Inc.

B. Terminology: As defined in MSS SP-90, "Guidelines on Terminology for Pipe Hangers and Supports."
1.4 PERFORMANCE REQUIREMENTS

A. Design supports for multiple pipes, including pipe stands, capable of supporting combined weight of supported systems, system contents, and test water.

B. Design equipment supports capable of supporting combined operating weight of supported equipment and connected systems and components.

C. Design seismic-restraint hangers and supports for piping and equipment and obtain approval from authorities having jurisdiction.

1.5 SUBMITTALS

A. Product Data: For the following:
 1. Steel pipe hangers and supports.
 2. Fiberglass pipe hangers.
 3. Thermal-hanger shield inserts.
 4. Powder-actuated fastener systems.
 5. Pipe positioning systems.

B. Shop Drawings: Signed and sealed by a qualified professional engineer. Show fabrication and installation details and include calculations for the following:
 1. Trapeze pipe hangers. Include Product Data for components.
 2. Metal framing systems. Include Product Data for components.
 3. Fiberglass strut systems. Include Product Data for components.
 4. Pipe stands. Include Product Data for components.
 5. Equipment supports.

C. Welding certificates.

1.6 QUALITY ASSURANCE

A. Welding: Qualify procedures and personnel according to AWS D1.1, "Structural Welding Code--Steel."

B. Welding: Qualify procedures and personnel according to the following:
 1. AWS D1.1, "Structural Welding Code--Steel."
 3. AWS D1.4, "Structural Welding Code--Reinforcing Steel."
 4. ASME Boiler and Pressure Vessel Code: Section IX.
PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. In other Part 2 articles where titles below introduce lists, the following requirements apply to product selection:

1. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, manufacturers specified.
2. Manufacturers: Subject to compliance with requirements, provide products by one of the manufacturers specified.

2.2 STEEL PIPE HANGERS AND SUPPORTS

A. Description: MSS SP-58, Types 1 through 58, factory-fabricated components. Refer to Part 3 "Hanger and Support Applications" Article for where to use specific hanger and support types.

B. Manufacturers:

1. AAA Technology & Specialties Co., Inc.
2. Bergen-Power Pipe Supports.
4. Carpenter & Paterson, Inc.
5. Empire Industries, Inc.
6. ERICO/Michigan Hanger Co.
7. Globe Pipe Hanger Products, Inc.
8. Grinnell Corp.
9. GS Metals Corp.
11. PHD Manufacturing, Inc.
12. PHS Industries, Inc.
13. Piping Technology & Products, Inc.
14. Tolco Inc.

C. Galvanized, Metallic Coatings: Pregalvanized or hot dipped.

D. Nonmetallic Coatings: Plastic coating, jacket, or liner.

E. Padded Hangers: Hanger with fiberglass or other pipe insulation pad or cushion for support of bearing surface of piping.

2.3 TRAPEZE PIPE HANGERS

A. Description: MSS SP-69, Type 59, shop- or field-fabricated pipe-support assembly made from structural-steel shapes with MSS SP-58 hanger rods, nuts, saddles, and U-bolts.
2.4 METAL FRAMING SYSTEMS

A. Description: MFMA-3, shop- or field-fabricated pipe-support assembly made of steel channels and other components.

B. Manufacturers:

2. ERICO/Michigan Hanger Co.; ERISTRUT Div.
3. GS Metals Corp.
5. Thomas & Betts Corporation.
6. Tolco Inc.
7. Unistrut Corp.; Tyco International, Ltd.

C. Coatings: Manufacturer's standard finish unless bare metal surfaces are indicated.

D. Nonmetallic Coatings: Plastic coating, jacket, or liner.

2.5 THERMAL-HANGER SHIELD INSERTS

A. Description: 100-psig- minimum, compressive-strength insulation insert encased in sheet metal shield.

B. Manufacturers:

1. Carpenter & Paterson, Inc.
2. ERICO/Michigan Hanger Co.
3. PHS Industries, Inc.
4. Pipe Shields, Inc.
5. Rilco Manufacturing Company, Inc.
6. Value Engineered Products, Inc.

C. Insulation-Insert Material for Cold Piping: Water-repellent treated, ASTM C 533, Type I calcium silicate or ASTM C 552, Type II cellular glass with vapor barrier.

D. Insulation-Insert Material for Hot Piping: Water-repellent treated, ASTM C 533, Type I calcium silicate or ASTM C 552, Type II cellular glass.

E. For Trapeze or Clamped Systems: Insert and shield shall cover entire circumference of pipe.

F. For Clevis or Band Hangers: Insert and shield shall cover lower 180 degrees of pipe.

G. Insert Length: Extend 2 inches beyond sheet metal shield for piping operating below ambient air temperature.
2.6 FASTENER SYSTEMS

A. Powder-Actuated Fasteners: Threaded-steel stud, for use in hardened portland cement concrete with pull-out, tension, and shear capacities appropriate for supported loads and building materials where used.

1. Manufacturers:
 a. Hilti, Inc.
 b. ITW Ramset/Red Head.
 c. Masterset Fastening Systems, Inc.
 d. MKT Fastening, LLC.
 e. Powers Fasteners.

B. Mechanical-Expansion Anchors: Insert-wedge-type zinc-coated steel, for use in hardened portland cement concrete with pull-out, tension, and shear capacities appropriate for supported loads and building materials where used.

1. Manufacturers:
 b. Empire Industries, Inc.
 c. Hilti, Inc.
 d. ITW Ramset/Red Head.
 e. MKT Fastening, LLC.
 f. Powers Fasteners.

2.7 PIPE STAND FABRICATION

A. Pipe Stands, General: Shop or field-fabricated assemblies made of manufactured corrosion-resistant components to support roof-mounted piping.

B. Compact Pipe Stand: One-piece plastic unit with integral-rod-roller, pipe clamps, or V-shaped cradle to support pipe, for roof installation without membrane penetration.

1. Manufacturers:
 a. ERICO/Michigan Hanger Co.
 b. MIRO Industries.

C. Low-Type, Single-Pipe Stand: One-piece stainless-steel base unit with plastic roller, for roof installation without membrane penetration.

1. Available Manufacturers:
 a. MIRO Industries.

D. High-Type, Single-Pipe Stand: Assembly of base, vertical and horizontal members, and pipe support, for roof installation without membrane penetration.
1. Manufacturers:
 a. ERICO/Michigan Hanger Co.
 b. MIRO Industries.
 c. Portable Pipe Hangers.

3. Vertical Members: Two or more cadmium-plated-steel or stainless-steel, continuous-thread rods.

4. Horizontal Member: Cadmium-plated-steel or stainless-steel rod with plastic or stainless-steel, roller-type pipe support.

E. High-Type, Multiple-Pipe Stand: Assembly of bases, vertical and horizontal members, and pipe supports, for roof installation without membrane penetration.

1. Manufacturers:
 a. Portable Pipe Hangers.

2. Bases: One or more plastic.

3. Vertical Members: Two or more protective-coated-steel channels.

4. Horizontal Member: Protective-coated-steel channel.

5. Pipe Supports: Galvanized-steel, clevis-type pipe hangers.

F. Curb-Mounting-Type Pipe Stands: Shop- or field-fabricated pipe support made from structural-steel shape, continuous-thread rods, and rollers for mounting on permanent stationary roof curb.

2.8 PIPE POSITIONING SYSTEMS

A. Description: IAPMO PS 42, system of metal brackets, clips, and straps for positioning piping in pipe spaces for plumbing fixtures for commercial applications.

B. Manufacturers:
 2. HOLDRITE Corp.; Hubbard Enterprises.
 3. Samco Stamping, Inc.

2.9 EQUIPMENT SUPPORTS

A. Description: Welded, shop- or field-fabricated equipment support made from structural-steel shapes.

2.10 MISCELLANEOUS MATERIALS

A. Structural Steel: ASTM A 36/A 36M, steel plates, shapes, and bars; black and galvanized.

B. Grout: ASTM C 1107, factory-mixed and packaged, dry, hydraulic-cement, nonshrink and nonmetallic grout; suitable for interior and exterior applications.
2. Design Mix: 5000-psi, 28-day compressive strength.

PART 3 - EXECUTION

3.1 HANGER AND SUPPORT APPLICATIONS

A. Specific hanger and support requirements are specified in Sections specifying piping systems and equipment.

B. Comply with MSS SP-69 for pipe hanger selections and applications that are not specified in piping system Sections.

C. Use hangers and supports with galvanized, metallic coatings for piping and equipment that will not have field-applied finish.

D. Use nonmetallic coatings on attachments for electrolytic protection where attachments are in direct contact with copper tubing.

E. Use padded hangers for piping that is subject to scratching.

F. Horizontal-Piping Hangers and Supports: Unless otherwise indicated and except as specified in piping system Sections, install the following types:

1. Adjustable, Steel Clevis Hangers (MSS Type 1): For suspension of noninsulated or insulated stationary pipes, NPS 1/2 to NPS 30.
2. Yoke-Type Pipe Clamps (MSS Type 2): For suspension of 120 to 450 deg F pipes, NPS 4 to NPS 16, requiring up to 4 inches of insulation.
3. Carbon- or Alloy-Steel, Double-Bolt Pipe Clamps (MSS Type 3): For suspension of pipes, NPS 3/4 to NPS 24, requiring clamp flexibility and up to 4 inches of insulation.
4. Steel Pipe Clamps (MSS Type 4): For suspension of cold and hot pipes, NPS 1/2 to NPS 24, if little or no insulation is required.
5. Pipe Hangers (MSS Type 5): For suspension of pipes, NPS 1/2 to NPS 4, to allow off-center closure for hanger installation before pipe erection.
6. Adjustable, Swivel Split- or Solid-Ring Hangers (MSS Type 6): For suspension of noninsulated stationary pipes, NPS 3/4 to NPS 8.
7. Adjustable, Steel Band Hangers (MSS Type 7): For suspension of noninsulated stationary pipes, NPS 1/2 to NPS 8.
8. Adjustable Band Hangers (MSS Type 9): For suspension of noninsulated stationary pipes, NPS 1/2 to NPS 8.
9. Adjustable, Swivel-Ring Band Hangers (MSS Type 10): For suspension of noninsulated stationary pipes, NPS 1/2 to NPS 2.
10. Split Pipe-Ring with or without Turnbuckle-Adjustment Hangers (MSS Type 11): For suspension of noninsulated stationary pipes, NPS 3/8 to NPS 8.
11. Extension Hinged or 2-Bolt Split Pipe Clamps (MSS Type 12): For suspension of noninsulated stationary pipes, NPS 3/8 to NPS 3.
12. U-Bolts (MSS Type 24): For support of heavy pipes, NPS 1/2 to NPS 30.
13. Clips (MSS Type 26): For support of insulated pipes not subject to expansion or contraction.
14. Pipe Saddle Supports (MSS Type 36): For support of pipes, NPS 4 to NPS 36, with steel pipe base stanchion support and cast-iron floor flange.
15. Pipe Stanchion Saddles (MSS Type 37): For support of pipes, NPS 4 to NPS 36, with steel pipe base stanchion support and cast-iron floor flange and with U-bolt to retain pipe.
16. Adjustable, Pipe Saddle Supports (MSS Type 38): For stanchion-type support for pipes, NPS 2-1/2 to NPS 36, if vertical adjustment is required, with steel pipe base stanchion support and cast-iron floor flange.
17. Single Pipe Rolls (MSS Type 41): For suspension of pipes, NPS 1 to NPS 30, from 2 rods if longitudinal movement caused by expansion and contraction might occur.
18. Adjustable Roller Hangers (MSS Type 43): For suspension of pipes, NPS 2-1/2 to NPS 20, from single rod if horizontal movement caused by expansion and contraction might occur.
19. Complete Pipe Rolls (MSS Type 44): For support of pipes, NPS 2 to NPS 42, if longitudinal movement caused by expansion and contraction might occur but vertical adjustment is not necessary.
20. Pipe Roll and Plate Units (MSS Type 45): For support of pipes, NPS 2 to NPS 24, if small horizontal movement caused by expansion and contraction might occur and vertical adjustment is not necessary.
21. Adjustable Pipe Roll and Base Units (MSS Type 46): For support of pipes, NPS 2 to NPS 30, if vertical and lateral adjustment during installation might be required in addition to expansion and contraction.

G. Vertical-Piping Clamps: Unless otherwise indicated and except as specified in piping system Sections, install the following types:

1. Extension Pipe or Riser Clamps (MSS Type 8): For support of pipe risers, NPS 3/4 to NPS 20.
2. Carbon- or Alloy-Steel Riser Clamps (MSS Type 42): For support of pipe risers, NPS 3/4 to NPS 20, if longer ends are required for riser clamps.

H. Hanger-Rod Attachments: Unless otherwise indicated and except as specified in piping system Sections, install the following types:

1. Steel Turnbuckles (MSS Type 13): For adjustment up to 6 inches for heavy loads.
2. Steel Clevises (MSS Type 14): For 120 to 450 deg F piping installations.
3. Swivel Turnbuckles (MSS Type 15): For use with MSS Type 11, split pipe rings.
4. Malleable-Iron Sockets (MSS Type 16): For attaching hanger rods to various types of building attachments.
5. Steel Weldless Eye Nuts (MSS Type 17): For 120 to 450 deg F piping installations.

I. Building Attachments: Unless otherwise indicated and except as specified in piping system Sections, install the following types:

1. Steel or Malleable Concrete Inserts (MSS Type 18): For upper attachment to suspend pipe hangers from concrete ceiling.
2. Top-Beam C-Clamps (MSS Type 19): For use under roof installations with bar-joist construction to attach to top flange of structural shape.
3. Side-Beam or Channel Clamps (MSS Type 20): For attaching to bottom flange of beams, channels, or angles.
4. Center-Beam Clamps (MSS Type 21): For attaching to center of bottom flange of beams.
5. **Welded Beam Attachments (MSS Type 22):** For attaching to bottom of beams if loads are considerable and rod sizes are large.

6. **C-Clamps (MSS Type 23):** For structural shapes.

7. **Top-Beam Clamps (MSS Type 25):** For top of beams if hanger rod is required tangent to flange edge.

8. **Side-Beam Clamps (MSS Type 27):** For bottom of steel I-beams.

9. **Steel-Beam Clamps with Eye Nuts (MSS Type 28):** For attaching to bottom of steel I-beams for heavy loads.

10. **Linked-Steel Clamps with Eye Nuts (MSS Type 29):** For attaching to bottom of steel I-beams for heavy loads, with link extensions.

11. **Malleable Beam Clamps with Extension Pieces (MSS Type 30):** For attaching to structural steel.

12. **Welded-Steel Brackets:** For support of pipes from below, or for suspending from above by using clip and rod. Use one of the following for indicated loads:

 a. Light (MSS Type 31): 750 lb.
 b. Medium (MSS Type 32): 1500 lb.
 c. Heavy (MSS Type 33): 3000 lb.

13. **Side-Beam Brackets (MSS Type 34):** For sides of steel or wooden beams.

14. **Plate Lugs (MSS Type 57):** For attaching to steel beams if flexibility at beam is required.

15. **Horizontal Travelers (MSS Type 58):** For supporting piping systems subject to linear horizontal movement where headroom is limited.

J. Saddles and Shields: Unless otherwise indicated and except as specified in piping system Sections, install the following types:

1. **Steel Pipe-Covering Protection Saddles (MSS Type 39):** To fill interior voids with insulation that matches adjoining insulation.

2. **Protection Shields (MSS Type 40):** Of length recommended in writing by manufacturer to prevent crushing insulation.

3. **Thermal-Hanger Shield Inserts:** For supporting insulated pipe.

K. Spring Hangers and Supports: Unless otherwise indicated and except as specified in piping system Sections, install the following types:

1. **Restraint-Control Devices (MSS Type 47):** Where indicated to control piping movement.

2. **Spring Cushions (MSS Type 48):** For light loads if vertical movement does not exceed 1-1/4 inches.

3. **Spring-Cushion Roll Hangers (MSS Type 49):** For equipping Type 41 roll hanger with springs.

4. **Spring Sway Braces (MSS Type 50):** To retard sway, shock, vibration, or thermal expansion in piping systems.

5. **Variable-Spring Hangers (MSS Type 51):** Preset to indicated load and limit variability factor to 25 percent to absorb expansion and contraction of piping system from hanger.

6. **Variable-Spring Base Supports (MSS Type 52):** Preset to indicated load and limit variability factor to 25 percent to absorb expansion and contraction of piping system from base support.

7. **Variable-Spring Trapeze Hangers (MSS Type 53):** Preset to indicated load and limit variability factor to 25 percent to absorb expansion and contraction of piping system from trapeze support.
8. **Constant Supports**: For critical piping stress and if necessary to avoid transfer of stress from one support to another support, critical terminal, or connected equipment. Include auxiliary stops for erection, hydrostatic test, and load-adjustment capability. These supports include the following types:

 a. **Horizontal (MSS Type 54)**: Mounted horizontally.
 b. **Vertical (MSS Type 55)**: Mounted vertically.
 c. **Trapeze (MSS Type 56)**: Two vertical-type supports and one trapeze member.

L. Comply with MSS SP-69 for trapeze pipe hanger selections and applications that are not specified in piping system Sections.

M. Comply with MFMA-102 for metal framing system selections and applications that are not specified in piping system Sections.

N. Use powder-actuated fasteners or mechanical-expansion anchors instead of building attachments where required in concrete construction.

O. Use pipe positioning systems in pipe spaces behind plumbing fixtures to support supply and waste piping for plumbing fixtures.

3.2 HANGER AND SUPPORT INSTALLATION

A. **Steel Pipe Hanger Installation**: Comply with MSS SP-69 and MSS SP-89. Install hangers, supports, clamps, and attachments as required to properly support piping from building structure.

B. **Trapeze Pipe Hanger Installation**: Comply with MSS SP-69 and MSS SP-89. Arrange for grouping of parallel runs of horizontal piping and support together on field-fabricated trapeze pipe hangers.

 1. **Pipes of Various Sizes**: Support together and space trapezes for smallest pipe size or install intermediate supports for smaller diameter pipes as specified above for individual pipe hangers.
 2. **Field Fabricate**: From ASTM A 36/A 36M, steel shapes selected for loads being supported. Weld steel according to AWS D1.1.

C. **Metal Framing System Installation**: Arrange for grouping of parallel runs of piping and support together on field-assembled metal framing systems.

D. **Thermal-Hanger Shield Installation**: Install in pipe hanger or shield for insulated piping.

E. **Fastener System Installation**:

 1. Install powder-actuated fasteners for use in lightweight concrete or concrete slabs less than 4 inches thick in concrete after concrete is placed and completely cured. Use operators that are licensed by powder-actuated tool manufacturer. Install fasteners according to powder-actuated tool manufacturer's operating manual.
 2. Install mechanical-expansion anchors in concrete after concrete is placed and completely cured. Install fasteners according to manufacturer's written instructions.
F. Pipe Stand Installation:

1. Pipe Stand Types except Curb-Mounting Type: Assemble components and mount on smooth roof surface. Do not penetrate roof membrane.
2. Curb-Mounting-Type Pipe Stands: Assemble components or fabricate pipe stand and mount on permanent, stationary roof curb. Refer to Division 07 Section "Roof Accessories" for curbs.

G. Pipe Positioning System Installation: Install support devices to make rigid supply and waste piping connections to each plumbing fixture. Refer to Division 22 Section "Plumbing Fixtures" for plumbing fixtures.

H. Install hangers and supports complete with necessary inserts, bolts, rods, nuts, washers, and other accessories.

J. Install hangers and supports to allow controlled thermal and seismic movement of piping systems, to permit freedom of movement between pipe anchors, and to facilitate action of expansion joints, expansion loops, expansion bends, and similar units.

K. Install lateral bracing with pipe hangers and supports to prevent swaying.

L. Install building attachments within concrete slabs or attach to structural steel. Install additional attachments at concentrated loads, including valves, flanges, and strainers, NPS 2-1/2 and larger and at changes in direction of piping. Install concrete inserts before concrete is placed; fasten inserts to forms and install reinforcing bars through openings at top of inserts.

M. Load Distribution: Install hangers and supports so piping live and dead loads and stresses from movement will not be transmitted to connected equipment.

N. Pipe Slopes: Install hangers and supports to provide indicated pipe slopes and so maximum pipe deflections allowed by ASME B31.9 (for building services piping) are not exceeded.

O. Insulated Piping: Comply with the following:

1. Attach clamps and spacers to piping.
 a. Piping Operating above Ambient Air Temperature: Clamp may project through insulation.
 b. Piping Operating below Ambient Air Temperature: Use thermal-hanger shield insert with clamp sized to match OD of insert.
 c. Do not exceed pipe stress limits according to ASME B31.9 for building services piping.

2. Install MSS SP-58, Type 39, protection saddles if insulation without vapor barrier is indicated. Fill interior voids with insulation that matches adjoining insulation.
 a. Option: Thermal-hanger shield inserts may be used. Include steel weight-distribution plate for pipe NPS 4 and larger if pipe is installed on rollers.
3. Install MSS SP-58, Type 40, protective shields on cold piping with vapor barrier. Shields shall span an arc of 180 degrees.
 a. Option: Thermal-hanger shield inserts may be used. Include steel weight-distribution plate for pipe NPS 4 and larger if pipe is installed on rollers.

4. Shield Dimensions for Pipe: Not less than the following:
 a. NPS 1/4 to NPS 3-1/2: 12 inches long and 0.048 inch thick.
 b. NPS 4: 12 inches long and 0.06 inch thick.
 c. NPS 5 and NPS 6: 18 inches long and 0.06 inch thick.
 d. NPS 8 to NPS 14: 24 inches long and 0.075 inch thick.
 e. NPS 16 to NPS 24: 24 inches long and 0.105 inch thick.

5. Pipes NPS 8 and Larger: Include wood inserts.
6. Insert Material: Length at least as long as protective shield.
7. Thermal-Hanger Shields: Install with insulation same thickness as piping insulation.

3.3 EQUIPMENT SUPPORTS

A. Fabricate structural-steel stands to suspend equipment from structure overhead or to support equipment above floor.

B. Grouting: Place grout under supports for equipment and make smooth bearing surface.

C. Provide lateral bracing, to prevent swaying, for equipment supports.

3.4 METAL FABRICATIONS

A. Cut, drill, and fit miscellaneous metal fabrications for trapeze pipe hangers and equipment supports.

B. Fit exposed connections together to form hairline joints. Field weld connections that cannot be shop welded because of shipping size limitations.

C. Field Welding: Comply with AWS D1.1 procedures for shielded metal arc welding, appearance and quality of welds, and methods used in correcting welding work, and with the following:

 1. Use materials and methods that minimize distortion and develop strength and corrosion resistance of base metals.
 2. Obtain fusion without undercut or overlap.
 3. Remove welding flux immediately.
 4. Finish welds at exposed connections so no roughness shows after finishing and contours of welded surfaces match adjacent contours.
3.5 ADJUSTING

A. Hanger Adjustments: Adjust hangers to distribute loads equally on attachments and to achieve indicated slope of pipe.

B. Trim excess length of continuous-thread hanger and support rods to 1-1/2 inches.

3.6 PAINTING

A. Touch Up: Clean field welds and abraded areas of shop paint. Paint exposed areas immediately after erecting hangers and supports. Use same materials as used for shop painting. Comply with SSPC-PA 1 requirements for touching up field-painted surfaces.

1. Apply paint by brush or spray to provide minimum dry film thickness of 2.0 mils.

B. Touch Up: Cleaning and touchup painting of field welds, bolted connections, and abraded areas of shop paint on miscellaneous metal are specified in Division 09 painting Sections.

C. Galvanized Surfaces: Clean welds, bolted connections, and abraded areas and apply galvanizing-repair paint to comply with ASTM A 780.

END OF SECTION
SECTION 22 0553 IDENTIFICATION FOR PLUMBING PIPING AND EQUIPMENT

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:

1. Equipment labels.
2. Warning signs and labels.
3. Pipe labels.
4. Stencils.
5. Valve tags.
6. Warning tags.

1.3 COORDINATION

A. Coordinate installation of identifying devices with completion of covering and painting of surfaces where devices are to be applied.

B. Coordinate installation of identifying devices with locations of access panels and doors.

C. Install identifying devices before installing acoustical ceilings and similar concealment.

PART 2 - PRODUCTS

2.1 EQUIPMENT LABELS

A. Metal Labels for Equipment:

1. Material and Thickness: Brass, 0.032 inch, stainless steel, 0.025 inch, aluminum, 0.032 inch, or anodized aluminum, 0.032 inch thick, with predrilled holes for attachment hardware.
2. Letter Color: Black, Blue, Red, White, or Yellow.
3. Background Color: Black, Blue, Red, White, or Yellow.
4. Minimum Label Size: Length and width vary for required label content, but not less than 2-1/2 by 3/4 inch.
5. Minimum Letter Size: 1/4 inch for name of units if viewing distance is less than 24 inches, 1/2 inch for viewing distances up to 72 inches, and proportionately larger lettering for greater viewing distances. Include secondary lettering two-thirds to three-fourths the size of principal lettering.
7. Adhesive: Contact-type permanent adhesive, compatible with label and with substrate.
B. Plastic Labels for Equipment:

1. Material and Thickness: Multilayer, multicolor, plastic labels for mechanical engraving, 1/16 inch or 1/8 inch thick, with predrilled holes for attachment hardware.
2. Letter Color: Black, Blue, Red, White, or Yellow.
3. Background Color: Black, Blue, Red, White, or Yellow.
4. Maximum Temperature: Able to withstand temperatures up to 160 deg F.
5. Minimum Label Size: Length and width vary for required label content, but not less than 2 1/2 by 3/4 inch.
6. Minimum Letter Size: 1/4 inch for name of units if viewing distance is less than 24 inches, 1/2 inch for viewing distances up to 72 inches, and proportionately larger lettering for greater viewing distances. Include secondary lettering two-thirds to three-fourths the size of principal lettering.
7. Fasteners: Stainless-steel rivets or self-tapping screws.
8. Adhesive: Contact-type permanent adhesive, compatible with label and with substrate.

C. Label Content: Include equipment's Drawing designation or unique equipment number, Drawing numbers where equipment is indicated (plans, details, and schedules), and the Specification Section number and title where equipment is specified.

D. Equipment-Label Schedule: For each item of equipment to be labeled, on 8-1/2-by-11-inch bond paper. Tabulate equipment identification number and identify Drawing numbers where equipment is indicated (plans, details, and schedules) and the Specification Section number and title where equipment is specified. Equipment schedule shall be included in operation and maintenance data.

2.2 WARNING SIGNS AND LABELS

A. Material and Thickness: Multilayer, multicolor, plastic labels for mechanical engraving, 1/16 inch, or 1/8 inch thick, with predrilled holes for attachment hardware.

B. Letter Color: Black, Blue, Red, White, or Yellow.

C. Background Color: Black, Blue, Red, White, or Yellow.

D. Maximum Temperature: Able to withstand temperatures up to 160 deg F.

E. Minimum Label Size: Length and width vary for required label content, but not less than 2-1/2 by 3/4 inch.

F. Minimum Letter Size: 1/4 inch for name of units if viewing distance is less than 24 inches, 1/2 inch for viewing distances up to 72 inches, and proportionately larger lettering for greater viewing distances. Include secondary lettering two-thirds to three-fourths the size of principal lettering.

G. Fasteners: Stainless-steel rivets or self-tapping screws.

H. Adhesive: Contact-type permanent adhesive, compatible with label and with substrate.

I. Label Content: Include caution and warning information, plus emergency notification instructions.
2.3 PIPE LABELS

A. General Requirements for Manufactured Pipe Labels: Preprinted, color-coded, with lettering indicating service and showing flow direction.

B. Pretensioned Pipe Labels: Precoiled, semirigid plastic formed to partially cover circumference of pipe and to attach to pipe without fasteners or adhesive.

C. Self-Adhesive Pipe Labels: Printed plastic with contact-type, permanent-adhesive backing.

D. Pipe-Label Contents: Include identification of piping service using same designations or abbreviations as used on Drawings; pipe size; and an arrow indicating flow direction.
 1. Flow-Direction Arrows: Integral with piping-system service lettering to accommodate both directions, or as separate unit on each pipe label to indicate flow direction.
 2. Lettering Size: At least 1-1/2 inches high.

E. Pipe-Label Colors:
 1. Background Color: Red.

2.4 STENCILS

A. Stencils: Prepared with letter sizes according to ASME A13.1 for piping; and minimum letter height of 3/4 inch for access panel and door labels, equipment labels, and similar operational instructions.
 1. Stencil Material: Fiberboard or metal.
 2. Stencil Paint: Exterior, gloss, acrylic enamel black unless otherwise indicated. Paint may be in pressurized spray-can form.
 3. Identification Paint: Exterior, acrylic enamel in colors according to ASME A13.1 unless otherwise indicated.

2.5 VALVE TAGS

A. Valve Tags: Stamped or engraved with 1/4-inch letters for piping-system abbreviation and 1/2-inch numbers.
 1. Tag Material: Brass, 0.032 inch thick, with predrilled holes for attachment hardware.
 2. Fasteners: Brass beaded chain or S-hook.

B. Valve Schedules: For each piping system, on 8-1/2-by-11-inch bond paper. Tabulate valve number, piping system, system abbreviation (as shown on valve tag), location of valve (room or space), normal-operating position (open, closed, or modulating), and variations for identification. Mark valves for emergency shutoff and similar special uses.
 1. Valve-tag schedule shall be included in operation and maintenance data.
2.6 WARNING TAGS

A. Warning Tags: Preprinted or partially preprinted, accident-prevention tags, of plasticized card stock with matte finish suitable for writing.

1. Size: Approximately 4 by 7 inches.
2. Fasteners: Brass grommet and wire.
3. Nomenclature: Large-size primary caption such as "DANGER," "CAUTION," or "DO NOT OPERATE."

PART 3 - EXECUTION

3.1 PREPARATION

A. Clean piping and equipment surfaces of substances that could impair bond of identification devices, including dirt, oil, grease, release agents, and incompatible primers, paints, and encapsulants.

3.2 LABEL INSTALLATION

A. Coordinate installation of identifying devices with completion of covering and painting of surfaces where devices are to be applied.

B. Coordinate installation of identifying devices with locations of access panels and doors.

C. Install or permanently fasten labels on each major item of mechanical equipment.

D. Locate equipment labels where accessible and visible.

E. Piping Color-Coding: Painting of piping is specified in Section 099123 "Interior Painting."

F. Stenciled Pipe-Label Option: Stenciled labels may be provided instead of manufactured pipe labels, at Installer's option. Install stenciled pipe labels, complying with ASME A13.1on each piping system.

1. Identification Paint: Use for contrasting background.

G. Pipe-Label Locations: Locate pipe labels where piping is exposed or above accessible ceilings in finished spaces; machine rooms; accessible maintenance spaces such as shafts, tunnels, and plenums; and exterior exposed locations as follows:

1. Near each valve and control device.
2. Near each branch connection excluding short takeoffs. Where flow pattern is not obvious, mark each pipe at branch.
3. Near penetrations through walls, floors, ceilings, and inaccessible enclosures.
4. At access doors, manholes, and similar access points that permit view of concealed piping.
5. Near major equipment items and other points of origination and termination.
6. Spaced at maximum intervals of 50 feet along each run. Reduce intervals to 25 feet in areas of congested piping and equipment.

3.3 VALVE-TAG INSTALLATION

A. Install tags on valves and control devices in piping systems, except check valves; valves within factory-fabricated equipment units; shutoff valves; faucets; convenience and lawn-watering hose connections; and similar roughing-in connections of end-use fixtures and units. List tagged valves in a valve schedule.

B. Valve-Tag Application Schedule: Tag valves according to size, shape, and color scheme and with captions similar to those indicated in the following subparagraphs:

1. Valve-Tag Size and Shape:

2. Valve-Tag Color:
 b. Hot Water: Natural.

3. Letter Color:
 b. Hot Water: Black.

3.4 WARNING-TAG INSTALLATION

A. Write required message on, and attach warning tags to, equipment and other items where required.

END OF SECTION
SECTION 220719
PLUMBING PIPING INSULATION

PART 1 - GENERAL

1.1 SUMMARY

A. Section includes insulating the following plumbing piping services:

1. Domestic cold-water piping.
2. Domestic hot-water piping.
3. Domestic recirculating hot-water piping.
4. Domestic chilled-water piping for drinking fountains.
5. Sanitary waste piping exposed to freezing conditions.

B. Related Sections:

1. Section 220716 "Plumbing Equipment Insulation."

1.2 ACTION SUBMITTALS

A. Product Data: For each type of product indicated. Include thermal conductivity, water-vapor permeance thickness, and jackets (both factory- and field-applied, if any).

B. LEED Submittals:

1. Product Data for Credit IEQ 4.1: For adhesives and sealants, documentation including printed statement of VOC content and chemical components.
2. Laboratory Test Reports for Credit IEQ 4: For adhesives and sealants, documentation indicating that product complies with the testing and product requirements of the California Department of Health Services' "Standard Practice for the Testing of Volatile Organic Emissions from Various Sources Using Small-Scale Environmental Chambers."

C. Shop Drawings: Include plans, elevations, sections, details, and attachments to other work.

1. Detail application of protective shields, saddles, and inserts at hangers for each type of insulation and hanger.
2. Detail attachment and covering of heat tracing inside insulation.
3. Detail insulation application at pipe expansion joints for each type of insulation.
4. Detail insulation application at elbows, fittings, flanges, valves, and specialties for each type of insulation.
5. Detail removable insulation at piping specialties, equipment connections, and access panels.
6. Detail application of field-applied jackets.
7. Detail application at linkages of control devices.
D. Samples: For each type of insulation and jacket indicated. Identify each Sample, describing product and intended use. Sample sizes are as follows:

 1. Preformed Pipe Insulation Materials: 12 inches long by NPS 2.
 4. Manufacturer's Color Charts: For products where color is specified, show the full range of colors available for each type of finish material.

1.3 INFORMATIONAL SUBMITTALS

A. Qualification Data: For qualified Installer.

B. Material Test Reports: From a qualified testing agency acceptable to authorities having jurisdiction indicating, interpreting, and certifying test results for compliance of insulation materials, sealers, attachments, cements, and jackets, with requirements indicated. Include dates of tests and test methods employed.

C. Field quality-control reports.

1.4 QUALITY ASSURANCE

A. Installer Qualifications: Skilled mechanics who have successfully completed an apprenticeship program or another craft training program certified by the Department of Labor, Bureau of Apprenticeship and Training.

B. Surface-Burning Characteristics: For insulation and related materials, as determined by testing identical products according to ASTM E 84 by a testing agency acceptable to authorities having jurisdiction. Factory label insulation and jacket materials and adhesive, mastic, tapes, and cement material containers, with appropriate markings of applicable testing agency.

 1. Insulation Installed Indoors: Flame-spread index of 25 or less, and smoke-developed index of 50 or less.
 2. Insulation Installed Outdoors: Flame-spread index of 75 or less, and smoke-developed index of 150 or less.

C. Mockups: Before installing insulation, build mockups for each type of insulation and finish listed below to demonstrate quality of insulation application and finishes. Build mockups in the location indicated or, if not indicated, as directed by Architect. Use materials indicated for the completed Work.

 1. Piping Mockups:
 a. One 10-foot section of NPS 2 straight pipe.
 b. One each of a 90-degree threaded, welded, and flanged elbow.
 c. One each of a threaded, welded, and flanged tee fitting.
 d. One NPS 2 or smaller valve, and one NPS 2-1/2 or larger valve.
 e. Four support hangers including hanger shield and insert.
f. One threaded strainer and one flanged strainer with removable portion of insulation.
g. One threaded reducer and one welded reducer.
h. One pressure temperature tap.
i. One mechanical coupling.

2. For each mockup, fabricate cutaway sections to allow observation of application details for insulation materials, adhesives, mastics, attachments, and jackets.
3. Notify Architect seven days in advance of dates and times when mockups will be constructed.
4. Obtain Architect's approval of mockups before starting insulation application.
5. Approval of mockups does not constitute approval of deviations from the Contract Documents contained in mockups unless Architect specifically approves such deviations in writing.
6. Maintain mockups during construction in an undisturbed condition as a standard for judging the completed Work.
7. Demolish and remove mockups when directed.

D. Comply with the following applicable standards and other requirements specified for miscellaneous components:

1.5 DELIVERY, STORAGE, AND HANDLING

A. Packaging: Insulation material containers shall be marked by manufacturer with appropriate ASTM standard designation, type and grade, and maximum use temperature.

PART 2 - PRODUCTS

2.1 INSULATION MATERIALS

B. Products shall not contain asbestos, lead, mercury, or mercury compounds.

C. Products that come in contact with stainless steel shall have a leachable chloride content of less than 50 ppm when tested according to ASTM C 871.

D. Insulation materials for use on austenitic stainless steel shall be qualified as acceptable according to ASTM C 795.

E. Foam insulation materials shall not use CFC or HCFC blowing agents in the manufacturing process.
F. Cellular Glass: Inorganic, incombustible, foamed or cellulated glass with annealed, rigid, hermetically sealed cells. Factory-applied jacket requirements are specified in "Factory-Applied Jackets" Article.

1. Products: Subject to compliance with requirements, provide the one of following
 a. Pittsburgh Corning Corporation; Foamglas, or equivalent.

2. Block Insulation: ASTM C 552, Type I.
3. Special-Shaped Insulation: ASTM C 552, Type III.
4. Preformed Pipe Insulation without Jacket: Comply with ASTM C 552, Type II, Class 1.
5. Preformed Pipe Insulation with Factory-Applied ASJ: Comply with ASTM C 552, Type II, Class 2.
6. Factory fabricate shapes according to ASTM C 450 and ASTM C 585.

G. Flexible Elastomeric Insulation: Closed-cell, sponge- or expanded-rubber materials. Comply with ASTM C 534, Type I for tubular materials.

1. Products: Subject to compliance with requirements, provide one of the following:
 a. Aeroflex USA, Inc.; Aerocel.
 b. Armacell LLC; AP Armaflex.
 c. K-Flex USA; Insul-Lock, Insul-Tube, and K-FLEX LS.

H. Mineral-Fiber Blanket Insulation: Mineral or glass fibers bonded with a thermosetting resin. Comply with ASTM C 553, Type II and ASTM C 1290, Type I. Factory-applied jacket requirements are specified in "Factory-Applied Jackets" Article.

1. Products: Subject to compliance with requirements, provide one of the following:
 a. CertainTeed Corp.; SoftTouch Duct Wrap.
 b. Johns Manville; Microlite.
 c. Knauf Insulation; Friendly Feel Duct Wrap.
 d. Manson Insulation Inc.; Alley Wrap.
 e. Owens Corning; SOFTR All-Service Duct Wrap.

I. Mineral-Fiber, Preformed Pipe Insulation:

1. Products: Subject to compliance with requirements, provide one of the following:
 a. Fibrex Insulations Inc.; Coreplus 1200.
 b. Johns Manville; Micro-Lok.
 c. Knauf Insulation; 1000-Degree Pipe Insulation.
 d. Manson Insulation Inc.; Alley-K.
 e. Owens Corning; Fiberglas Pipe Insulation.

2. Type I, 850 Deg F (454 Deg C) Materials: Mineral or glass fibers bonded with a thermosetting resin. Comply with ASTM C 547, Type I, Grade A, with factory-applied ASJ. Factory-applied jacket requirements are specified in "Factory-Applied Jackets" Article.
J. Phenolic:

1. Products: Subject to compliance with requirements, provide one of the following:
 a. Kingspan Tarec Industrial Insulation NV; Koolphen K.
 b. Resolco International BV; Insul-phen.

2. Preformed pipe insulation of rigid, expanded, closed-cell structure. Comply with ASTM C 1126, Type III, Grade 1.
3. Block insulation of rigid, expanded, closed-cell structure. Comply with ASTM C 1126, Type II, Grade 1.
4. Factory fabricate shapes according to ASTM C 450 and ASTM C 585.

K. Polyolefin: Unicellular, polyethylene thermal plastic insulation. Comply with ASTM C 534 or ASTM C 1427, Type I, Grade 1 for tubular materials.

1. Products: Subject to compliance with requirements, provide one of the following:
 a. Armacell LLC; Tubolit.
 b. Nomaco Insulation; IMCOLOCK and NOMALOCK.

2.2 INSULATING CEMENTS

1. Products: Subject to compliance with requirements, provide the following:
 a. Ramco Insulation, Inc.; Super-Stik.

B. Expanded or Exfoliated Vermiculite Insulating Cement: Comply with ASTM C 196.

1. Products: Subject to compliance with requirements, provide the following.
 a. Ramco Insulation, Inc.; Thermokote V.

1. Products: Subject to compliance with requirements, provide the following.
 a. Ramco Insulation, Inc.; Ramcote 1200 and Quik-Cote.

2.3 ADHESIVES

A. Materials shall be compatible with insulation materials, jackets, and substrates and for bonding insulation to itself and to surfaces to be insulated, unless otherwise indicated.

B. Cellular-Glass Adhesive: Two-component, thermosetting urethane adhesive containing no flammable solvents, with a service temperature range of minus 100 to plus 200 deg F.
1. Products: Subject to compliance with requirements, provide the following:

2. For indoor applications, adhesive shall have a VOC content of 50 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
3. Adhesive shall comply with the testing and product requirements of the California Department of Health Services' "Standard Practice for the Testing of Volatile Organic Emissions from Various Sources Using Small-Scale Environmental Chambers."

C. Flexible Elastomeric and Polyolefin Adhesive: Comply with MIL-A-24179A, Type II, Class I.
1. Products: Subject to compliance with requirements, provide the following:
 a. Aeroflex USA, Inc.; Aeroseal.
 b. Armacell LLC; Armaflex 520 Adhesive.
 d. K-Flex USA; R-373 Contact Adhesive.

2. For indoor applications, adhesive shall have a VOC content of 50 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
3. Adhesive shall comply with the testing and product requirements of the California Department of Health Services' "Standard Practice for the Testing of Volatile Organic Emissions from Various Sources Using Small-Scale Environmental Chambers."

D. Mineral-Fiber Adhesive: Comply with MIL-A-3316C, Class 2, Grade A.
1. Products: Subject to compliance with requirements, provide the following:
 b. Eagle Bridges - Marathon Industries; 225.
 d. Mon-Eco Industries, Inc.; 22-25.
 e.

2. For indoor applications, adhesive shall have a VOC content of 80 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
3. Adhesive shall comply with the testing and product requirements of the California Department of Health Services' "Standard Practice for the Testing of Volatile Organic Emissions from Various Sources Using Small-Scale Environmental Chambers."

E. Phenolic Adhesive: Solvent-based resin adhesive, with a service temperature range of minus 75 to plus 300 deg F.
1. Products: Subject to compliance with requirements, provide the following:

2. For indoor applications, adhesive shall have a VOC content of 50 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).

3. Adhesive shall comply with the testing and product requirements of the California Department of Health Services' "Standard Practice for the Testing of Volatile Organic Emissions from Various Sources Using Small-Scale Environmental Chambers."

1. Products: Subject to compliance with requirements, provide the following:

 b. Eagle Bridges - Marathon Industries; 225.
 d. Mon-Eco Industries, Inc.; 22-25.

2. For indoor applications, adhesive shall have a VOC content of 50 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).

3. Adhesive shall comply with the testing and product requirements of the California Department of Health Services' "Standard Practice for the Testing of Volatile Organic Emissions from Various Sources Using Small-Scale Environmental Chambers."

G. PVC Jacket Adhesive: Compatible with PVC jacket.

1. Products: Subject to compliance with requirements, provide the following:

 a. Dow Corning Corporation; 739, Dow Silicone.
 d. Speedline Corporation; Polyco VP Adhesive.

2. For indoor applications, adhesive shall have a VOC content of 50 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).

3. Adhesive shall comply with the testing and product requirements of the California Department of Health Services' "Standard Practice for the Testing of Volatile Organic Emissions from Various Sources Using Small-Scale Environmental Chambers."
2.4 MASTICS

A. Materials shall be compatible with insulation materials, jackets, and substrates; comply with MIL-PRF-19565C, Type II.

1. For indoor applications, use mastics that have a VOC content of 50 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).

B. Vapor-Barrier Mastic: Water based; suitable for indoor use on below-ambient services.

1. Products: Subject to compliance with requirements, provide the following:

 b. Vimasco Corporation; 749.
 c.

2. Water-Vapor Permeance: ASTM E 96/E 96M, Procedure B, 0.013 perm at 43-mil dry film thickness.

3. Service Temperature Range: Minus 20 to plus 180 deg F.

4. Solids Content: ASTM D 1644, 58 percent by volume and 70 percent by weight.

C. Vapor-Barrier Mastic: Solvent based; suitable for indoor use on below-ambient services.

1. Products: Subject to compliance with requirements, provide the following:

 b. Eagle Bridges - Marathon Industries; 501.
 d. Mon-Eco Industries, Inc.; 55-10.
 e.

2. Water-Vapor Permeance: ASTM F 1249, 0.05 perm at 35-mil dry film thickness.

3. Service Temperature Range: 0 to 180 deg F.

D. Vapor-Barrier Mastic: Solvent based; suitable for outdoor use on below-ambient services.

1. Products: Subject to compliance with requirements, provide the following:

 b. Eagle Bridges - Marathon Industries; 570.
 d.
2. Water-Vapor Permeance: ASTM F 1249, 0.05 perm at 30-mil dry film thickness.
3. Service Temperature Range: Minus 50 to plus 220 deg F.
4. Solids Content: ASTM D 1644, 33 percent by volume and 46 percent by weight.

E. Breather Mastic: Water based; suitable for indoor and outdoor use on above-ambient services.

1. Products: Subject to compliance with requirements, provide the following:
 b. Eagle Bridges - Marathon Industries; 550.
 e. Vimasco Corporation; WC-1/WC-5.

2. Water-Vapor Permeance: ASTM F 1249, 1.8 perms at 0.0625-inch dry film thickness.
3. Service Temperature Range: Minus 20 to plus 180 deg F.
4. Solids Content: 60 percent by volume and 66 percent by weight.

2.5 LAGGING ADHESIVES

A. Description: Comply with MIL-A-3316C, Class I, Grade A, and shall be compatible with insulation materials, jackets, and substrates.

1. For indoor applications, use lagging adhesives that have a VOC content of 50 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
2. Products: Subject to compliance with requirements, provide the following:
 c. Vimasco Corporation; 713 and 714.
 d.

3. Fire-resistant, water-based lagging adhesive and coating for use indoors to adhere fire-resistant lagging cloths over pipe insulation.
4. Service Temperature Range: 0 to plus 180 deg F.

2.6 SEALANTS

A. Joint Sealants:
1. Joint Sealants for Cellular-Glass and Phenolic Products: Subject to compliance with requirements, provide the following:
 b. Eagle Bridges - Marathon Industries; 405.
 d. Mon-Eco Industries, Inc.; 44-05.
 e. Pittsburgh Corning Corporation; Pittseal 444.
2. Materials shall be compatible with insulation materials, jackets, and substrates.
3. Permanently flexible, elastomeric sealant.
4. Service Temperature Range: Minus 100 to plus 300 deg F Color: White or gray.
5. For indoor applications, sealants shall have a VOC content of 420 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
6. Sealants shall comply with the testing and product requirements of the California Department of Health Services' "Standard Practice for the Testing of Volatile Organic Emissions from Various Sources Using Small-Scale Environmental Chambers."

B. FSK and Metal Jacket Flashing Sealants:

1. Products: Subject to compliance with requirements, provide the following:
 b. Eagle Bridges - Marathon Industries; 405.
 c. Foster Brand, Specialty Construction Brands, Inc., a business of H. B. Fuller Company; 95-44.
 d. Mon-Eco Industries, Inc.; 44-05.
2. Materials shall be compatible with insulation materials, jackets, and substrates.
3. Fire- and water-resistant, flexible, elastomeric sealant.
4. Service Temperature Range: Minus 40 to plus 250 deg F.
5. Color: Aluminum.
6. For indoor applications, sealants shall have a VOC content of 420 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
7. Sealants shall comply with the testing and product requirements of the California Department of Health Services' "Standard Practice for the Testing of Volatile Organic Emissions from Various Sources Using Small-Scale Environmental Chambers."

C. ASJ Flashing Sealants, and Vinyl, PVDC, and PVC Jacket Flashing Sealants:

1. Products: Subject to compliance with requirements, provide the following:
2. Materials shall be compatible with insulation materials, jackets, and substrates.
3. Fire- and water-resistant, flexible, elastomeric sealant.
4. Service Temperature Range: Minus 40 to plus 250 deg F.
6. For indoor applications, sealants shall have a VOC content of 420 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
7. Sealants shall comply with the testing and product requirements of the California Department of Health Services' "Standard Practice for the Testing of Volatile Organic Emissions from Various Sources Using Small-Scale Environmental Chambers."

2.7 FACTORY-APPLIED JACKETS
A. Insulation system schedules indicate factory-applied jackets on various applications. When factory-applied jackets are indicated, comply with the following:
 1. ASJ: White, kraft-paper, fiberglass-reinforced scrim with aluminum-foil backing; complying with ASTM C 1136, Type I.
 2. ASJ-SSL: ASJ with self-sealing, pressure-sensitive, acrylic-based adhesive covered by a removable protective strip; complying with ASTM C 1136, Type I.
 3. FSK Jacket: Aluminum-foil, fiberglass-reinforced scrim with kraft-paper backing; complying with ASTM C 1136, Type II.

2.8 FIELD-APPLIED FABRIC-REINFORCING MESH
A. Woven Glass-Fiber Fabric: Approximately 2 oz./sq. yd. with a thread count of 10 strands by 10 strands/sq. in. for covering pipe and pipe fittings.
 1. Products: Subject to compliance with requirements, provide the following:
 b.
 B. Woven Polyester Fabric: Approximately 1 oz./sq. yd. with a thread count of 10 strands by 10 strands/sq. in. a Leno weave, for pipe.
 1. Products: Subject to compliance with requirements, provide the following:
 b. Vimasco Corporation; Elastafab 894.
 c.

2.9 FIELD-APPLIED CLOTHS
A. Woven Glass-Fiber Fabric: Comply with MIL-C-20079H, Type I, plain weave, and presized a minimum of 8 oz./sq. yd.
1. Products: Subject to compliance with requirements, provide the following:
 b.

2.10 FIELD-APPLIED JACKETS

A. Field-applied jackets shall comply with ASTM C 921, Type I, unless otherwise indicated.

B. PVC Jacket: High-impact-resistant, UV-resistant PVC complying with ASTM D 1784, Class 16354-C; thickness as scheduled; roll stock ready for shop or field cutting and forming. Thickness is indicated in field-applied jacket schedules.

1. Products: Subject to compliance with requirements, provide the following:
 a. Johns Manville; Zeston.
 c. Proto Corporation; LoSmoke.
 d. Speedline Corporation; SmokeSafe.
 e.

2. Adhesive: As recommended by jacket material manufacturer.
3. Color: Color as selected by Architect.
4. Factory-fabricated fitting covers to match jacket if available; otherwise, field fabricate.

 a. Shapes: 45- and 90-degree, short- and long-radius elbows, tees, valves, flanges, unions, reducers, end caps, soil-pipe hubs, traps, mechanical joints, and P-trap and supply covers for lavatories.

C. Metal Jacket:

1. Products: Subject to compliance with requirements, provide the following:
 b. ITW Insulation Systems; Aluminum and Stainless Steel Jacketing.
 c. RPR Products, Inc.; Insul-Mate.
 d.

 a. Sheet and roll stock ready for shop or field sizing or factory cut and rolled to size.
 b. Finish and thickness are indicated in field-applied jacket schedules.
 c. Moisture Barrier for Indoor Applications: 3-mil- (0.075-mm-) thick, heat-bonded polyethylene and kraft paper.
 d. Moisture Barrier for Outdoor Applications: 3-mil- (0.075-mm-) thick, heat-bonded polyethylene and kraft paper.
 e. Factory-Fabricated Fitting Covers:
1) Same material, finish, and thickness as jacket.
2) Preformed 2-piece or gore, 45- and 90-degree, short- and long-radius elbows.
3) Tee covers.
4) Flange and union covers.
5) End caps.
6) Beveled collars.
7) Valve covers.
8) Field fabricate fitting covers only if factory-fabricated fitting covers are not available.

3. Stainless-Steel Jacket: ASTM A 167 or ASTM A 240/A 240M.
 a. Sheet and roll stock ready for shop or field sizing or factory cut and rolled to size.
 b. Material, finish, and thickness are indicated in field-applied jacket schedules.
 c. Moisture Barrier for Indoor Applications: 3-mil- (0.075-mm-) thick, heat-bonded polyethylene and kraft paper.
 d. Moisture Barrier for Outdoor Applications: 3-mil- (0.075-mm-) thick, heat-bonded polyethylene and kraft paper.
 e. Factory-Fabricated Fitting Covers:
 1) Same material, finish, and thickness as jacket.
 2) Preformed 2-piece or gore, 45- and 90-degree, short- and long-radius elbows.
 3) Tee covers.
 4) Flange and union covers.
 5) End caps.
 6) Beveled collars.
 7) Valve covers.
 8) Field fabricate fitting covers only if factory-fabricated fitting covers are not available.

D. Underground Direct-Buried Jacket: 125-mil- (3.2-mm-) thick vapor barrier and waterproofing membrane consisting of a rubberized bituminous resin reinforced with a woven-glass fiber or polyester scrim and laminated aluminum foil.
 1. Products: Subject to compliance with requirements, provide the following:
 a. Pittsburgh Corning Corporation; Pittwrap.
 b. Polyguard Products, Inc.; Insulrap No Torch 125.

2.11 TAPES

A. ASJ Tape: White vapor-retarder tape matching factory-applied jacket with acrylic adhesive, complying with ASTM C 1136.
 1. Products: Subject to compliance with requirements, provide the following:
 a. ABI, Ideal Tape Division; 428 AWF ASJ.
b. Avery Dennison Corporation, Specialty Tapes Division; Fasson 0836.
c. Compac Corporation; 104 and 105.
d. Venture Tape; 1540 CW Plus, 1542 CW Plus, and 1542 CW Plus/SQ.

2. Width: 3 inches (75 mm).
3. Thickness: 11.5 mils (0.29 mm).
4. Adhesion: 90 ounces force/inch (1.0 N/mm) in width.
5. Elongation: 2 percent.
6. Tensile Strength: 40 lbf/inch (7.2 N/mm) in width.
7. ASJ Tape Disks and Squares: Precut disks or squares of ASJ tape.

B. FSK Tape: Foil-face, vapor-retarder tape matching factory-applied jacket with acrylic adhesive; complying with ASTM C 1136.

1. Products: Subject to compliance with requirements, provide the following:
 a. ABI, Ideal Tape Division; 491 AWF FSK.
 b. Avery Dennison Corporation, Specialty Tapes Division; Fasson 0827.
 c. Compac Corporation; 110 and 111.
 d. Venture Tape; 1525 CW NT, 1528 CW, and 1528 CW/SQ.

2. Width: 3 inches (75 mm).
3. Thickness: 6.5 mils (0.16 mm).
4. Adhesion: 90 ounces force/inch (1.0 N/mm) in width.
5. Elongation: 2 percent.
6. Tensile Strength: 40 lbf/inch (7.2 N/mm) in width.
7. FSK Tape Disks and Squares: Precut disks or squares of FSK tape.

C. PVC Tape: White vapor-retarder tape matching field-applied PVC jacket with acrylic adhesive; suitable for indoor and outdoor applications.

1. Products: Subject to compliance with requirements, provide the following:
 a. ABI, Ideal Tape Division; 370 White PVC tape.
 b. Compac Corporation; 130.
 c. Venture Tape; 1506 CW NS.
 d.

2. Width: 2 inches (50 mm).
3. Thickness: 6 mils (0.15 mm).
4. Adhesion: 64 ounces force/inch (0.7 N/mm) in width.
5. Elongation: 500 percent.
6. Tensile Strength: 18 lbf/inch (3.3 N/mm) in width.

D. Aluminum-Foil Tape: Vapor-retarder tape with acrylic adhesive.

1. Products: Subject to compliance with requirements, provide the following:
 a. ABI, Ideal Tape Division; 488 AWF.
2. Width: 2 inches (50 mm).
3. Thickness: 3.7 mils (0.093 mm).
4. Adhesion: 100 ounces force/inch (1.1 N/mm) in width.
5. Elongation: 5 percent.
6. Tensile Strength: 34 lbf/inch (6.2 N/mm) in width.

2.12 SECUREMENTS

A. Bands:
 1. Products: Subject to compliance with requirements, provide the following:
 a. ITW Insulation Systems; Gerrard Strapping and Seals.
 b. RPR Products, Inc.; Insul-Mate Strapping and Seals.

 2. Stainless Steel: ASTM A 167 or ASTM A 240/A 240M, Type 304 or Type 316; 0.015 inch (0.38 mm) thick, 1/2 inch wide with wing seal or closed seal.
 3. Aluminum: ASTM B 209 (ASTM B 209M), Alloy 3003, 3005, 3105, or 5005; Temper H-14, 0.020 inch (0.51 mm) thick, 1/2 inch wide with wing seal or closed seal.

B. Staples: Outward-clinching insulation staples, nominal 3/4-inch- (19-mm-) wide, stainless steel or Monel.

C. Wire: 0.062-inch (1.6-mm) soft-annealed, stainless steel.
 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:

2.13 PROTECTIVE SHIELDING GUARDS

A. Protective Shielding Pipe Covers
 1. Manufacturers: Subject to compliance with requirements, provide one of the following:
 a. Engineered Brass Company.
 b. Insul-Tect Products Co.; a subsidiary of MVG Molded Products.
 c. McGuire Manufacturing.
 d. Plumberex.
 e. Truebro; a brand of IPS Corporation.
2. **Description:** Manufactured plastic wraps for covering plumbing fixture hot- and cold-water supplies and trap and drain piping. Comply with Americans with Disabilities Act (ADA) requirements.

B. Protective Shielding Piping Enclosures

1. **Manufacturers:** Subject to compliance with requirements, provide one of the following.
 a. Truebro; a brand of IPS Corporation.

2. **Description:** Manufactured plastic enclosure for covering plumbing fixture hot- and cold-water supplies and trap and drain piping. Comply with ADA requirements.

PART 3 - EXECUTION

3.1 **EXAMINATION**

A. Examine substrates and conditions for compliance with requirements for installation tolerances and other conditions affecting performance of insulation application.

1. Verify that systems to be insulated have been tested and are free of defects.
2. Verify that surfaces to be insulated are clean and dry.

B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 **PREPARATION**

A. Surface Preparation: Clean and dry surfaces to receive insulation. Remove materials that will adversely affect insulation application.

B. Surface Preparation: Clean and prepare surfaces to be insulated. Before insulating, apply a corrosion coating to insulated surfaces as follows:

 1. Stainless Steel: Coat 300 series stainless steel with an epoxy primer 5 mils (0.127 mm) thick and an epoxy finish 5 mils (0.127 mm) thick if operating in a temperature range between 140 and 300 deg F (60 and 149 deg C). Consult coating manufacturer for appropriate coating materials and application methods for operating temperature range.
 2. Carbon Steel: Coat carbon steel operating at a service temperature between 32 and 300 deg F (0 and 149 deg C) with an epoxy coating. Consult coating manufacturer for appropriate coating materials and application methods for operating temperature range.

C. Coordinate insulation installation with the trade installing heat tracing. Comply with requirements for heat tracing that apply to insulation.

D. Mix insulating cements with clean potable water; if insulating cements are to be in contact with stainless-steel surfaces, use demineralized water.
3.3 GENERAL INSTALLATION REQUIREMENTS

A. Install insulation materials, accessories, and finishes with smooth, straight, and even surfaces; free of voids throughout the length of piping including fittings, valves, and specialties.

B. Install insulation materials, forms, vapor barriers or retarders, jackets, and thicknesses required for each item of pipe system as specified in insulation system schedules.

C. Install accessories compatible with insulation materials and suitable for the service. Install accessories that do not corrode, soften, or otherwise attack insulation or jacket in either wet or dry state.

D. Install insulation with longitudinal seams at top and bottom of horizontal runs.

E. Install multiple layers of insulation with longitudinal and end seams staggered.

F. Do not weld brackets, clips, or other attachment devices to piping, fittings, and specialties.

G. Keep insulation materials dry during application and finishing.

H. Install insulation with tight longitudinal seams and end joints. Bond seams and joints with adhesive recommended by insulation material manufacturer.

I. Install insulation with least number of joints practical.

J. Where vapor barrier is indicated, seal joints, seams, and penetrations in insulation at hangers, supports, anchors, and other projections with vapor-barrier mastic.
 1. Install insulation continuously through hangers and around anchor attachments.
 2. For insulation application where vapor barriers are indicated, extend insulation on anchor legs from point of attachment to supported item to point of attachment to structure. Taper and seal ends at attachment to structure with vapor-barrier mastic.
 3. Install insert materials and install insulation to tightly join the insert. Seal insulation to insulation inserts with adhesive or sealing compound recommended by insulation material manufacturer.
 4. Cover inserts with jacket material matching adjacent pipe insulation. Install shields over jacket, arranged to protect jacket from tear or puncture by hanger, support, and shield.

K. Apply adhesives, mastics, and sealants at manufacturer's recommended coverage rate and wet and dry film thicknesses.

L. Install insulation with factory-applied jackets as follows:
 1. Draw jacket tight and smooth.
 2. Cover circumferential joints with 3-inch- (75-mm-) wide strips, of same material as insulation jacket. Secure strips with adhesive and outward clinching staples along both edges of strip, spaced 4 inches (100 mm) o.c.
 3. Overlap jacket longitudinal seams at least 1-1/2 inches (38 mm). Install insulation with longitudinal seams at bottom of pipe. Clean and dry surface to receive self-sealing lap. Staple laps with outward clinching staples along edge at 4 inches o.c.
a. For below-ambient services, apply vapor-barrier mastic over staples.

4. Cover joints and seams with tape, according to insulation material manufacturer's written instructions, to maintain vapor seal.

5. Where vapor barriers are indicated, apply vapor-barrier mastic on seams and joints and at ends adjacent to pipe flanges and fittings.

M. Cut insulation in a manner to avoid compressing insulation more than 75 percent of its nominal thickness.

N. Finish installation with systems at operating conditions. Repair joint separations and cracking due to thermal movement.

O. Repair damaged insulation facings by applying same facing material over damaged areas. Extend patches at least 4 inches (100 mm) beyond damaged areas. Adhere, staple, and seal patches similar to butt joints.

P. For above-ambient services, do not install insulation to the following:

1. Vibration-control devices.
2. Testing agency labels and stamps.
3. Nameplates and data plates.

3.4 PENETRATIONS

A. Insulation Installation at Roof Penetrations: Install insulation continuously through roof penetrations.

1. Seal penetrations with flashing sealant.
2. For applications requiring only indoor insulation, terminate insulation above roof surface and seal with joint sealant. For applications requiring indoor and outdoor insulation, install insulation for outdoor applications tightly joined to indoor insulation ends. Seal joint with joint sealant.
3. Extend jacket of outdoor insulation outside roof flashing at least 2 inches (50 mm) below top of roof flashing.
4. Seal jacket to roof flashing with flashing sealant.

B. Insulation Installation at Underground Exterior Wall Penetrations: Terminate insulation flush with sleeve seal. Seal terminations with flashing sealant.

C. Insulation Installation at Aboveground Exterior Wall Penetrations: Install insulation continuously through wall penetrations.

1. Seal penetrations with flashing sealant.
2. For applications requiring only indoor insulation, terminate insulation inside wall surface and seal with joint sealant. For applications requiring indoor and outdoor insulation, install insulation for outdoor applications tightly joined to indoor insulation ends. Seal joint with joint sealant.
3. Extend jacket of outdoor insulation outside wall flashing and overlap wall flashing at least 2 inches (50 mm).
4. Seal jacket to wall flashing with flashing sealant.

D. Insulation Installation at Interior Wall and Partition Penetrations (That Are Not Fire Rated): Install insulation continuously through walls and partitions.

E. Insulation Installation at Fire-Rated Wall and Partition Penetrations: Install insulation continuously through penetrations of fire-rated walls and partitions.

1. Comply with requirements in Section 078413 "Penetration Firestopping" for firestopping and fire-resistive joint sealers.

F. Insulation Installation at Floor Penetrations:

1. Pipe: Install insulation continuously through floor penetrations.
2. Seal penetrations through fire-rated assemblies. Comply with requirements in Section 078413 "Penetration Firestopping."

3.5 GENERAL PIPE INSULATION INSTALLATION

A. Requirements in this article generally apply to all insulation materials except where more specific requirements are specified in various pipe insulation material installation articles.

B. Insulation Installation on Fittings, Valves, Strainers, Flanges, and Unions:

1. Install insulation over fittings, valves, strainers, flanges, unions, and other specialties with continuous thermal and vapor-retarder integrity unless otherwise indicated.
2. Insulate pipe elbows using preformed fitting insulation or mitered fittings made from same material and density as adjacent pipe insulation. Each piece shall be butted tightly against adjoining piece and bonded with adhesive. Fill joints, seams, voids, and irregular surfaces with insulating cement finished to a smooth, hard, and uniform contour that is uniform with adjoining pipe insulation.
3. Insulate tee fittings with preformed fitting insulation or sectional pipe insulation of same material and thickness as used for adjacent pipe. Cut sectional pipe insulation to fit. Butt each section closely to the next and hold in place with tie wire. Bond pieces with adhesive.
4. Insulate valves using preformed fitting insulation or sectional pipe insulation of same material, density, and thickness as used for adjacent pipe. Overlap adjoining pipe insulation by not less than two times the thickness of pipe insulation, or one pipe diameter, whichever is thicker. For valves, insulate up to and including the bonnets, valve stuffing-box studs, bolts, and nuts. Fill joints, seams, and irregular surfaces with insulating cement.
5. Insulate strainers using preformed fitting insulation or sectional pipe insulation of same material, density, and thickness as used for adjacent pipe. Overlap adjoining pipe insulation by not less than two times the thickness of pipe insulation, or one pipe diameter, whichever is thicker. Fill joints, seams, and irregular surfaces with insulating cement. Insulate strainers so strainer basket flange or plug can be easily removed and replaced without damaging the insulation and jacket. Provide a removable reusable
insulation cover. For below-ambient services, provide a design that maintains vapor barrier.

6. Insulate flanges and unions using a section of oversized preformed pipe insulation. Overlap adjoining pipe insulation by not less than two times the thickness of pipe insulation, or one pipe diameter, whichever is thicker.

7. Cover segmented insulated surfaces with a layer of finishing cement and coat with a mastic. Install vapor-barrier mastic for below-ambient services and a breather mastic for above-ambient services. Reinforce the mastic with fabric-reinforcing mesh. Trowel the mastic to a smooth and well-shaped contour.

8. For services not specified to receive a field-applied jacket except for flexible elastomeric and polyolefin, install fitted PVC cover over elbows, tees, strainers, valves, flanges, and unions. Terminate ends with PVC end caps. Tape PVC covers to adjoining insulation facing using PVC tape.

9. Stencil or label the outside insulation jacket of each union with the word "union." Match size and color of pipe labels.

C. Insulate instrument connections for thermometers, pressure gages, pressure temperature taps, test connections, flow meters, sensors, switches, and transmitters on insulated pipes. Shape insulation at these connections by tapering it to and around the connection with insulating cement and finish with finishing cement, mastic, and flashing sealant.

D. Install removable insulation covers at locations indicated. Installation shall conform to the following:

1. Make removable flange and union insulation from sectional pipe insulation of same thickness as that on adjoining pipe. Install same insulation jacket as adjoining pipe insulation.

2. When flange and union covers are made from sectional pipe insulation, extend insulation from flanges or union long at least two times the insulation thickness over adjacent pipe insulation on each side of flange or union. Secure flange cover in place with stainless-steel or aluminum bands. Select band material compatible with insulation and jacket.

3. Construct removable valve insulation covers in same manner as for flanges, except divide the two-part section on the vertical center line of valve body.

4. When covers are made from block insulation, make two halves, each consisting of mitered blocks wired to stainless-steel fabric. Secure this wire frame, with its attached insulation, to flanges with tie wire. Extend insulation at least 2 inches (50 mm) over adjacent pipe insulation on each side of valve. Fill space between flange or union cover and pipe insulation with insulating cement. Finish cover assembly with insulating cement applied in two coats. After first coat is dry, apply and trowel second coat to a smooth finish.

5. Unless a PVC jacket is indicated in field-applied jacket schedules, finish exposed surfaces with a metal jacket.

3.6 INSTALLATION OF CELLULAR-GLASS INSULATION

A. Insulation Installation on Straight Pipes and Tubes:

1. Secure each layer of insulation to pipe with wire or bands and tighten bands without deforming insulation materials.
2. Where vapor barriers are indicated, seal longitudinal seams, end joints, and protrusions with vapor-barrier mastic and joint sealant.

3. For insulation with factory-applied jackets on above-ambient services, secure laps with outward clinched staples at 6 inches (150 mm) o.c.

4. For insulation with factory-applied jackets on below-ambient services, do not staple longitudinal tabs. Instead, secure tabs with additional adhesive as recommended by insulation material manufacturer and seal with vapor-barrier mastic and flashing sealant.

B. Insulation Installation on Pipe Flanges:

1. Install preformed pipe insulation to outer diameter of pipe flange.
2. Make width of insulation section same as overall width of flange and bolts, plus twice the thickness of pipe insulation.
3. Fill voids between inner circumference of flange insulation and outer circumference of adjacent straight pipe segments with cut sections of cellular-glass block insulation of same thickness as pipe insulation.
4. Install jacket material with manufacturer's recommended adhesive, overlap seams at least 1 inch (25 mm), and seal joints with flashing sealant.

C. Insulation Installation on Pipe Fittings and Elbows:

1. Install preformed sections of same material as straight segments of pipe insulation when available. Secure according to manufacturer's written instructions.
2. When preformed sections of insulation are not available, install mitered sections of cellular-glass insulation. Secure insulation materials with wire or bands.

D. Insulation Installation on Valves and Pipe Specialties:

1. Install preformed sections of cellular-glass insulation to valve body.
2. Arrange insulation to permit access to packing and to allow valve operation without disturbing insulation.
3. Install insulation to flanges as specified for flange insulation application.

3.7 INSTALLATION OF FLEXIBLE ELASTOMERIC INSULATION

A. Seal longitudinal seams and end joints with manufacturer's recommended adhesive to eliminate openings in insulation that allow passage of air to surface being insulated.

B. Insulation Installation on Pipe Flanges:

1. Install pipe insulation to outer diameter of pipe flange.
2. Make width of insulation section same as overall width of flange and bolts, plus twice the thickness of pipe insulation.
3. Fill voids between inner circumference of flange insulation and outer circumference of adjacent straight pipe segments with cut sections of sheet insulation of same thickness as pipe insulation.
4. Secure insulation to flanges and seal seams with manufacturer's recommended adhesive to eliminate openings in insulation that allow passage of air to surface being insulated.

C. Insulation Installation on Pipe Fittings and Elbows:
1. Install mitered sections of pipe insulation.
2. Secure insulation materials and seal seams with manufacturer's recommended adhesive to eliminate openings in insulation that allow passage of air to surface being insulated.

D. Insulation Installation on Valves and Pipe Specialties:

1. Install preformed valve covers manufactured of same material as pipe insulation when available.
2. When preformed valve covers are not available, install cut sections of pipe and sheet insulation to valve body. Arrange insulation to permit access to packing and to allow valve operation without disturbing insulation.
3. Install insulation to flanges as specified for flange insulation application.
4. Secure insulation to valves and specialties and seal seams with manufacturer's recommended adhesive to eliminate openings in insulation that allow passage of air to surface being insulated.

3.8 INSTALLATION OF MINERAL-FIBER INSULATION

A. Insulation Installation on Straight Pipes and Tubes:

1. Secure each layer of preformed pipe insulation to pipe with wire or bands and tighten bands without deforming insulation materials.
2. Where vapor barriers are indicated, seal longitudinal seams, end joints, and protrusions with vapor-barrier mastic and joint sealant.
3. For insulation with factory-applied jackets on above-ambient surfaces, secure laps with outward clinched staples at 6 inches (150 mm) o.c.
4. For insulation with factory-applied jackets on below-ambient surfaces, do not staple longitudinal tabs. Instead, secure tabs with additional adhesive as recommended by insulation material manufacturer and seal with vapor-barrier mastic and flashing sealant.

B. Insulation Installation on Pipe Flanges:

1. Install preformed pipe insulation to outer diameter of pipe flange.
2. Make width of insulation section same as overall width of flange and bolts, plus twice the thickness of pipe insulation.
3. Fill voids between inner circumference of flange insulation and outer circumference of adjacent straight pipe segments with mineral-fiber blanket insulation.
4. Install jacket material with manufacturer's recommended adhesive, overlap seams at least 1 inch (25 mm), and seal joints with flashing sealant.

C. Insulation Installation on Pipe Fittings and Elbows:

1. Install preformed sections of same material as straight segments of pipe insulation when available.
2. When preformed insulation elbows and fittings are not available, install mitered sections of pipe insulation, to a thickness equal to adjoining pipe insulation. Secure insulation materials with wire or bands.

D. Insulation Installation on Valves and Pipe Specialties:
1. Install preformed sections of same material as straight segments of pipe insulation when available.
2. When preformed sections are not available, install mitered sections of pipe insulation to valve body.
3. Arrange insulation to permit access to packing and to allow valve operation without disturbing insulation.
4. Install insulation to flanges as specified for flange insulation application.

3.9 INSTALLATION OF PHENOLIC INSULATION

A. General Installation Requirements:
 1. Secure single-layer insulation with stainless-steel bands at 12-inch (300-mm) intervals and tighten bands without deforming insulation materials.
 2. Install 2-layer insulation with joints tightly butted and staggered at least 3 inches (75 mm). Secure inner layer with 0.062-inch (1.6-mm) wire spaced at 12-inch (300-mm) intervals. Secure outer layer with stainless-steel bands at 12-inch (300-mm) intervals.

B. Insulation Installation on Straight Pipes and Tubes:
 1. Secure each layer of insulation to pipe with wire or bands and tighten bands without deforming insulation materials.
 2. Where vapor barriers are indicated, seal longitudinal seams, end joints, and protrusions with vapor-barrier mastic and joint sealant.
 3. For insulation with factory-applied jackets on above-ambient services, secure laps with outward clinched staples at 6 inches (150 mm) o.c.
 4. For insulation with factory-applied jackets with vapor retarders on below-ambient services, do not staple longitudinal tabs. Instead, secure tabs with additional adhesive as recommended by insulation material manufacturer and seal with vapor-barrier mastic and flashing sealant.

C. Insulation Installation on Pipe Flanges:
 1. Install preformed pipe insulation to outer diameter of pipe flange.
 2. Make width of insulation section same as overall width of flange and bolts, plus twice the thickness of pipe insulation.
 3. Fill voids between inner circumference of flange insulation and outer circumference of adjacent straight pipe segments with cut sections of block insulation of same material and thickness as pipe insulation.

D. Insulation Installation on Pipe Fittings and Elbows:
 1. Install preformed insulation sections of same material as straight segments of pipe insulation. Secure according to manufacturer's written instructions.

E. Insulation Installation on Valves and Pipe Specialties:
 1. Install preformed insulation sections of same material as straight segments of pipe insulation. Secure according to manufacturer's written instructions.
2. Arrange insulation to permit access to packing and to allow valve operation without disturbing insulation.
3. Install insulation to flanges as specified for flange insulation application.

3.10 INSTALLATION OF POLYOLEFIN INSULATION

A. Insulation Installation on Straight Pipes and Tubes:
 1. Seal split-tube longitudinal seams and end joints with manufacturer's recommended adhesive to eliminate openings in insulation that allow passage of air to surface being insulated.

B. Insulation Installation on Pipe Flanges:
 1. Install pipe insulation to outer diameter of pipe flange.
 2. Make width of insulation section same as overall width of flange and bolts, plus twice the thickness of pipe insulation.
 3. Fill voids between inner circumference of flange insulation and outer circumference of adjacent straight pipe segments with cut sections of polyolefin sheet insulation of same thickness as pipe insulation.
 4. Secure insulation to flanges and seal seams with manufacturer's recommended adhesive to eliminate openings in insulation that allow passage of air to surface being insulated.

C. Insulation Installation on Pipe Fittings and Elbows:
 1. Install mitered sections of polyolefin pipe insulation.
 2. Secure insulation materials and seal seams with manufacturer's recommended adhesive to eliminate openings in insulation that allow passage of air to surface being insulated.

D. Insulation Installation on Valves and Pipe Specialties:
 1. Install cut sections of polyolefin pipe and sheet insulation to valve body.
 2. Arrange insulation to permit access to packing and to allow valve operation without disturbing insulation.
 3. Install insulation to flanges as specified for flange insulation application.
 4. Secure insulation to valves and specialties, and seal seams with manufacturer's recommended adhesive to eliminate openings in insulation that allow passage of air to surface being insulated.

3.11 FIELD-APPLIED JACKET INSTALLATION

A. Where glass-cloth jackets are indicated, install directly over bare insulation or insulation with factory-applied jackets.
 1. Draw jacket smooth and tight to surface with 2-inch (50-mm) overlap at seams and joints.
 2. Embed glass cloth between two 0.062-inch- (1.6-mm-) thick coats of lagging adhesive.
 3. Completely encapsulate insulation with coating, leaving no exposed insulation.

B. Where FSK jackets are indicated, install as follows:
1. Draw jacket material smooth and tight.
2. Install lap or joint strips with same material as jacket.
3. Secure jacket to insulation with manufacturer's recommended adhesive.
4. Install jacket with 1-1/2-inch (38-mm) laps at longitudinal seams and 3-inch- (75-mm-) wide joint strips at end joints.
5. Seal openings, punctures, and breaks in vapor-retarder jackets and exposed insulation with vapor-barrier mastic.

C. Where PVC jackets are indicated, install with 1-inch (25-mm) overlap at longitudinal seams and end joints. Seal with manufacturer's recommended adhesive.

1. Apply two continuous beads of adhesive to seams and joints, one bead under lap and the finish bead along seam and joint edge.

D. Where metal jackets are indicated, install with 2-inch (50-mm) overlap at longitudinal seams and end joints. Overlap longitudinal seams arranged to shed water. Seal end joints with weatherproof sealant recommended by insulation manufacturer. Secure jacket with stainless-steel bands 12 inches (300 mm) o.c. and at end joints.

3.12 FINISHES

A. Insulation with ASJ, Glass-Cloth, or Other Paintable Jacket Material: Paint jacket with paint system identified below and as specified in Section 099113 "Exterior Painting" and Section 099123 "Interior Painting."

1. Flat Acrylic Finish: Two finish coats over a primer that is compatible with jacket material and finish coat paint. Add fungicidal agent to render fabric mildew proof.

B. Flexible Elastomeric Thermal Insulation: After adhesive has fully cured, apply two coats of insulation manufacturer's recommended protective coating.

C. Color: Final color as selected by Architect. Vary first and second coats to allow visual inspection of the completed Work.

D. Do not field paint aluminum or stainless-steel jackets.

3.13 FIELD QUALITY CONTROL

A. Testing Agency: Owner will engage a qualified testing agency to perform tests and inspections.

B. Perform tests and inspections.

C. Tests and Inspections:

1. Inspect pipe, fittings, strainers, and valves, randomly selected by Architect, by
D. All insulation applications will be considered defective Work if sample inspection reveals noncompliance with requirements.

3.14 PIPING INSULATION SCHEDULE, GENERAL

A. Acceptable preformed pipe and tubular insulation materials and thicknesses are identified for each piping system and pipe size range. If more than one material is listed for a piping system, selection from materials listed is Contractor's option.

B. Items Not Insulated: Unless otherwise indicated, do not install insulation on the following:

1. Drainage piping located in crawl spaces.
2. Underground piping.
3. Chrome-plated pipes and fittings unless there is a potential for personnel injury.

3.15 INDOOR PIPING INSULATION SCHEDULE

A. Domestic Cold Water:

1. NPS 1 and Smaller: Insulation shall be one of the following:
 a. Flexible Elastomeric: 1 inch thick.
 b. Mineral-Fiber, Preformed Pipe Insulation, Type I: 1 inch thick.
2. NPS 1-1/4 and Larger: Insulation shall be one of the following:
 a. Flexible Elastomeric: 1 inch thick.
 b. Mineral-Fiber, Preformed Pipe Insulation, Type I: 1 inch thick.

B. Domestic Hot and Recirculated Hot Water:

1. NPS 1-1/4 and Smaller: Insulation shall be one of the following:
 a. Flexible Elastomeric: 1 inch thick.
 b. Mineral-Fiber, Preformed Pipe Insulation, Type I: 1 inch thick.
2. NPS 1-1/2 and Larger: Insulation shall be one of the following:
 a. Flexible Elastomeric: 1 inch thick.
 b. Mineral-Fiber, Preformed Pipe Insulation, Type I: 1 inch thick.

C. Floor Drains, Traps, and Sanitary Drain Piping within 10 Feet of Drain Receiving Condensate and Equipment Drain Water below 60 Deg F:

1. All Pipe Sizes: Insulation shall be one of the following:
 a. Flexible Elastomeric: 1 inch thick.
 b. Mineral-Fiber, Preformed Pipe Insulation, Type I: 1 inch thick.

D. Hot Service Drains:

1. All Pipe Sizes: Insulation shall be the following:
 a. Mineral-Fiber, Preformed Pipe, Type I or II: 1 inch thick.

E. Hot Service Vents:
1. All Pipe Sizes: Insulation shall be the following:
 a. Mineral-Fiber, Preformed Pipe, Type I or II: 1 inch thick.

3.16 INDOOR, FIELD-APPLIED JACKET SCHEDULE

A. Install jacket over insulation material. For insulation with factory-applied jacket, install the field-applied jacket over the factory-applied jacket.

B. If more than one material is listed, selection from materials listed is Contractor's option.

C. Piping, Concealed:

D. Piping, Exposed:
 1. PVC, Color-Coded System

END OF SECTION
SECTION 221116 DOMESTIC WATER PIPING

PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes:
 1. Under-building slab and aboveground domestic water pipes, tubes, fittings, and specialties inside the building.
 2. Encasement for piping.
 4. Flexible connectors.
 5. Escutcheons.
 6. Sleeves and sleeve seals.
 7. Wall penetration systems.

1.2 PERFORMANCE REQUIREMENTS

A. Seismic Performance: Domestic water piping and support and installation shall withstand effects of earthquake motions determined according to SEI/ASCE 7.

1.3 SUBMITTALS

A. Product Data: For the following products:
 1. Specialty valves.
 2. Transition fittings.
 3. Dielectric fittings.
 4. Flexible connectors.
 5. Backflow preventers and vacuum breakers.
 7. Sleeves and sleeve seals.
 8. Water penetration systems.

C. Coordination Drawings: For piping in equipment rooms and other congested areas, drawn to scale, on which the following items are shown and coordinated with each other, using input from Installers of the items involved:
 1. Fire-suppression-water piping.
 2. Domestic water piping.
 3. Compressed air piping.
 4. HVAC hydronic piping.
D. Field quality-control reports.

1.4 QUALITY ASSURANCE
A. Piping materials shall bear label, stamp, or other markings of specified testing agency.
B. Comply with NSF 61 for potable domestic water piping and components.

1.5 PROJECT CONDITIONS
A. Interruption of Existing Water Service: Do not interrupt water service to facilities occupied by Owner or others unless permitted under the following conditions and then only after arranging to provide temporary water service according to requirements indicated:
 1. Notify Architect no fewer than two days in advance of proposed interruption of water service.
 2. Do not proceed with interruption of water service without Architect’s written permission.

1.6 COORDINATION
A. Coordinate sizes and locations of concrete bases with actual equipment provided.

PART 2 - PRODUCTS

2.1 PIPING MATERIALS
A. Comply with requirements in "Piping Schedule" Article for applications of pipe, tube, fitting materials, and joining methods for specific services, service locations, and pipe sizes.

2.2 COPPER TUBE AND FITTINGS
A. Hard Copper Tube: ASTM B 88, Type L water tube, drawn temper.
 4. Copper Unions: MSS SP-123, cast-copper-alloy, hexagonal-stock body, with ball-and-socket, metal-to-metal seating surfaces, and solder-joint or threaded ends.
 5. Copper Pressure-Seal-Joint Fittings:
 a. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1) Elkhart Products Corporation; Industrial Division.
 2) NIBCO INC.
 3) Viega; Plumbing and Heating Systems.
b. NPS 2 and Smaller: Wrought-copper fitting with EPDM-rubber O-ring seal in each end.
c. NPS 2-1/2 to NPS 4: Cast-bronze or wrought-copper fitting with EPDM-rubber O-ring seal in each end.

B. Soft Copper Tube: ASTM B 88, Type K and ASTM B 88, Type L water tube, annealed temper.
 2. Copper Pressure-Seal-Joint Fittings:
 a. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1) Elkhart Products Corporation; Industrial Division.
 2) NIBCO INC.
 3) Viega; Plumbing and Heating Systems.
 b. NPS 2 and Smaller: Wrought-copper fitting with EPDM-rubber O-ring seal in each end.
 c. NPS 3 and NPS 4: Cast-bronze or wrought-copper fitting with EPDM-rubber O-ring seal in each end.

2.3 DUCTILE-IRON PIPE AND FITTINGS
A. Mechanical-Joint, Ductile-Iron Pipe: AWWA C151, with mechanical-joint bell and plain spigot end unless grooved or flanged ends are indicated.
 1. Standard-Pattern, Mechanical-Joint Fittings: AWWA C110, ductile or gray iron.
 2. Compact-Pattern, Mechanical-Joint Fittings: AWWA C153, ductile iron.
 a. Glands, Gaskets, and Bolts: AWWA C111, ductile- or gray-iron glands, rubber gaskets, and steel bolts.
B. Push-on-Joint, Ductile-Iron Pipe: AWWA C151, with push-on-joint bell and plain spigot end unless grooved or flanged ends are indicated.
 1. Standard-Pattern, Push-on-Joint Fittings: AWWA C110, ductile or gray iron.
 2. Compact-Pattern, Push-on-Joint Fittings: AWWA C153, ductile iron.

2.4 PIPING JOINING MATERIALS
A. Pipe-Flange Gasket Materials: AWWA C110, rubber, flat face, 1/8 inch thick or ASME B16.21, nonmetallic and asbestos free, unless otherwise indicated; full-face or ring type unless otherwise indicated.
B. Metal, Pipe-Flange Bolts and Nuts: ASME B18.2.1, carbon steel unless otherwise indicated.

C. Solder Filler Metals: ASTM B 32, lead-free alloys. Include water-flushable flux according to ASTM B 813.

D. Brazing Filler Metals: AWS A5.8/A5.8M, BCuP Series, copper-phosphorus alloys for general-duty brazing unless otherwise indicated.

2.5 ENCASEMENT FOR PIPING

A. Standard: ASTM A 674 or AWWA C105.

B. Form: Sheet or Tube.

C. Material: LLDPE film of 0.008-inch minimum thickness or high-density, cross-laminated PE film of 0.004-inch minimum thickness.

D. Color: Black or Natural.

2.6 SPECIALTY VALVES

A. Comply with requirements in Division 22 Section "General-Duty Valves for Plumbing Piping" for general-duty metal valves.

2.7 TRANSITION FITTINGS

A. General Requirements:

1. Same size as pipes to be joined.
2. Pressure rating at least equal to pipes to be joined.
3. End connections compatible with pipes to be joined.

B. Fitting-Type Transition Couplings: Manufactured piping coupling or specified piping system fitting.

2.8 DIELECTRIC FITTINGS

A. General Requirements: Assembly of copper alloy and ferrous materials or ferrous material body with separating nonconductive insulating material suitable for system fluid, pressure, and temperature.

B. Dielectric Unions:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

 b. Central Plastics Company.
c. EPCO Sales, Inc.
d. Hart Industries International, Inc.
e. Watts Regulator Co.; a division of Watts Water Technologies, Inc.

2. Description:
 a. Pressure Rating: 150 psig at 180 deg F.
 b. End Connections: Solder-joint copper alloy and threaded ferrous.

C. Dielectric Flanges:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 b. Central Plastics Company.
 c. EPCO Sales, Inc.
 d. Watts Regulator Co.; a division of Watts Water Technologies, Inc.

2. Description:
 a. Factory-fabricated, bolted, companion-flange assembly.
 b. Pressure Rating: 150 psig.
 c. End Connections: Solder-joint copper alloy and threaded ferrous; threaded solder-joint copper alloy and threaded ferrous.

D. Dielectric-Flange Kits:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Advance Products & Systems, Inc.
 b. Calpico, Inc.
 c. Central Plastics Company.
 d. Pipeline Seal and Insulator, Inc.

2. Description:
 a. Nonconducting materials for field assembly of companion flanges.
 b. Pressure Rating: 150 psig.
 c. Gasket: Neoprene or phenolic.
 d. Bolt Sleeves: Phenolic or polyethylene.
 e. Washers: Phenolic with steel backing washers.

E. Dielectric Couplings:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Calpico, Inc.
 b. Lochinvar Corporation.
2. Description:
 a. Galvanized-steel coupling.
 b. Pressure Rating: 300 psig at 225 deg F.
 c. End Connections: Female threaded.
 d. Lining: Inert and noncorrosive, thermoplastic.

2.9 FLEXIBLE CONNECTORS

 A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. Flex-Hose Co., Inc.
 2. Flexicraft Industries.
 3. Flex Pression, Ltd.
 4. Flex-Weld, Inc.
 5. Hyspan Precision Products, Inc.
 7. Metraflex, Inc.
 8. Proco Products, Inc.
 10. Unaflex, Inc.
 11. Universal Metal Hose; a Hyspan company

 B. Bronze-Hose Flexible Connectors: Corrugated-bronze tubing with bronze wire-braid covering and ends brazed to inner tubing.
 2. End Connections NPS 2 and Smaller: Threaded copper pipe or plain-end copper tube.
 3. End Connections NPS 2-1/2 and Larger: Flanged copper alloy.

 C. Stainless-Steel-Hose Flexible Connectors: Corrugated-stainless-steel tubing with stainless-steel wire-braid covering and ends welded to inner tubing.
 2. End Connections NPS 2 and Smaller: Threaded steel-pipe nipple.
 3. End Connections NPS 2-1/2 and Larger: Flanged steel nipple.

2.10 ESCUTCHEONS

 A. General: Manufactured ceiling, floor, and wall escutcheons and floor plates.

 B. One Piece, Cast Brass: Polished, chrome-plated or rough-brass finish with setscrews.

 D. One Piece, Stamped Steel: Chrome-plated finish with setscrew or spring clips.
E. Split Casting, Cast Brass: Polished, chrome-plated or rough-brass finish with concealed hinge and setscrew.

F. Split Plate, Stamped Steel: Chrome-plated finish with concealed exposed-rivet hinge, setscrew or spring clips.

G. One-Piece Floor Plates: Cast-iron flange with holes for fasteners.

H. Split-Casting Floor Plates: Cast brass with concealed hinge.

2.11 SLEEVES

A. Cast-Iron Wall Pipes: Fabricated of cast iron, and equivalent to ductile-iron pressure pipe, with plain ends and integral waterstop unless otherwise indicated.

B. Galvanized-Steel-Sheet Sleeves: 0.0239-inch minimum thickness; round tube closed with welded longitudinal joint.

C. Molded-PE Sleeves: Reusable, PE, tapered-cup shaped, and smooth outer surface with nailing flange for attaching to wooden forms.

D. Galvanized-Steel-Pipe Sleeves: ASTM A 53/A 53M, Type E, Grade B, Schedule 40, zinc-coated, with plain ends.

E. Stack Sleeve Fittings: Manufactured, cast-iron sleeve with integral clamping flange. Include clamping ring and bolts and nuts for membrane flashing.
 1. Underdeck Clamp: Clamping ring with setscrews.

2.12 SLEEVE SEALS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. Advance Products & Systems, Inc.
 2. Calpico, Inc.
 3. Metraflex, Inc.
 4. Pipeline Seal and Insulator, Inc.

B. Description: Modular sealing element unit, designed for field assembly, used to fill annular space between pipe and sleeve.
 1. Sealing Elements: EPDM-rubber interlocking links shaped to fit surface of pipe. Include type and number required for pipe material and size of pipe.
 2. Pressure Plates: Stainless steel.
 3. Connecting Bolts and Nuts: Stainless steel of length required to secure pressure plates to sealing elements.
2.13 WALL PENETRATION SYSTEMS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. SIGMA.

B. Description: Wall-sleeve assembly, consisting of housing and gland, gaskets, and pipe sleeve.

1. Carrier-Pipe Deflection: Up to 5 percent without leakage.
2. Housing: Ductile-iron casting with hub, waterstop, anchor ring, and locking devices. Include gland, bolts, and nuts.
3. Housing-to-Sleeve Gasket: EPDM rubber.

2.14 GROUT

B. Characteristics: Nonshrink; recommended for interior and exterior applications.

C. Design Mix: 5000-psi, 28-day compressive strength.

D. Packaging: Premixed and factory packaged.

PART 3 - EXECUTION

3.1 EARTHWORK

A. Comply with requirements in Division 31 Section "Earth Moving" for excavating, trenching, and backfilling.

3.2 PIPING INSTALLATION

A. Drawing plans, schematics, and diagrams indicate general location and arrangement of domestic water piping. Indicated locations and arrangements are used to size pipe and calculate friction loss, expansion, and other design considerations. Install piping as indicated unless deviations to layout are approved on Coordination Drawings.

B. Install copper tubing under building slab according to CDA's "Copper Tube Handbook."

C. Install ductile-iron piping under building slab with restrained joints according to AWWA C600 and AWWA M41.
D. Install underground copper tube and ductile-iron pipe in PE encasement according to ASTM A 674 or AWWA C105.

E. Install shutoff valve, hose-end drain valve, strainer, pressure gage, and test tee with valve, inside the building at each domestic water service entrance. Comply with requirements in Division 22 Section "Meters and Gages for Plumbing Piping" for pressure gages and Division 22 Section "Domestic Water Piping Specialties" for drain valves and strainers.

F. Install shutoff valve immediately upstream of each dielectric fitting.

G. Install water-pressure-reducing valves downstream from shutoff valves. Comply with requirements in Division 22 Section "Domestic Water Piping Specialties" for pressure-reducing valves.

H. Install domestic water piping level with 0.25 percent slope downward toward drain without pitch and plumb.

I. Install piping concealed from view and protected from physical contact by building occupants unless otherwise indicated and except in equipment rooms and service areas.

J. Install piping indicated to be exposed and piping in equipment rooms and service areas at right angles or parallel to building walls. Diagonal runs are prohibited unless specifically indicated otherwise.

K. Install piping above accessible ceilings to allow sufficient space for ceiling panel removal, and coordinate with other services occupying that space.

L. Install piping adjacent to equipment and specialties to allow service and maintenance.

M. Install piping to permit valve servicing.

N. Install nipples, unions, special fittings, and valves with pressure ratings the same as or higher than system pressure rating used in applications below unless otherwise indicated.

O. Install piping free of sags and bends.

P. Install fittings for changes in direction and branch connections.

Q. Install unions in copper tubing at final connection to each piece of equipment, machine, and specialty.

R. Install pressure gages on suction and discharge piping from each plumbing pump and packaged booster pump. Comply with requirements in Division 22 Section "Meters and Gages for Plumbing Piping" for pressure gages.

S. Install thermostats in hot-water circulation piping. Comply with requirements in Division 22 Section "Domestic Water Pumps" for thermostats.

T. Install thermometers on outlet piping from each water heater. Comply with requirements in Division 22 Section "Meters and Gages for Plumbing Piping" for thermometers.
3.3 JOINT CONSTRUCTION

A. Ream ends of pipes and tubes and remove burrs. Bevel plain ends of steel pipe.

B. Remove scale, slag, dirt, and debris from inside and outside of pipes, tubes, and fittings before assembly.

C. Threaded Joints: Thread pipe with tapered pipe threads according to ASME B1.20.1. Cut threads full and clean using sharp dies. Ream threaded pipe ends to remove burrs and restore full ID. Join pipe fittings and valves as follows:
 1. Apply appropriate tape or thread compound to external pipe threads.
 2. Damaged Threads: Do not use pipe or pipe fittings with threads that are corroded or damaged.

D. Brazed Joints: Join copper tube and fittings according to CDA's "Copper Tube Handbook," "Brazed Joints" Chapter.

E. Soldered Joints: Apply ASTM B 813, water-flushable flux to end of tube. Join copper tube and fittings according to ASTM B 828 or CDA's "Copper Tube Handbook."

F. Pressure-Sealed Joints: Join copper tube and pressure-seal fittings with tools recommended by fitting manufacturer.

G. Copper-Tubing, Push-on Joints: Clean end of tube. Measure insertion depth with manufacturer's depth gage. Join copper tube and push-on-joint fittings by inserting tube to measured depth.

H. Extruded-Tee Connections: Form tee in copper tube according to ASTM F 2014. Use tool designed for copper tube; drill pilot hole, form collar for outlet, dimple tube to form seating stop, and braze branch tube into collar.

I. Ductile-Iron-Piping Grooved Joints: Cut groove end of pipe. Assemble coupling with housing, gasket, lubricant, and bolts. Join ductile-iron pipe and grooved-end fittings according to AWWA C606 for ductile-iron-pipe, cut-grooved joints.

J. Steel-Piping Grooved Joints: Cut or roll groove end of pipe. Assemble coupling with housing, gasket, lubricant, and bolts. Join steel pipe and grooved-end fittings according to AWWA C606 for steel-pipe grooved joints.

K. Flanged Joints: Select appropriate asbestos-free, nonmetallic gasket material in size, type, and thickness suitable for domestic water service. Join flanges with gasket and bolts according to ASME B31.9.

L. Plastic Piping Solvent-Cement Joints: Clean and dry joining surfaces. Join pipe and fittings according to the following:
 2. CPVC Piping: Join according to ASTM D 2846/D 2846M Appendix.
 3. PVC Piping: Join according to ASTM D 2855.
M. PEX Piping Joints: Join according to ASTM F 1807.

N. Dissimilar-Material Piping Joints: Make joints using adapters compatible with materials of both piping systems.

3.4 VALVE INSTALLATION

A. General-Duty Valves: Comply with requirements in Division 22 Section "General-Duty Valves for Plumbing Piping" for valve installations.

B. Install shutoff valve close to water main on each branch and riser serving plumbing fixtures or equipment, on each water supply to equipment, and on each water supply to plumbing fixtures that do not have supply stops. Use ball valves for piping NPS 2 and smaller. Use butterfly valves for piping NPS 2-1/2 and larger.

C. Install drain valves for equipment at base of each water riser, at low points in horizontal piping, and where required to drain water piping. Drain valves are specified in Division 22 Section "Domestic Water Piping Specialties."
 1. Hose-End Drain Valves: At low points in water mains, risers, and branches.

D. Install balancing valve in each hot-water circulation return branch and discharge side of each pump and circulator. Set balancing valves partly open to restrict but not stop flow. Use ball valves for piping NPS 2 and smaller and butterfly valves for piping NPS 2-1/2 and larger. Comply with requirements in Division 22 Section "Domestic Water Piping Specialties" for balancing valves.

3.5 TRANSITION FITTING INSTALLATION

A. Install transition couplings at joints of dissimilar piping.

B. Transition Fittings in Underground Domestic Water Piping:
 1. NPS 1-1/2 and Smaller: Fitting-type coupling.
 2. NPS 2 and Larger: Sleeve-type coupling.

3.6 DIELECTRIC FITTING INSTALLATION

A. Install dielectric fittings in piping at connections of dissimilar metal piping and tubing.

B. Dielectric Fittings for NPS 2 and Smaller: Use dielectric couplings or nipples.

C. Dielectric Fittings for NPS 2-1/2 to NPS 4: Use dielectric flange kits or nipples.

D. Dielectric Fittings for NPS 5 and Larger: Use dielectric flange kits.
3.7 FLEXIBLE CONNECTOR INSTALLATION

A. Install flexible connectors in suction and discharge piping connections to each domestic water pump and in suction and discharge manifold connections to each domestic water booster pump.

B. Install bronze-hose flexible connectors in copper domestic water tubing.

C. Install stainless-steel-hose flexible connectors in steel domestic water piping.

3.8 HANGER AND SUPPORT INSTALLATION

A. Comply with requirements in Division 22 Section "Hangers and Supports for Plumbing Piping and Equipment" for pipe hanger and support products and installation.

1. Vertical Piping: MSS Type 8 or 42, clamps.
2. Individual, Straight, Horizontal Piping Runs:
 a. 100 Feet and Less: MSS Type 1, adjustable, steel clevis hangers.
 b. Longer Than 100 Feet: MSS Type 43, adjustable roller hangers.
 c. Longer Than 100 Feet If Indicated: MSS Type 49, spring cushion rolls.

3. Multiple, Straight, Horizontal Piping Runs 100 Feet or Longer: MSS Type 44, pipe rolls. Support pipe rolls on trapeze.
4. Base of Vertical Piping: MSS Type 52, spring hangers.

B. Support vertical piping and tubing at base and at each floor.

C. Rod diameter may be reduced one size for double-rod hangers, to a minimum of 3/8 inch.

D. Install hangers for copper tubing with the following maximum horizontal spacing and minimum rod diameters:

1. NPS 3/4 and Smaller: 60 inches with 3/8-inch rod.
2. NPS 1 and NPS 1-1/4: 72 inches with 3/8-inch rod.
3. NPS 1-1/2 and NPS 2: 96 inches with 3/8-inch rod.
4. NPS 2-1/2: 108 inches with 1/2-inch rod.
5. NPS 3 to NPS 5: 10 feet with 1/2-inch rod.
6. NPS 6: 10 feet with 5/8-inch rod.
7. NPS 8: 10 feet with 3/4-inch rod.

E. Install supports for vertical copper tubing every 10 feet.

F. Support piping and tubing not listed in this article according to MSS SP-69 and manufacturer's written instructions.

3.9 CONNECTIONS

A. Drawings indicate general arrangement of piping, fittings, and specialties.

B. Install piping adjacent to equipment and machines to allow service and maintenance.
C. Connect domestic water piping to exterior water-service piping. Use transition fitting to join dissimilar piping materials.

D. Connect domestic water piping to water-service piping with shutoff valve; extend and connect to the following:

1. Domestic Water Booster Pumps: Cold-water suction and discharge piping.
2. Water Heaters: Cold-water inlet and hot-water outlet piping in sizes indicated, but not smaller than sizes of water heater connections.
3. Plumbing Fixtures: Cold- and hot-water supply piping in sizes indicated, but not smaller than required by plumbing code. Comply with requirements in Division 22 plumbing fixture Sections for connection sizes.
4. Equipment: Cold- and hot-water supply piping as indicated, but not smaller than equipment connections. Provide shutoff valve and union for each connection. Use flanges instead of unions for NPS 2-1/2 and larger.

3.10 ESCUTCHEON INSTALLATION

A. Install escutcheons for penetrations of walls, ceilings, and floors.

B. Escutcheons for New Piping:

1. Piping with Fitting or Sleeve Protruding from Wall: One piece, deep pattern.
2. Bare Piping at Wall and Floor Penetrations in Finished Spaces: One piece, cast brass with polished chrome-plated finish.
3. Bare Piping at Ceiling Penetrations in Finished Spaces: One piece, cast brass with polished chrome-plated finish.
4. Bare Piping in Unfinished Service Spaces: One piece, stamped steel with set screw or spring clips.
5. Bare Piping in Equipment Rooms: One piece, stamped steel with set screw or spring clips.
6. Bare Piping at Floor Penetrations in Equipment Rooms: One-piece floor plate.

3.11 SLEEVE INSTALLATION

A. General Requirements: Install sleeves for pipes and tubes passing through penetrations in floors, partitions, roofs, and walls.

B. Sleeves are not required for core-drilled holes.

C. Permanent sleeves are not required for holes formed by removable PE sleeves.

D. Cut sleeves to length for mounting flush with both surfaces unless otherwise indicated.

E. Install sleeves in new partitions, slabs, and walls as they are built.

F. For interior wall penetrations, seal annular space between sleeve and pipe or pipe insulation using joint sealants appropriate for size, depth, and location of joint.
G. For exterior wall penetrations above grade, seal annular space between sleeve and pipe using joint sealants appropriate for size, depth, and location of joint.

H. For exterior wall penetrations below grade, seal annular space between sleeve and pipe using sleeve seals specified in this Section.

I. Seal space outside of sleeves in concrete slabs and walls with grout.

J. Install sleeve materials according to the following applications:

1. Sleeves for Piping Passing through Concrete Floor Slabs: Steel pipe.
2. Sleeves for Piping Passing through Concrete Floor Slabs of Mechanical Equipment Areas or Other Wet Areas: Steel pipe.
 a. Extend sleeves 2 inches above finished floor level.
 b. For pipes penetrating floors with membrane waterproofing, extend cast-iron sleeve fittings below floor slab as required to secure clamping ring if ring is specified. Secure flashing between clamping flanges. Install section of cast-iron soil pipe to extend sleeve to 2 inches above finished floor level. Comply with requirements in Division 07 Section "Sheet Metal Flashing and Trim" for flashing.

3. Sleeves for Piping Passing through Gypsum-Board Partitions:
 a. Steel pipe sleeves for pipes smaller than NPS 6.
 b. Galvanized-steel sheet sleeves for pipes NPS 6 and larger.
 c. Exception: Sleeves are not required for water supply tubes and waste pipes for individual plumbing fixtures if escutcheons will cover openings.

4. Sleeves for Piping Passing through Concrete Roof Slabs: Steel pipe.

5. Sleeves for Piping Passing through Exterior Concrete Walls:
 a. Steel pipe sleeves for pipes smaller than NPS 6.
 b. Cast-iron wall pipe sleeves for pipes NPS 6 and larger.
 c. Install sleeves that are large enough to provide 1-inch annular clear space between sleeve and pipe or pipe insulation when sleeve seals are used.
 d. Do not use sleeves when wall penetration systems are used.

6. Sleeves for Piping Passing through Interior Concrete Walls:
 a. Steel pipe sleeves for pipes smaller than NPS 6.
 b. Galvanized-steel sheet sleeves for pipes NPS 6 and larger.

K. Fire-Barrier Penetrations: Maintain indicated fire rating of walls, partitions, ceilings, and floors at pipe penetrations. Seal pipe penetrations with firestop materials. Comply with requirements in Division 07 Section "Penetration Firestopping" for firestop materials and installations.

3.12 SLEEVE SEAL INSTALLATION

A. Install sleeve seals in sleeves in exterior concrete walls at water-service piping entries into building.
B. Select type and number of sealing elements required for pipe material and size. Position pipe in center of sleeve. Assemble sleeve seal components and install in annular space between pipe and sleeve. Tighten bolts against pressure plates that cause sealing elements to expand and make watertight seal.

3.13 WALL PENETRATION SYSTEM INSTALLATION
A. Install wall penetration systems in new, exterior concrete walls.
B. Assemble wall penetration system components with sleeve pipe. Install so that end of sleeve pipe and face of housing are flush with wall. Adjust locking devices to secure sleeve pipe in housing.

3.14 IDENTIFICATION
A. Identify system components. Comply with requirements in Division 22 Section "Identification for Plumbing Piping and Equipment" for identification materials and installation.
B. Label pressure piping with system operating pressure.

3.15 FIELD QUALITY CONTROL
A. Perform tests and inspections.
B. Piping Inspections:
 1. Do not enclose, cover, or put piping into operation until it has been inspected and approved by authorities having jurisdiction.
 2. During installation, notify authorities having jurisdiction at least one day before inspection must be made. Perform tests specified below in presence of authorities having jurisdiction:
 a. Roughing-in Inspection: Arrange for inspection of piping before concealing or closing-in after roughing-in and before setting fixtures.
 b. Final Inspection: Arrange final inspection for authorities having jurisdiction to observe tests specified below and to ensure compliance with requirements.
 3. Reinspection: If authorities having jurisdiction find that piping will not pass tests or inspections, make required corrections and arrange for reinspection.
 4. Reports: Prepare inspection reports and have them signed by authorities having jurisdiction.
C. Piping Tests:
 1. Fill domestic water piping. Check components to determine that they are not air bound and that piping is full of water.
2. Test for leaks and defects in new piping and parts of existing piping that have been altered, extended, or repaired. If testing is performed in segments, submit a separate report for each test, complete with diagram of portion of piping tested.

3. Leave new, altered, extended, or replaced domestic water piping uncovered and unconcealed until it has been tested and approved. Expose work that was covered or concealed before it was tested.

4. Cap and subject piping to static water pressure of 50 psig above operating pressure, without exceeding pressure rating of piping system materials. Isolate test source and allow to stand for four hours. Leaks and loss in test pressure constitute defects that must be repaired.

5. Repair leaks and defects with new materials and retest piping or portion thereof until satisfactory results are obtained.

6. Prepare reports for tests and for corrective action required.

D. Domestic water piping will be considered defective if it does not pass tests and inspections.

E. Prepare test and inspection reports.

3.16 ADJUSTING

A. Perform the following adjustments before operation:

1. Close drain valves, hydrants, and hose bibbs.
2. Open shutoff valves to fully open position.
3. Open throttling valves to proper setting.
4. Adjust balancing valves in hot-water-circulation return piping to provide adequate flow.
 a. Manually adjust ball-type balancing valves in hot-water-circulation return piping to provide flow of hot water in each branch.
 b. Adjust calibrated balancing valves to flows indicated.

5. Remove plugs used during testing of piping and for temporary sealing of piping during installation.
7. Remove filter cartridges from housings and verify that cartridges are as specified for application where used and are clean and ready for use.
8. Check plumbing specialties and verify proper settings, adjustments, and operation.

3.17 CLEANING

A. Clean and disinfect potable and non-potable domestic water piping as follows:

1. Purge new piping and parts of existing piping that have been altered, extended, or repaired before using.
2. Use purging and disinfecting procedures prescribed by authorities having jurisdiction; if methods are not prescribed, use procedures described in either AWWA C651 or AWWA C652 or follow procedures described below:
a. Flush piping system with clean, potable water until dirty water does not appear at outlets.
b. Fill and isolate system according to either of the following:

1) Fill system or part thereof with water/chlorine solution with at least 50 ppm of chlorine. Isolate with valves and allow to stand for 24 hours.
2) Fill system or part thereof with water/chlorine solution with at least 200 ppm of chlorine. Isolate and allow to stand for three hours.

c. Flush system with clean, potable water until no chlorine is in water coming from system after the standing time.
d. Submit water samples in sterile bottles to authorities having jurisdiction. Repeat procedures if biological examination shows contamination.

B. Clean non-potable domestic water piping as follows:

1. Purge new piping and parts of existing piping that have been altered, extended, or repaired before using.
2. Use purging procedures prescribed by authorities having jurisdiction or; if methods are not prescribed, follow procedures described below:

a. Flush piping system with clean, potable water until dirty water does not appear at outlets.

b. Submit water samples in sterile bottles to authorities having jurisdiction. Repeat procedures if biological examination shows contamination.

C. Prepare and submit reports of purging and disinfecting activities.

D. Clean interior of domestic water piping system. Remove dirt and debris as work progresses.

3.18 PIPING SCHEDULE

A. Transition and special fittings with pressure ratings at least equal to piping rating may be used in applications below unless otherwise indicated.

B. Flanges and unions may be used for aboveground piping joints unless otherwise indicated.

C. Under-building-slab, domestic water, building service piping, NPS 3 and smaller, shall be the following:

1. Soft copper tube, ASTM B 88, Type L; wrought-copper solder-joint fittings; and brazed joints.

D. Aboveground domestic water piping, NPS 2 and smaller, shall be one of the following:

1. Hard copper tube, ASTM B 88, Type L; cast- or wrought- copper solder-joint fittings; and soldered joints.
2. Hard copper tube, ASTM B 88, Type L; copper pressure-seal-joint fittings; and pressure-sealed joints.
3. Hard copper tube, ASTM B 88, Type L; copper push-on-joint fittings; and push-on joints.
E. Aboveground domestic water piping, NPS 2-1/2 to NPS 4, shall be one of the following:

1. Hard copper tube, ASTM B 88, Type L; cast- or wrought- copper solder-joint fittings; and soldered joints.
2. Hard copper tube, ASTM B 88, Type L; copper pressure-seal-joint fittings; and pressure-sealed joints.
3. Hard copper tube, ASTM B 88, Type L; grooved-joint copper-tube appurtenances; and grooved joints.

3.19 VALVE SCHEDULE

A. Drawings indicate valve types to be used. Where specific valve types are not indicated, the following requirements apply:

1. Shutoff Duty: Use ball or gate valves for piping NPS 2 and smaller. Use butterfly, ball, or gate valves with flanged ends for piping NPS 2-1/2 and larger.
2. Throttling Duty: Use ball or globe valves for piping NPS 2 and smaller. Use butterfly or ball valves with flanged ends for piping NPS 2-1/2 and larger.

B. Use check valves to maintain correct direction of domestic water flow to and from equipment.

C. Iron grooved-end valves may be used with grooved-end piping.
1.1 SUMMARY
A. This Section includes the following domestic water piping specialties:
 1. Vacuum breakers.
 2. Backflow preventers.
 5. Temperature-actuated water mixing valves.
 7. Hose bibbs.
 8. Wall hydrants.
 10. Drain valves.
 12. Air vents.
 13. Trap-seal primer valves.
 14. Trap-seal primer systems.

B. Related Sections include the following:
 1. Division 22 Section "Meters and Gages for Plumbing Piping" for thermometers, pressure gages, and flow meters in domestic water piping.
 2. Division 22 Section "Domestic Water Filtration Equipment" for water filters in domestic water piping.
 3. Division 22 Section "Emergency Plumbing Fixtures" for water tempering equipment.
 4. Division 22 Section "Drinking Fountains and Water Coolers" for water filters for water coolers.

1.2 PERFORMANCE REQUIREMENTS
A. Minimum Working Pressure for Domestic Water Piping Specialties: 125 psig, unless otherwise indicated.

1.3 SUBMITTALS
A. Product Data: For each type of product indicated.
B. Shop Drawings: Diagram power, signal, and control wiring.
C. Field quality-control test reports.
D. Operation and Maintenance Data: For domestic water piping specialties to include in emergency, operation, and maintenance manuals.

1.4 QUALITY ASSURANCE

A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use.

B. NSF Compliance:

 1. Comply with NSF 61, "Drinking Water System Components - Health Effects; Sections 1 through 9."

PART 2 - PRODUCTS

2.1 VACUUM BREAKERS

A. Pipe-Applied, Atmospheric-Type Vacuum Breakers:

 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

 a. Ames Co.
 b. Cash Acme.
 c. Conbraco Industries, Inc.
 d. FEBCO; SPX Valves & Controls.
 e. Rain Bird Corporation.
 f. Toro Company (The); Irrigation Div.
 g. Watts Industries, Inc.; Water Products Div.

 3. Size: NPS 1/4 to NPS 3, as required to match connected piping.
 5. Inlet and Outlet Connections: Threaded.

B. Hose-Connection Vacuum Breakers:

 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

 a. Arrowhead Brass Products, Inc.
 b. Cash Acme.
 c. Conbraco Industries, Inc.
 d. Legend Valve.
 e. MIFAB, Inc.
 f. Prier Products, Inc.
g. Watts Industries, Inc.; Water Products Div.

h. Woodford Manufacturing Company.

5. Finish: Chrome or nickel plated Rough bronze.

C. Pressure Vacuum Breakers:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Ames Co.
 b. Conbraco Industries, Inc.
 c. FEBCO; SPX Valves & Controls.
 d. Flomatic Corporation.
 e. Toro Company (The); Irrigation Div.

3. Operation: Continuous-pressure applications.
4. Pressure Loss: 5 psig maximum, through middle 1/3 of flow range.
5. Accessories:
 a. Valves: Ball type, on inlet and outlet.

D. Spill-Resistant Vacuum Breakers:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Conbraco Industries, Inc.

3. Operation: Continuous-pressure applications.
4. Accessories:
 a. Valves: Ball type, on inlet and outlet.

2.2 BACKFLOW PREVENTERS

A. Reduced-Pressure-Principle Backflow Preventers:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Ames Co.
 b. Conbraco Industries, Inc.
 c. FEBCO; SPX Valves & Controls.
d. Flomatic Corporation.
e. Watts Industries, Inc.; Water Products Div.

3. Operation: Continuous-pressure applications.
4. Pressure Loss: 12 psig maximum, through middle 1/3 of flow range.
5. Body: Bronze for NPS 2 and smaller; cast iron or ductile iron with interior lining complying with AWWA C550 or that is FDA approved for NPS 2-1/2 and larger.
6. End Connections: Threaded for NPS 2 and smaller; flanged for NPS 2-1/2 and larger.
7. Accessories:
 a. Valves: Ball type with threaded ends on inlet and outlet of NPS 2 and smaller; outside screw and yoke gate-type with flanged ends on inlet and outlet of NPS 2-1/2 and larger.

B. Double-Check Backflow-Prevention Assemblies:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Ames Co.
 b. Conbraco Industries, Inc.
 c. FEBCO; SPX Valves & Controls.
 d. Flomatic Corporation.
 e. Watts Industries, Inc.; Water Products Div.
3. Operation: Continuous-pressure applications, unless otherwise indicated.
4. Pressure Loss: 5 psig maximum, through middle 1/3 of flow range.
5. Body: Bronze for NPS 2 and smaller; cast iron or ductile iron with interior lining complying with AWWA C550 or that is FDA approved for NPS 2-1/2 and larger.
6. End Connections: Threaded for NPS 2 and smaller; flanged for NPS 2-1/2 and larger.
7. Accessories:
 a. Valves: Ball type with threaded ends on inlet and outlet of NPS 2 and smaller; outside screw and yoke gate-type with flanged ends on inlet and outlet of NPS 2-1/2 and larger.

C. Beverage-Dispensing-Equipment Backflow Preventers:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Conbraco Industries, Inc.
3. Operation: Continuous-pressure applications.

D. Carbonated-Beverage-Dispenser, Dual-Check-Valve Backflow Preventers:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Cash Acme.
 b. Lancer Corporation.

3. Operation: Continuous-pressure applications.

E. Hose-Connection Backflow Preventers:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Conbraco Industries, Inc.
 c. Woodford Manufacturing Company.

3. Operation: Up to 10-foot head of water back pressure.
4. Inlet Size: NPS 1/2 or NPS 3/4.
5. Outlet Size: Garden-hose thread complying with ASME B1.20.7.
6. Capacity: At least 3-gpm flow.

F. Backflow-Preventer Test Kits:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Conbraco Industries, Inc.
 b. FEBCO; SPX Valves & Controls.
 c. Flomatic Corporation.

2. Description: Factory calibrated, with gages, fittings, hoses, and carrying case with test-procedure instructions.

2.3 WATER PRESSURE-REDUCING VALVES

A. Water Regulators:
1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Cash Acme.
 b. Conbraco Industries, Inc.
 c. Honeywell Water Controls.

4. Body: Bronze for NPS 2 and smaller; cast iron with interior lining complying with AWWA C550 or that is FDA approved for NPS 2-1/2 and NPS 3.
6. End Connections: Threaded for NPS 2 and smaller; flanged for NPS 2-1/2 and NPS 3.

B. Water Control Valves:
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. CLA-VAL Automatic Control Valves.
 b. Flomatic Corporation.
 c. OCV Control Valves.
 e. Watts Industries, Inc.; Watts ACV.
 2. Description: Pilot-operation, diaphragm-type, single-seated main water control valve.
 3. Pressure Rating: Initial working pressure of 150 psig minimum with AWWA C550 or FDA-approved, interior epoxy coating. Include small pilot-control valve, restrictor device, specialty fittings, and sensor piping.
 4. Main Valve Body: Cast- or ductile-iron body with AWWA C550 or FDA-approved, interior epoxy coating; or stainless-steel body.
 5. End Connections: Threaded for NPS 2 and smaller; flanged for NPS 2-1/2 and larger.

2.4 BALANCING VALVES
A. Copper-Alloy Calibrated Balancing Valves:
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 b. Flo Fab Inc.
 c. ITT Industries; Bell & Gossett Div.
 d. NIBCO INC.
 e. TAC Americas.
 f. Taco, Inc.
 g. Watts Industries, Inc.; Water Products Div.
 2. Type: Ball valve with two readout ports and memory setting indicator.
3. Body: Brass or bronze,
4. Size: Same as connected piping, but not larger than NPS 2.
5. Accessories: Meter hoses, fittings, valves, differential pressure meter, and carrying case.

B. Cast-Iron Calibrated Balancing Valves:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 b. Flo Fab Inc.
 c. ITT Industries; Bell & Gossett Div.
 d. NIBCO INC.
 e. TAC Americas.

2. Type: Adjustable with Y-pattern globe valve, two readout ports, and memory-setting indicator.
3. Size: Same as connected piping, but not smaller than NPS 2-1/2.

C. Accessories: Meter hoses, fittings, valves, differential pressure meter, and carrying case.

D. Memory-Stop Balancing Valves:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Conbraco Industries, Inc.
 b. Crane Co.; Crane Valve Group; Crane Valves.
 c. Crane Co.; Crane Valve Group; Jenkins Valves.
 d. Crane Co.; Crane Valve Group; Stockham Div.
 e. Hammond Valve.
 f. Milwaukee Valve Company.
 g. NIBCO INC.
 h. Red-White Valve Corp.

2. Standard: MSS SP-110 for two-piece, copper-alloy ball valves.
3. Pressure Rating: 400-psig minimum CWP.
4. Size: NPS 2 or smaller.
5. Body: Copper alloy.
6. Port: Standard or full port.
7. Ball: Chrome-plated brass.
8. Seats and Seals: Replaceable.
9. End Connections: Solder joint or threaded.

2.5 TEMPERATURE-ACTUATED WATER MIXING VALVES

A. Primary, Thermostatic, Water Mixing Valves:
1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 b. Lawler Manufacturing Company, Inc.
 c. Leonard Valve Company.
 d. Powers; a Watts Industries Co.
 e. Symmons Industries, Inc.

4. Type: Exposed-mounting Cabinet-type, thermostatically controlled water mixing valve.
5. Material: Bronze body with corrosion-resistant interior components.
6. Connections: Threaded union inlets and outlet.
7. Accessories: Manual temperature control, check stops on hot- and cold-water supplies, and adjustable, temperature-control handle.
8. Valve Pressure Rating: 125 psig minimum, unless otherwise indicated.
11. Cabinet: Factory-fabricated, stainless steel, for recessed surface mounting and with hinged, stainless-steel door.

B. Manifold, Thermostatic, Water-Mixing-Valve Assemblies:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Leonard Valve Company.
 b. Powers; a Watts Industries Co.
 c. Symmons Industries, Inc.

2. Description: Factory-fabricated, cabinet-type exposed-mounting, thermostatically controlled, water-mixing-valve assembly in two-valve parallel arrangement.
3. Large-Flow Parallel: Thermostatic water mixing valve and downstream pressure regulator with pressure gages on inlet and outlet.
5. Thermostatic Mixing Valves: Comply with ASSE 1017. Include check stops on hot- and cold-water inlets and shutoff valve on outlet.
6. Water Regulator(s): Comply with ASSE 1003. Include pressure gage on inlet and outlet.
7. Component Pressure Ratings: 125 psig minimum, unless otherwise indicated.
8. Cabinet: Factory-fabricated, stainless steel, for recessed surface mounting and with hinged, stainless-steel door.

C. Individual-Fixture, Water Tempering Valves:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Cash Acme.
b. Conbraco Industries, Inc.
c. Honeywell Water Controls.
d. Lawler Manufacturing Company, Inc.
e. Leonard Valve Company.
f. Powers; a Watts Industries Co.
g. Watts Industries, Inc.; Water Products Div.

3. Pressure Rating: 125 psig minimum, unless otherwise indicated.
5. Temperature Control: Adjustable.
6. Inlets and Outlet: Threaded.
7. Finish: Rough or chrome-plated bronze.

2.6 STRAINERS FOR DOMESTIC WATER PIPING

A. Y-Pattern Strainers:

1. Pressure Rating: 125 psig minimum, unless otherwise indicated.
2. Body: Bronze for NPS 2 and smaller; cast iron with interior lining complying with AWWA C550 or FDA-approved, epoxy coating and for NPS 2-1/2 and larger.
3. End Connections: Threaded for NPS 2 and smaller; flanged for NPS 2-1/2 and larger.
4. Screen: Stainless steel with round perforations, unless otherwise indicated.
5. Perforation Size:

 a. Strainers NPS 2 and Smaller: 0.033 inch.
 b. Strainers NPS 2-1/2 to NPS 4: 0.062 inch.
 c. Strainers NPS 5 and Larger: 0.125 inch.

2.7 OUTLET BOXES

A. Icemaker Outlet Boxes:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

 b. IPS Corporation.
 c. LSP Products Group, Inc.
 d. Oatey.
 e. Plastic Oddities; a division of Diverse Corporate Technologies.

4. Faucet: Valved fitting complying with ASME A112.18.1. Include NPS 1/2 or smaller copper tube outlet.
5. Supply Shutoff Fitting: NPS 1/2 gate, globe, or ball valve and NPS 1/2 copper, water tubing.

2.8 HOSE BIBBS

A. Hose Bibbs:

4. Supply Connections: NPS 1/2 or NPS 3/4 threaded or solder-joint inlet.
5. Outlet Connection: Garden-hose thread complying with ASME B1.20.7.
8. Finish for Equipment Rooms: Rough bronze, or chrome or nickel plated.
10. Finish for Finished Rooms: Chrome or nickel plated.
11. Operation for Equipment Rooms: Wheel handle or operating key.
14. Include operating key with each operating-key hose bibb.
15. Include integral wall flange with each chrome- or nickel-plated hose bibb.

2.9 WALL HYDRANTS

A. Nonfreeze Wall Hydrants:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 b. MIFAB, Inc.
 c. Prier Products, Inc.
 e. Tyler Pipe; Wade Div.
 f. Watts Drainage Products Inc.
 g. Woodford Manufacturing Company.
4. Operation: Loose key.
5. Casing and Operating Rod: Of length required to match wall thickness. Include wall clamp.
6. Inlet: NPS 3/4 or NPS 1.
7. Outlet: Concealed, with integral vacuum breaker and garden-hose thread complying with ASME B1.20.7.
8. Box: Deep, flush mounting with cover.
12. Operating Keys(s): One with each wall hydrant.

2.10 DRAIN VALVES

A. Ball-Valve-Type, Hose-End Drain Valves:

2. Pressure Rating: 400-psig minimum CWP.
4. Body: Copper alloy.
5. Ball: Chrome-plated brass.
8. Inlet: Threaded or solder joint.

B. Stop-and-Waste Drain Valves:

1. Standard: MSS SP-110 for ball valves or MSS SP-80 for gate valves.
2. Pressure Rating: 200-psig minimum CWP or Class 125.
5. Drain: NPS 1/8 side outlet with cap.

2.11 WATER HAMMER ARRESTERS

A. Water Hammer Arresters:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

 a. AMTROL, Inc.
 b. Josam Company.
 c. MIFAB, Inc.
 d. PPP Inc.
 e. Sioux Chief Manufacturing Company, Inc.
 g. Tyler Pipe; Wade Div.
 h. Watts Drainage Products Inc.

3. Type: Copper tube with piston.
4. Size: ASSE 1010, Sizes AA and A through F or PDI-WH 201, Sizes A through F.
PART 3 - EXECUTION

3.1 INSTALLATION

A. Refer to Division 22 Section "Common Work Results for Plumbing" for piping joining materials, joint construction, and basic installation requirements.

B. Install backflow preventers in each water supply to mechanical equipment and systems and to other equipment and water systems that may be sources of contamination. Comply with authorities having jurisdiction.

1. Locate backflow preventers in same room as connected equipment or system.
2. Install drain for backflow preventers with atmospheric-vent drain connection with air-gap fitting, fixed air-gap fitting, or equivalent positive pipe separation of at least two pipe diameters in drain piping and pipe to floor drain. Locate air-gap device attached to or under backflow preventer. Simple air breaks are not acceptable for this application.
3. Do not install bypass piping around backflow preventers.

C. Install water control valves with inlet and outlet shutoff valves. Install pressure gages on inlet and outlet.

D. Install balancing valves in locations where they can easily be adjusted.

E. Install temperature-actuated water mixing valves with check stops or shutoff valves on inlets and with shutoff valve on outlet.

1. Install thermometers and water regulators if specified.
2. Install cabinet-type units recessed in or surface mounted on wall as specified.

F. Install Y-pattern strainers for water on supply side of each control valve, water pressure-reducing valve, solenoid valve, and pump.

G. Install outlet boxes recessed in wall. Install 2-by-4-inch fire-retardant-treated-wood blocking wall reinforcement between studs. Fire-retardant-treated-wood blocking is specified in Division 06 Section "Rough Carpentry."

H. Install draining-type post hydrants with 1 cu. yd. of crushed gravel around drain hole. Set post hydrants in concrete paving or in 1 cu. ft. of concrete block at grade.

I. Install water hammer arresters in water piping according to PDI-WH 201.

J. Install supply-type, trap-seal primer valves with outlet piping pitched down toward drain trap a minimum of 1 percent, and connect to floor-drain body, trap, or inlet fitting. Adjust valve for proper flow.

K. Install trap-seal primer systems with outlet piping pitched down toward drain trap a minimum of 1 percent, and connect to floor-drain body, trap, or inlet fitting. Adjust system for proper flow.
3.2 CONNECTIONS

A. Piping installation requirements are specified in other Division 22 Sections. Drawings indicate general arrangement of piping and specialties.

B. Ground equipment according to Division 26 Section "Grounding and Bonding for Electrical Systems."

C. Connect wiring according to Division 26 Section "Low-Voltage Electrical Power Conductors and Cables."

3.3 LABELING AND IDENTIFYING

A. Equipment Nameplates and Signs: Install engraved plastic-laminate equipment nameplate or sign on or near each of the following:

1. Pressure vacuum breakers.
2. Intermediate atmospheric-vent backflow preventers.
3. Reduced-pressure-principle backflow preventers.
5. Carbonated-beverage-machine backflow preventers.
7. Calibrated balancing valves.
8. Primary, thermostatic, water mixing valves.
10. Outlet boxes.
11. Hose stations.
12. Supply-type, trap-seal primer valves.
13. Trap-seal primer systems.

B. Distinguish among multiple units, inform operator of operational requirements, indicate safety and emergency precautions, and warn of hazards and improper operations, in addition to identifying unit. Nameplates and signs are specified in Division 22 Section "Identification for Plumbing Piping and Equipment."

3.4 FIELD QUALITY CONTROL

A. Perform the following tests and prepare test reports:

1. Test each pressure vacuum breaker, reduced-pressure-principle backflow preventer double-check backflow-prevention assembly according to authorities having jurisdiction and the device's reference standard.

B. Remove and replace malfunctioning domestic water piping specialties and retest as specified above.
3.5 ADJUSTING

A. Set field-adjustable pressure set points of water pressure-reducing valves.

B. Set field-adjustable flow set points of balancing valves.

C. Set field-adjustable temperature set points of temperature-actuated water mixing valves.

END OF SECTION
PART 1 - GENERAL

1.1 SUMMARY

A. This Section includes the following for soil, waste, and vent piping inside the building:
 1. Pipe, tube, and fittings.
 2. Special pipe fittings.
 3. Encasement for underground metal piping.

B. Related Sections include the following:
 1. Division 22 Section "Sanitary Sewerage Pumps."
 2. Division 22 Section "Chemical Waste Systems for Laboratory Facilities" for chemical- waste and vent piping systems.

1.2 DEFINITIONS

B. EPDM: Ethylene-propylene-diene terpolymer rubber.
C. LLDPE: Linear, low-density polyethylene plastic.
D. NBR: Acrylonitrile-butadiene rubber.
E. PE: Polyethylene plastic.
F. PVC: Polyvinyl chloride plastic.
G. TPE: Thermoplastic elastomer.

1.3 PERFORMANCE REQUIREMENTS

A. Components and installation shall be capable of withstanding the following minimum working pressure, unless otherwise indicated:

B. Seismic Performance: Soil, waste, and vent piping and support and installation shall be capable of withstanding the effects of seismic events determined according to ASCE 7, "Minimum Design Loads for Buildings and Other Structures."
1.4 SUBMITTALS
A. Product Data: For pipe, tube, fittings, and couplings.
B. Field quality-control inspection and test reports.

1.5 QUALITY ASSURANCE
A. Piping materials shall bear label, stamp, or other markings of specified testing agency.
B. Comply with NSF 14, "Plastics Piping Systems Components and Related Materials," for plastic piping components. Include marking with "NSF-dwv" for plastic drain, waste, and vent piping; "NSF-drain" for plastic drain piping; "NSF-tubular" for plastic continuous waste piping; and "NSF-sewer" for plastic sewer piping.

PART 2 - PRODUCTS

2.1 MANUFACTURERS
A. In other Part 2 articles where titles below introduce lists, the following requirements apply to product selection:
 1. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, manufacturers specified.
 2. Manufacturers: Subject to compliance with requirements, provide products by one of the manufacturers specified.

2.2 PIPING MATERIALS
A. Refer to Part 3 "Piping Applications" Article for applications of pipe, tube, fitting, and joining materials.

2.3 HUB-AND-SPIGOT, CAST-IRON SOIL PIPE AND FITTINGS
A. Pipe and Fittings: ASTM A 74, Service class(es).
B. Gaskets: ASTM C 564, rubber.
C. Calking Materials: ASTM B 29, pure lead and oakum or hemp fiber.

2.4 HUBLESS CAST-IRON SOIL PIPE AND FITTINGS
A. Pipe and Fittings: ASTM A 888 or CISPI 301.
B. Shielded Couplings: ASTM C 1277 assembly of metal shield or housing, corrosion-resistant fasteners, and rubber sleeve with integral, center pipe stop.
1. **Standard, Shielded, Stainless-Steel Couplings**: CISPI 310, with stainless-steel corrugated shield; stainless-steel bands and tightening devices; and ASTM C 564, rubber sleeve.

 a. Manufacturers:

 1) ANACO.
 2) Fernco, Inc.
 3) Ideal Div.; Stant Corp.
 4) Mission Rubber Co.
 5) Tyler Pipe; Soil Pipe Div.

2. **Heavy-Duty, Shielded, Stainless-Steel Couplings**: With stainless-steel shield, stainless-steel bands and tightening devices, and ASTM C 564, rubber sleeve.

 a. Manufacturers:

 1) ANACO.
 2) Clamp-All Corp.
 3) Ideal Div.; Stant Corp.
 4) Mission Rubber Co.
 5) Tyler Pipe; Soil Pipe Div.

2.5 COPPER TUBE AND FITTINGS

A. Copper DWV Tube: ASTM B 306, drainage tube, drawn temper.

1. **Copper Drainage Fittings**: ASME B16.23, cast copper or ASME B16.29, wrought copper, solder-joint fittings.

B. Hard Copper Tube: ASTM B 88, Types L and M, water tube, drawn temper.

1. **Copper Pressure Fittings**: ASME B16.18, cast-copper-alloy or ASME B16.22, wrought-copper, solder-joint fittings. Furnish wrought-copper fittings if indicated.

2. **Copper Flanges**: ASME B16.24, Class 150, cast copper with solder-joint end.

3. **Copper Unions**: MSS SP-123, copper-alloy, hexagonal-stock body with ball-and-socket, metal-to-metal seating surfaces, and solder-joint or threaded ends.

C. Soft Copper Tube: ASTM B 88, Type L, water tube, annealed temper.

1. **Copper Pressure Fittings**: ASME B16.18, cast-copper-alloy or ASME B16.22, wrought-copper, solder-joint fittings. Furnish wrought-copper fittings if indicated.

2.6 PVC PIPE AND FITTINGS

A. Solid-Wall PVC Pipe: ASTM D 2665, drain, waste, and vent.

1. **PVC Socket Fittings**: ASTM D 2665, socket type, made to ASTM D 3311, drain, waste, and vent patterns.
2.7 SPECIAL PIPE FITTINGS

A. Flexible, Nonpressure Pipe Couplings: Comply with ASTM C 1173, elastomeric, sleeve-type, reducing or transition pattern. Include shear ring, ends of same sizes as piping to be joined, and corrosion-resistant-metal tension band and tightening mechanism on each end.

1. Manufacturers:
 b. Fernco, Inc.
 c. Logan Clay Products Company (The).
 d. Mission Rubber Co.
 e. NDS, Inc.
 f. Plastic Oddities, Inc.

2. Sleeve Materials:
 b. For Plastic Pipes: ASTM F 477, elastomeric seal or ASTM D 5926, PVC.
 c. For Dissimilar Pipes: ASTM D 5926, PVC or other material compatible with pipe materials being joined.

B. Shielded Nonpressure Pipe Couplings: ASTM C 1460, elastomeric or rubber sleeve with full-length, corrosion-resistant outer shield and corrosion-resistant-metal tension band and tightening mechanism on each end.

1. Manufacturers:
 b. Mission Rubber Co.

C. Flexible Ball Joints: Ductile-iron fitting with combination of flanged and mechanical-joint ends complying with AWWA C110 or AWWA C153. Include gasketed ball-joint section and ductile-iron gland, rubber gasket, and steel bolts.

1. Manufacturers:
 a. EBAA Iron Sales, Inc.

D. Expansion Joints: Two or three-piece, ductile-iron assembly consisting of telescoping sleeve(s) with gaskets and restrained-type, ductile-iron, bell-and-spatog end sections complying with AWWA C110 or AWWA C153. Select and assemble components for expansion indicated. Include AWWA C111, ductile-iron glands, rubber gaskets, and steel bolts.

1. Manufacturers:
 a. EBAA Iron Sales, Inc.
 b. Romac Industries, Inc.
 c. Star Pipe Products; Star Fittings Div.
2.8 ENCASEMENT FOR UNDERGROUND METAL PIPING

A. Description: ASTM A 674 or AWWA C105, high-density, crosslaminated PE film of 0.004-inch or LLDPE film of 0.008-inch minimum thickness.

B. Form: Sheet or tube.

C. Color: Black or natural.

PART 3 - EXECUTION

3.1 EXCAVATION

A. Refer to Division 31 Section "Earth Moving" for excavating, trenching, and backfilling.

3.2 PIPING APPLICATIONS

A. Flanges and unions may be used on aboveground pressure piping, unless otherwise indicated.

B. Aboveground, Condensate Drainage Piping: Use the following piping materials for each size range:

1. NPS 3/4 and NPS 1-1/2: Copper DWV tube, copper drainage fittings, and soldered joints.
2. NPS 2 to NPS 4: Copper DWV tube, copper drainage fittings, and soldered joints.

C. Aboveground, soil and waste piping NPS 4 and smaller shall be any of the following:

1. Service class, cast-iron soil pipe and fittings; gaskets; and gasketed joints.
2. Hubless cast-iron soil pipe and fittings; standard, shielded, stainless-steel couplings; and hubless-coupling joints.
3. Copper DWV tube, copper drainage fittings, and soldered joints.
4. Dissimilar Pipe-Material Couplings: Flexible, nonpressure pipe couplings for joining dissimilar pipe materials with small difference in OD.

D. Aboveground, soil and waste piping NPS 5 and larger shall be any of the following:

1. Service class, cast-iron soil pipe and fittings; gaskets; and gasketed joints.
2. Hubless cast-iron soil pipe and fittings; standard, shielded, stainless-steel couplings; and hubless-coupling joints.
3. Dissimilar Pipe-Material Couplings: Flexible, nonpressure pipe couplings for joining dissimilar pipe materials with small difference in OD.

E. Aboveground, vent piping NPS 4 and smaller shall be any of the following:

1. Service class, cast-iron soil pipe and fittings; gaskets; and gasketed joints.
2. Hubless cast-iron soil pipe and fittings; standard, shielded, stainless-steel couplings; and hubless-coupling joints.
3. Copper DWV tube, copper drainage fittings, and soldered joints.
a. Option for Vent Piping, NPS 2-1/2 and NPS 3-1/2: Hard copper tube, Type M; copper pressure fittings; and soldered joints.

4. Dissimilar Pipe-Material Couplings: Flexible, nonpressure pipe couplings for joining dissimilar pipe materials with small difference in OD.

F. Underground, soil, waste, and vent piping NPS 4 and smaller shall be any of the following:
 1. Service class, cast-iron soil piping; gaskets; and gasketed joints.
 2. Hubless cast-iron soil pipe and fittings; heavy-duty shielded, stainless-steel couplings; and hubless-coupling joints.
 3. Solid wall PVC pipe, PVC socket fittings, and solvent-cemented joints.
 4. Dissimilar Pipe-Material Couplings: Flexible, nonpressure pipe couplings for joining dissimilar pipe materials with small difference in OD.

G. Underground, soil and waste piping NPS 5 and larger shall be any of the following:
 1. Service class, cast-iron soil piping; gaskets; and gasketed joints.
 2. Hubless cast-iron soil pipe and fittings; heavy-duty shielded, stainless-steel couplings; and hubless-coupling joints.
 3. Solid-wall, Schedule 40, PVC pipe; PVC socket fittings; and solvent-cemented joints.
 4. Dissimilar Pipe-Material Couplings: Flexible, nonpressure pipe couplings for joining dissimilar pipe materials with small difference in OD.

H. Aboveground sanitary-sewage force mains NPS 1-1/2 and NPS 2 shall be any of the following:
 1. Hard copper tube, Type L; copper pressure fittings; and soldered joints.
 2. Steel pipe, pressure fittings, and threaded joints.

I. Aboveground sanitary-sewage force mains NPS 2-1/2 to NPS 6 shall be any of the following:
 1. Hard copper tube, Type L; copper pressure fittings; and soldered joints.
 2. Steel pipe, pressure fittings, and threaded joints.
 3. Grooved-end steel pipe, grooved-joint system fittings and couplings, and grooved joints.

J. Underground sanitary-sewage force mains NPS 4 and smaller shall be any of the following:
 1. Hard copper tube, Type L; wrought-copper pressure fittings; and soldered joints.
 2. Steel pipe, pressure fittings, and threaded joints.
 a. Include grooved-joint system fittings and couplings and grooved joints where indicated.
 3. Pressure pipe couplings, if dissimilar pipe materials or piping with small difference in OD must be joined.

3.3 PIPING INSTALLATION

A. Sanitary sewer piping outside the building is specified in Division 22 Section "Facility Sanitary Sewers."
B. Basic piping installation requirements are specified in Division 22 Section "Common Work Results for Plumbing."

C. Install seismic restraints on piping. Seismic-restraint devices are specified in Division 22 Section "Vibration and Seismic Controls for Plumbing Piping and Equipment."

D. Install cleanouts at grade and extend to where building sanitary drains connect to building sanitary sewers.

E. Install cleanout fitting with closure plug inside the building in sanitary force-main piping.

F. Install underground, steel, force-main piping. Install encasement on piping according to ASTM A 674 or AWWA C105.

G. Install underground, copper, force-main tubing according to CDA's "Copper Tube Handbook."
 1. Install encasement on piping according to ASTM A 674 or AWWA C105.

H. Install cast-iron sleeve with water stop and mechanical sleeve seal at each service pipe penetration through foundation wall. Select number of interlocking rubber links required to make installation watertight. Sleeves and mechanical sleeve seals are specified in Division 22 Section "Common Work Results for Plumbing."

I. Install wall-penetration fitting at each service pipe penetration through foundation wall. Make installation watertight.

 1. Install encasement on underground piping according to ASTM A 674 or AWWA C105.

K. Make changes in direction for soil and waste drainage and vent piping using appropriate branches, bends, and long-sweep bends. Sanitary tees and short-sweep 1/4 bends may be used on vertical stacks if change in direction of flow is from horizontal to vertical. Use long-turn, double Y-branch and 1/8-bend fittings if 2 fixtures are installed back to back or side by side with common drain pipe. Straight tees, elbows, and crosses may be used on vent lines. Do not change direction of flow more than 90 degrees. Use proper size of standard increasers and reducers if pipes of different sizes are connected. Reducing size of drainage piping in direction of flow is prohibited.

L. Lay buried building drainage piping beginning at low point of each system. Install true to grades and alignment indicated, with unbroken continuity of invert. Place hub ends of piping upstream. Install required gaskets according to manufacturer's written instructions for use of lubricants, cements, and other installation requirements. Maintain swab in piping and pull past each joint as completed.

M. Install soil and waste drainage and vent piping at the following minimum slopes, unless otherwise indicated:
 1. Building Sanitary Drain: 2 percent downward in direction of flow for piping NPS 3 and smaller; 1 percent downward in direction of flow for piping NPS 4 and larger.
2. Horizontal Sanitary Drainage Piping: 2 percent downward in direction of flow.
3. Vent Piping: 1 percent down toward vertical fixture vent or toward vent stack.

N. Sleeves are not required for cast-iron soil piping passing through concrete slabs-on-grade if slab is without membrane waterproofing.

O. Install PVC soil and waste drainage and vent piping according to ASTM D 2665.

P. Install underground PVC soil and waste drainage piping according to ASTM D 2321.

Q. Do not enclose, cover, or put piping into operation until it is inspected and approved by authorities having jurisdiction.

3.4 JOINT CONSTRUCTION

A. Basic piping joint construction requirements are specified in Division 22 Section "Common Work Results for Plumbing."

C. Join hubless cast-iron soil piping according to CISPI 310 and CISPI's "Cast Iron Soil Pipe and Fittings Handbook" for hubless-coupling joints.

D. Soldered Joints: Use ASTM B 813, water-flushable, lead-free flux; ASTM B 32, lead-free-alloy solder; and ASTM B 828 procedure, unless otherwise indicated.

E. PVC Nonpressure Piping Joints: Join piping according to ASTM D 2665.

3.5 VALVE INSTALLATION

A. General valve installation requirements are specified in Division 22 Section "General-Duty Valves for Plumbing Piping."

B. Shutoff Valves: Install shutoff valve on each sewage pump discharge.
 1. Install gate or full-port ball valve for piping NPS 2 and smaller.
 2. Install gate valve for piping NPS 2-1/2 and larger.

C. Check Valves: Install swing check valve, between pump and shutoff valve, on each sewage pump discharge.

3.6 HANGER AND SUPPORT INSTALLATION

A. Seismic-restraint devices are specified in Division 22 Section "Vibration and Seismic Controls for Plumbing Piping and Equipment."

B. Pipe hangers and supports are specified in Division 22 Section "Hangers and Supports for Plumbing Piping and Equipment." Install the following:
1. Vertical Piping: MSS Type 8 or Type 42, clamps.
2. Install individual, straight, horizontal piping runs according to the following:
 a. 100 Feet and Less: MSS Type 1, adjustable, steel clevis hangers.
 b. Longer Than 100 Feet: MSS Type 43, adjustable roller hangers.
 c. Longer Than 100 Feet, if Indicated: MSS Type 49, spring cushion rolls.
3. Multiple, Straight, Horizontal Piping Runs 100 Feet or Longer: MSS Type 44, pipe rolls.
 Support pipe rolls on trapeze.
4. Base of Vertical Piping: MSS Type 52, spring hangers.
C. Install supports according to Division 22 Section "Hangers and Supports for Plumbing Piping and Equipment."
D. Support vertical piping and tubing at base and at each floor.
E. Rod diameter may be reduced 1 size for double-rod hangers, with 3/8-inch minimum rods.
F. Install hangers for cast-iron soil piping with the following maximum horizontal spacing and minimum rod diameters:
 1. NPS 1-1/2 and NPS 2: 60 inches with 3/8-inch rod.
 2. NPS 3: 60 inches with 1/2-inch rod.
 3. NPS 4 and NPS 5: 60 inches with 5/8-inch rod.
 4. NPS 6: 60 inches with 3/4-inch rod.
 5. NPS 8 to NPS 12: 60 inches with 7/8-inch rod.
G. Install supports for vertical cast-iron soil piping every 15 feet.
H. Install hangers for steel piping with the following maximum horizontal spacing and minimum rod diameters:
 1. NPS 1-1/4: 84 inches with 3/8-inch rod.
 2. NPS 1-1/2: 108 inches with 3/8-inch rod.
 3. NPS 2: 10 feet with 3/8-inch rod.
 4. NPS 2-1/2: 11 feet with 1/2-inch rod.
 5. NPS 3: 12 feet with 1/2-inch rod.
 6. NPS 4 and NPS 5: 12 feet with 5/8-inch rod.
 7. NPS 6: 12 feet with 3/4-inch rod.
 8. NPS 8 to NPS 12: 12 feet with 7/8-inch rod.
I. Install supports for vertical steel piping every 15 feet.
J. Install hangers for copper tubing with the following maximum horizontal spacing and minimum rod diameters:
 1. NPS 1-1/4: 72 inches with 3/8-inch rod.
 2. NPS 1-1/2 and NPS 2: 96 inches with 3/8-inch rod.
 3. NPS 2-1/2: 108 inches with 1/2-inch rod.
 4. NPS 3 to NPS 5: 10 feet with 1/2-inch rod.
 5. NPS 6: 10 feet with 5/8-inch rod.
6. NPS 8: 10 feet with 3/4-inch rod.

K. Install supports for vertical copper tubing every 10 feet.

L. Install hangers for PVC piping with the following maximum horizontal spacing and minimum rod diameters:

1. NPS 1-1/2 and NPS 2: 48 inches with 3/8-inch rod.
2. NPS 3: 48 inches with 1/2-inch rod.
3. NPS 4 and 5: 48 inches with 5/8-inch rod.
4. NPS 6: 48 inches with 3/4-inch rod.
5. NPS 8 to NPS 12: 48 inches with 7/8-inch rod.

M. Install supports for vertical PVC piping every 48 inches.

N. Support piping and tubing not listed above according to MSS SP-69 and manufacturer's written instructions.

3.7 CONNECTIONS

A. Drawings indicate general arrangement of piping, fittings, and specialties.

B. Connect soil and waste piping to exterior sanitary sewerage piping. Use transition fitting to join dissimilar piping materials.

C. Connect drainage and vent piping to the following:

1. Plumbing Fixtures: Connect drainage piping in sizes indicated, but not smaller than required by plumbing code.
2. Plumbing Fixtures and Equipment: Connect atmospheric vent piping in sizes indicated, but not smaller than required by authorities having jurisdiction.
3. Plumbing Specialties: Connect drainage and vent piping in sizes indicated, but not smaller than required by plumbing code.
4. Equipment: Connect drainage piping as indicated. Provide shutoff valve, if indicated, and union for each connection. Use flanges instead of unions for connections NPS 2-1/2 and larger.

3.8 FIELD QUALITY CONTROL

A. During installation, notify authorities having jurisdiction at least 24 hours before inspection must be made. Perform tests specified below in presence of authorities having jurisdiction.

1. Roughing-in Inspection: Arrange for inspection of piping before concealing or closing-in after roughing-in and before setting fixtures.
2. Final Inspection: Arrange for final inspection by authorities having jurisdiction to observe tests specified below and to ensure compliance with requirements.

B. Reinspection: If authorities having jurisdiction find that piping will not pass test or inspection, make required corrections and arrange for reinspection.
C. Reports: Prepare inspection reports and have them signed by authorities having jurisdiction.

D. Test sanitary drainage and vent piping according to procedures of authorities having jurisdiction or, in absence of published procedures, as follows:

1. Test for leaks and defects in new piping and parts of existing piping that have been altered, extended, or repaired. If testing is performed in segments, submit separate report for each test, complete with diagram of portion of piping tested.

2. Leave uncovered and unconcealed new, altered, extended, or replaced drainage and vent piping until it has been tested and approved. Expose work that was covered or concealed before it was tested.

3. Roughing-in Plumbing Test Procedure: Test drainage and vent piping, except outside leaders, on completion of roughing-in. Close openings in piping system and fill with water to point of overflow, but not less than 10-foot head of water. From 15 minutes before inspection starts to completion of inspection, water level must not drop. Inspect joints for leaks.

4. Finished Plumbing Test Procedure: After plumbing fixtures have been set and traps filled with water, test connections and prove they are gastight and watertight. Plug vent-stack openings on roof and building drains where they leave building. Introduce air into piping system equal to pressure of 1-inch wg. Use U-tube or manometer inserted in trap of water closet to measure this pressure. Air pressure must remain constant without introducing additional air throughout period of inspection. Inspect plumbing fixture connections for gas and water leaks.

5. Repair leaks and defects with new materials and retest piping, or portion thereof, until satisfactory results are obtained.

6. Prepare reports for tests and required corrective action.

3.9 CLEANING

A. Clean interior of piping. Remove dirt and debris as work progresses.

B. Protect drains during remainder of construction period to avoid clogging with dirt and debris and to prevent damage from traffic and construction work.

C. Place plugs in ends of uncompleted piping at end of day and when work stops.

3.10 PROTECTION

A. Exposed PVC Piping: Protect plumbing vents exposed to sunlight with two coats of water-based latex paint.

END OF SECTION
PART 1 - GENERAL

1.1 SUMMARY

A. This Section includes the following storm drainage piping inside the building:
 1. Pipe, tube, and fittings.
 2. Special pipe fittings.
 3. Encasement for underground metal piping.

1.2 DEFINITIONS

B. LLDPE: Linear, low-density polyethylene plastic.
C. PE: Polyethylene plastic.
D. PVC: Polyvinyl chloride plastic.
E. TPE: Thermoplastic elastomer.

1.3 PERFORMANCE REQUIREMENTS

A. Components and installation shall be capable of withstanding the following minimum working-pressure, unless otherwise indicated:
 1. Storm Drainage Piping: 10-foot head of water.
 2. Storm Drainage, Force-Main Piping: 50 psig.

1.4 SUBMITTALS

A. Product Data: For pipe, tube, fittings, and couplings.
B. Shop Drawings:
 1. Design Calculations: Signed and sealed by a qualified professional engineer for selecting seismic restraints.
C. Field quality-control inspection and test reports.

1.5 QUALITY ASSURANCE

A. Piping materials shall bear label, stamp, or other markings of specified testing agency.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. In other Part 2 articles where titles below introduce lists, the following requirements apply to product selection:

1. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, manufacturers specified.
2. Manufacturers: Subject to compliance with requirements, provide products by one of the manufacturers specified.

2.2 PIPING MATERIALS

A. Refer to Part 3 "Piping Applications" Article for applications of pipe, tube, fitting, and joining materials.

2.3 HUB-AND-SPIGOT, CAST-IRON SOIL PIPE AND FITTINGS

A. Pipe and Fittings: ASTM A 74, Service class(es).
B. Gaskets: ASTM C 564, rubber.
C. Calking Materials: ASTM B 29, pure lead and oakum or hemp fiber.

2.4 HUBLESS CAST-IRON SOIL PIPE AND FITTINGS

A. Pipe and Fittings: ASTM A 888 or CISPI 301.
B. Shielded Couplings: ASTM C 1277 assembly of metal shield or housing, corrosion-resistant fasteners, and rubber sleeve with integral, center pipe stop.
 a. Available Manufacturers:
 1) ANACO.
 2) Clamp-All Corp.
 3) Ideal Div.; Stant Corp.
 4) Mission Rubber Co.
 5) Tyler Pipe; Soil Pipe Div.
2.5 DUCTILE-IRON PIPE AND FITTINGS

A. Mechanical-Joint, Ductile-Iron Pipe: AWWA C151, with mechanical-joint bell and plain spigot end, unless grooved or flanged ends are indicated.

1. Mechanical-Joint, Ductile-Iron Fittings: AWWA C110, ductile- or gray-iron standard pattern or AWWA C153, ductile-iron compact pattern.
2. Glands, Gaskets, and Bolts: AWWA C111, ductile- or gray-iron glands, rubber gaskets, and steel bolts.

B. Push-on-Joint, Ductile-Iron Pipe: AWWA C151, with push-on-joint bell and plain spigot end, unless grooved or flanged ends are indicated.

1. Push-on-Joint, Ductile-Iron Fittings: AWWA C110, ductile- or gray-iron standard pattern or AWWA C153, ductile-iron compact pattern.
2. Gaskets: AWWA C111, rubber.

2.6 PVC PIPE AND FITTINGS

A. Solid-Wall PVC Pipe: ASTM D 2665, drain, waste, and vent.

2.7 SPECIAL PIPE FITTINGS

A. Flexible, Nonpressure Pipe Couplings: Comply with ASTM C 1173, elastomeric, sleeve-type, reducing or transition pattern. Include shear ring, ends of same sizes as piping to be joined, and corrosion-resistant-metal tension band and tightening mechanism on each end.

1. Available Manufacturers:
 b. Fernco, Inc.
 c. Logan Clay Products Company (The).
 d. Mission Rubber Co.
 e. NDS, Inc.
 f. Plastic Oddities, Inc.

2. Sleeve Materials:
 b. For Plastic Pipes: ASTM F 477, elastomeric seal or ASTM D 5926, PVC.
 c. For Dissimilar Pipes: ASTM D 5926, PVC or other material compatible with pipe materials being joined.

B. Shielded Nonpressure Pipe Couplings: ASTM C 1460, elastomeric or rubber sleeve with full-length, corrosion-resistant outer shield and corrosion-resistant-metal tension band and tightening mechanism on each end.

1. Available Manufacturers:
b. Mission Rubber Co.

C. Flexible Ball Joints: Ductile-iron fitting with combination of flanged and mechanical-joint ends complying with AWWA C110 or AWWA C153. Include gasketed ball-joint section and ductile-iron gland, rubber gasket, and steel bolts.

1. Available Manufacturers:
 a. EBAA Iron Sales, Inc.

D. Expansion Joints: Two or three-piece, ductile-iron assembly consisting of telescoping sleeve(s) with gaskets and restrained-type, ductile-iron, bell-and-spigot end sections complying with AWWA C110 or AWWA C153. Select and assemble components for expansion indicated. Include AWWA C111, ductile-iron glands, rubber gaskets, and steel bolts.

1. Available Manufacturers:
 a. EBAA Iron Sales, Inc.
 b. Romac Industries, Inc.
 c. Star Pipe Products; Star Fittings Div.

2.8 ENCASEMENT FOR UNDERGROUND METAL PIPING

A. Description: ASTM A 674 or AWWA C105, high-density, crosslaminated PE film of 0.004-inch or LLDPE film of 0.008-inch minimum thickness.

B. Form: Sheet or tube.

C. Color: Black or natural.

PART 3 - EXECUTION

3.1 EXCAVATION

A. Refer to Division 31 Section "Earth Moving" for excavating, trenching, and backfilling.

3.2 PIPING APPLICATIONS

A. Flanges and unions may be used on aboveground pressure piping, unless otherwise indicated.

B. Aboveground storm drainage piping NPS 6 and smaller shall be any of the following:

1. Service class, cast-iron soil pipe and fittings; gaskets; and gasketed joints.
2. Hubless cast-iron soil pipe and fittings; standard, shielded, stainless-steel couplings; and coupled joints.
3. Steel pipe, drainage fittings, and threaded joints.
4. Copper DWV tube, copper drainage fittings, and soldered joints.
5. Dissimilar Pipe-Material Couplings: Flexible, nonpressure pipe couplings for joining dissimilar pipe materials with small difference in OD.

C. Aboveground, storm drainage piping NPS 8 and larger shall be any of the following:
 1. Service class, cast-iron soil pipe and fittings; gaskets; and gasketed joints.
 2. Hubless cast-iron soil pipe and fittings; heavy-duty shielded, stainless-steel couplings; and coupled joints.
 3. Dissimilar Pipe-Material Couplings: Flexible, nonpressure pipe couplings for joining dissimilar pipe materials with small difference in OD.

D. Underground storm drainage piping NPS 6 and smaller shall be any of the following:
 1. Service class, cast-iron soil pipe and fittings; gaskets; and gasketed joints.
 2. Hubless cast-iron soil pipe and fittings; heavy-duty shielded, stainless-steel couplings; and coupled joints.
 3. Solid-wall PVC pipe, PVC socket fittings, and solvent-cemented joints.
 4. Dissimilar Pipe-Material Couplings: Flexible, nonpressure pipe couplings for joining dissimilar pipe materials with small difference in OD.

E. Underground, storm drainage piping NPS 8 and larger shall be any of the following:
 1. Service class, cast-iron soil pipe and fittings; gaskets; and gasketed joints.
 2. Hubless cast-iron soil pipe and fittings; heavy-duty shielded, stainless-steel couplings; and coupled joints.
 3. Solid-wall PVC pipe, PVC socket fittings, and solvent-cemented joints.
 4. Cellular-core, Sewer and Drain Series, PVC pipe; PVC socket fittings; and solvent-cemented joints.
 5. Dissimilar Pipe-Material Couplings: Flexible, nonpressure pipe couplings for joining dissimilar pipe materials with small difference in OD.

F. Aboveground storm drainage force mains NPS 1-1/2 and NPS 2 shall be any of the following:
 1. Hard copper tube, Type L; copper pressure fittings; and soldered joints.
 2. Steel pipe, pressure fittings, and threaded joints.

G. Aboveground storm drainage force mains NPS 2-1/2 and NPS 6 shall be any of the following:
 1. Hard copper tube, Type L; copper pressure fittings; and soldered joints.
 2. Steel pipe, pressure fittings, and threaded joints.

H. Underground storm drainage force mains NPS 4 and smaller shall be any of the following:
 1. Soft copper tube, Type L; wrought-copper pressure fittings; and soldered joints.
 2. Steel pipe, pressure fittings, and threaded joints.
 a. Include grooved-joint system fittings and couplings and grooved joints where indicated.
 3. Mechanical-joint, ductile-iron pipe; mechanical-joint, ductile-iron fittings; glands, gaskets, and bolts; and mechanical joints.
a. Include grooved-joint system fittings and couplings and grooved joints where indicated.

4. Push-on-joint, ductile-iron pipe; push-on-joint, ductile-iron fittings; gaskets; and gasketed joints.
 a. Include grooved-joint system fittings and couplings and grooved joints where indicated.

5. Pressure pipe couplings if dissimilar pipe materials or piping with small difference in OD must be joined.

3.3 PIPING INSTALLATION

A. Storm sewer and drainage piping outside the building are specified in Division 33 Section "Storm Utility Drainage Piping."

B. Basic piping installation requirements are specified in Division 22 Section "Common Work Results for Plumbing."

C. Install seismic restraints on piping. Seismic-restraint devices are specified in Division 22 Section "Vibration and Seismic Controls for Plumbing Piping and Equipment."

D. Install cleanouts at grade and extend to where building storm drains connect to building storm sewers. Cleanouts are specified in Division 22 Section "Storm Drainage Piping Specialities."

E. Install cleanout fitting with closure plug inside the building in storm drainage force-main piping.

F. Install underground, steel, force-main piping. Install encasement on piping according to ASTM A 674 or AWWA C105.

G. Install underground, ductile-iron, force-main piping according to AWWA C600. Install buried piping inside building between wall and floor penetrations and connection to storm sewer piping outside building with restrained joints. Anchor pipe to wall or floor. Install thrust-block supports at vertical and horizontal offsets.
 1. Install encasement on piping according to ASTM A 674 or AWWA C105.

H. Install underground, copper, force-main tubing according to CDA's "Copper Tube Handbook."
 1. Install encasement on piping according to ASTM A 674 or AWWA C105.

I. Install underground, ductile-iron, special pipe fittings according to AWWA C600.
 1. Install encasement on piping according to ASTM A 674 or AWWA C105.

J. Install cast-iron sleeve with water stop and mechanical sleeve seal at each service pipe penetration through foundation wall. Select number of interlocking rubber links required to make installation watertight. Sleeves and mechanical sleeve seals are specified in Division 22 Section "Common Work Results for Plumbing."
K. Install wall-penetration fitting system at each service pipe penetration through foundation wall. Make installation watertight.

L. Install cast-iron soil piping according to CISPI's "Cast Iron Soil Pipe and Fittings Handbook," Chapter IV, "Installation of Cast Iron Soil Pipe and Fittings."

 1. Install encasement on underground piping according to ASTM A 674 or AWWA C105.

M. Make changes in direction for storm drainage piping using appropriate branches, bends, and long-sweep bends. Do not change direction of flow more than 90 degrees. Use proper size of standard increasers and reducers if pipes of different sizes are connected. Reducing size of drainage piping in direction of flow is prohibited.

N. Lay buried building storm drainage piping beginning at low point of each system. Install true to grades and alignment indicated, with unbroken continuity of invert. Place hub ends of piping upstream. Install required gaskets according to manufacturer's written instructions for use of lubricants, cements, and other installation requirements. Maintain swab in piping and pull past each joint as completed.

O. Install storm drainage piping at the following minimum slopes, unless otherwise indicated:

 1. Building Storm Drain: 1 percent downward in direction of flow for piping NPS 3 and smaller; 1 percent downward in direction of flow for piping NPS 4 and larger.
 2. Horizontal Storm-Drainage Piping: 2 percent downward in direction of flow.

P. Install force mains at elevations indicated.

Q. Sleeves are not required for cast-iron soil piping passing through concrete slabs-on-grade if slab is without membrane waterproofing.

R. Install PVC storm drainage piping according to ASTM D 2665.

S. Do not enclose, cover, or put piping into operation until it is inspected and approved by authorities having jurisdiction.

3.4 JOINT CONSTRUCTION

A. Basic piping joint construction requirements are specified in Division 22 Section "Common Work Results Plumbing."

E. Soldered Joints: Use ASTM B 813, water-flushable, lead-free flux; ASTM B 32, lead-free-alloy solder; and ASTM B 828 procedure, unless otherwise indicated.
F. PVC Nonpressure Piping Joints: Join piping according to ASTM D 2665.

3.5 VALVE INSTALLATION

A. General valve installation requirements are specified in Division 22 Section "General-Duty Valves for Plumbing Piping."

B. Shutoff Valves: Install shutoff valve on each sump pump discharge.
 1. Install gate or full-port ball valve for piping NPS 2 and smaller.
 2. Install gate valve for piping NPS 2-1/2 and larger.

C. Check Valves: Install swing check valve, between pump and shutoff valve, on each sump pump discharge.

3.6 HANGER AND SUPPORT INSTALLATION

A. Seismic-restraint devices are specified in Division 22 Section "Vibration and Seismic Controls for Plumbing Piping and Equipment."

B. Pipe hangers and supports are specified in Division 22 Section "Hangers and Supports for Plumbing Piping and Equipment." Install the following:
 1. Vertical Piping: MSS Type 8 or Type 42, clamps.
 2. Individual, Straight, Horizontal Piping Runs: According to the following:
 a. 100 Feet and Less: MSS Type 1, adjustable, steel clevis hangers.
 b. Longer Than 100 Feet: MSS Type 43, adjustable roller hangers.
 c. Longer Than 100 Feet, if Indicated: MSS Type 49, spring cushion rolls.
 3. Multiple, Straight, Horizontal Piping Runs 100 Feet or Longer: MSS Type 44, pipe rolls.
 Support pipe rolls on trapeze.
 4. Base of Vertical Piping: MSS Type 52, spring hangers.

C. Install supports according to Division 22 Section "Hangers and Supports for Plumbing Piping and Equipment."

D. Support vertical piping and tubing at base and at each floor.

E. Rod diameter may be reduced 1 size for double-rod hangers, with 3/8-inch minimum rods.

F. Install hangers for cast-iron soil piping with the following maximum horizontal spacing and minimum rod diameters:
 1. NPS 1-1/2 and NPS 2: 60 inches with 3/8-inch rod.
 2. NPS 3: 60 inches with 1/2-inch rod.
 3. NPS 4 and NPS 5: 60 inches with 5/8-inch rod.
 4. NPS 6: 60 inches with 3/4-inch rod.
 5. NPS 8 to NPS 12: 60 inches with 7/8-inch rod.
6. Spacing for 10-foot lengths may be increased to 10 feet. Spacing for fittings is limited to 60 inches.

G. Install supports for vertical cast-iron soil piping every 15 feet.

H. Install hangers for steel piping with the following maximum horizontal spacing and minimum rod diameters:

1. NPS 1-1/4: 84 inches with 3/8-inch rod.
2. NPS 1-1/2: 108 inches with 3/8-inch rod.
3. NPS 2: 10 feet with 3/8-inch rod.
4. NPS 2-1/2: 11 feet with 1/2-inch rod.
5. NPS 3: 12 feet with 1/2-inch rod.
6. NPS 4 and NPS 5: 12 feet with 5/8-inch rod.
7. NPS 6: 12 feet with 3/4-inch rod.
8. NPS 8 to NPS 12: 12 feet with 7/8-inch rod.

I. Install supports for vertical steel piping every 15 feet.

J. Install hangers for copper tubing with the following maximum horizontal spacing and minimum rod diameters:

1. NPS 1-1/4: 72 inches with 3/8-inch rod.
2. NPS 1-1/2 and NPS 2: 96 inches with 3/8-inch rod.
3. NPS 2-1/2: 108 inches with 1/2-inch rod.
4. NPS 3 to NPS 5: 10 feet with 1/2-inch rod.
5. NPS 6: 10 feet with 5/8-inch rod.
6. NPS 8: 10 feet with 3/4-inch rod.

K. Install supports for vertical copper tubing every 10 feet.

L. Install hangers for PVC piping with the following maximum horizontal spacing and minimum rod diameters:

1. NPS 1-1/2 and NPS 2: 48 inches with 3/8-inch rod.
2. NPS 3: 48 inches with 1/2-inch rod.
3. NPS 4 and NPS 5: 48 inches with 5/8-inch rod.
4. NPS 6: 48 inches with 3/4-inch rod.
5. NPS 8 to NPS 12: 48 inches with 7/8-inch rod.

M. Support piping and tubing not listed above according to MSS SP-69 and manufacturer's written instructions.

3.7 CONNECTIONS

A. Drawings indicate general arrangement of piping, fittings, and specialties.

B. Connect interior storm drainage piping to exterior storm drainage piping. Use transition fitting to join dissimilar piping materials.
C. Connect storm drainage piping to roof drains and storm drainage specialties.

D. Connect force-main piping to the following:
 1. Storm Sewer: To exterior force main or storm manhole.
 2. Sump Pumps: To sump pump discharge.

3.8 FIELD QUALITY CONTROL

A. During installation, notify authorities having jurisdiction at least 24 hours before inspection must be made. Perform tests specified below in presence of authorities having jurisdiction.
 1. Roughing-in Inspection: Arrange for inspection of piping before concealing or closing-in after roughing-in.
 2. Final Inspection: Arrange for final inspection by authorities having jurisdiction to observe tests specified below and to ensure compliance with requirements.

B. Reinspection: If authorities having jurisdiction find that piping will not pass test or inspection, make required corrections and arrange for reinspection.

C. Reports: Prepare inspection reports and have them signed by authorities having jurisdiction.

D. Test storm drainage piping according to procedures of authorities having jurisdiction or, in absence of published procedures, as follows:
 1. Test for leaks and defects in new piping and parts of existing piping that have been altered, extended, or repaired. If testing is performed in segments, submit separate report for each test, complete with diagram of portion of piping tested.
 2. Leave uncovered and unconcealed new, altered, extended, or replaced storm drainage piping until it has been tested and approved. Expose work that was covered or concealed before it was tested.
 3. Test Procedure: Test storm drainage piping on completion of roughing-in. Close openings in piping system and fill with water to point of overflow, but not less than 10-foot head of water. From 15 minutes before inspection starts to completion of inspection, water level must not drop. Inspect joints for leaks.
 4. Repair leaks and defects with new materials and retest piping, or portion thereof, until satisfactory results are obtained.
 5. Prepare reports for tests and required corrective action.

E. Clean interior of piping. Remove dirt and debris as work progresses.

F. Protect drains during remainder of construction period to avoid clogging with dirt and debris and to prevent damage from traffic and construction work.

G. Place plugs in ends of uncompleted piping at end of day and when work stops.

END OF SECTION
PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes:

1. Commercial, electric, domestic-water booster heaters.
2. Commercial, electric, storage, domestic-water heaters.
3. Commercial, light-duty, storage, electric, domestic-water heaters.
4. Thermostat-control, electric, tankless, domestic-water heaters.
5. Domestic-water heater accessories.

1.2 PERFORMANCE REQUIREMENTS

A. Seismic Performance: Commercial domestic-water heaters shall withstand the effects of earthquake motions determined according to ASCE/SEI 7.

1. The term "withstand" means "the unit will remain in place without separation of any parts from the device when subjected to the seismic forces specified and the unit will be fully operational after the seismic event."

1.3 ACTION SUBMITTALS

A. Product Data: For each type and size of domestic-water heater indicated, include rated capacities, operating characteristics, electrical characteristics, and furnished specialties and accessories.

B. LEED Submittals:

1. Product Data for Prerequisite EA 2: Documentation indicating that units comply with applicable requirements in ASHRAE/IESNA 90.1, Section 7, "Service Water Heating."

C. Shop Drawings:

1. Wiring Diagrams: For power, signal, and control wiring.

1.4 INFORMATIONAL SUBMITTALS

A. Seismic Qualification Certificates: For commercial domestic-water heaters, accessories, and components, from manufacturer.

1. Basis for Certification: Indicate whether withstand certification is based on actual test of assembled components or on calculation.
2. Dimensioned Outline Drawings of Equipment Unit: Identify center of gravity and locate and describe mounting and anchorage provisions.
3. Detailed description of equipment anchorage devices on which the certification is based and their installation requirements.

B. Product Certificates: For each type of electric, domestic-water heater, from manufacturer.

C. Domestic-Water Heater Labeling: Certified and labeled by testing agency acceptable to authorities having jurisdiction.

D. Source quality-control reports.

E. Field quality-control reports.

F. Warranty: Sample of special warranty.

1.5 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For electric, domestic-water heaters to include in emergency, operation, and maintenance manuals.

1.6 QUALITY ASSURANCE

A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

B. ASHRAE/IESNA Compliance: Applicable requirements in ASHRAE/IESNA 90.1.

C. ASME Compliance: Where ASME-code construction is indicated, fabricate and label commercial, domestic-water heater storage tanks to comply with ASME Boiler and Pressure Vessel Code: Section VIII, Division 1.

D. NSF Compliance: Fabricate and label equipment components that will be in contact with potable water to comply with NSF 61, "Drinking Water System Components - Health Effects."

1.7 COORDINATION

A. Coordinate sizes and locations of concrete bases with actual equipment provided.

1.8 WARRANTY

A. Special Warranty: Manufacturer's standard form in which manufacturer agrees to repair or replace components of electric, domestic-water heaters that fail in materials or workmanship within specified warranty period.

1. Failures include, but are not limited to, the following:
 a. Structural failures including storage tank and supports.
b. Faulty operation of controls.
c. Deterioration of metals, metal finishes, and other materials beyond normal use.

2. Warranty Periods: From date of Substantial Completion.
 a. Commercial, Electric, Domestic-Water Booster Heaters:
 1) Controls and Other Components: 10 years.
 b. Commercial, Electric, Storage, Domestic-Water Heaters:
 1) Storage Tank: 10 years.
 2) Controls and Other Components: 10 years.
 c. Commercial, Light-Duty, Storage, Electric, Domestic-Water Heaters:
 1) Storage Tank: 10 years.
 2) Controls and Other Components: 10 years.
 d. Residential, Electric, Storage, Domestic-Water Heaters:
 1) Storage Tank: 10 years.
 2) Controls and Other Components: 10 years.
 e. Electric, Tankless, Domestic-Water Heaters: 10 year(s).
 f. Compression Tanks: 10 years.

PART 2 - PRODUCTS

2.1 COMMERCIAL, ELECTRIC, domestic-WATER HEATERS

A. Commercial, Electric, Domestic-Water Booster Heaters:
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following.
 2. Basis-of-Design Product: Subject to compliance with requirements, provide product indicated on Drawings or comparable product by one of the following:
 b. Coates Heater Company, Inc.
 c. Electric Heater Company (The).
 d. Hatco Corporation.
 e. HESco Industries, Inc.
 f. Lochinvar Corporation.
 g. Rheem Manufacturing Company.
 h. Smith, A. O. Water Products Co.; a division of A. O. Smith Corporation.
 b. Pressure Rating: 150 psig (1035 kPa).
 c. Interior Finish: Comply with NSF 61 barrier materials for potable-water tank linings, including extending lining material into tappings.

5. Factory-Installed Tank Appurtenances:
 a. Anode Rod: Replaceable magnesium.
 b. Drain Valve: Corrosion-resistant metal complying with ASSE 1005.
 c. Insulation: Comply with ASHRAE/IESNA 90.1.
 d. Jacket: Rectangular shaped, with stainless-steel front panel, unless otherwise indicated.
 e. Heating Elements: Electric, screw-in or bolt-on immersion type arranged in multiples of three.
 1) Option: Booster heaters with total of 9 kW or less may have two or three elements.
 f. Temperature Control: Adjustable thermostat, to setting of at least 180 deg F (82 deg C).
 g. Safety Controls: High-temperature-limit and low-water cutoff devices or systems.
 h. Relief Valve: ASME rated and stamped for combination temperature-and-pressure relief valve. Include relieving capacity at least as great as heat input, and include pressure setting less than domestic-water heater working-pressure rating. Select relief valve with sensing element that extends into storage tank.
 i. Gages: Combination temperature-and-pressure type or separate thermometer and pressure gage.

6. Special Requirements: NSF 5 construction with legs for floor installation.

B. Commercial, Electric, Storage, Domestic-Water Heaters:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following.
2. Basis-of-Design Product: Subject to compliance with requirements, provide product indicated on Drawings.
 c. Cemline Corporation.
 d. Electric Heater Company (The).
 e. GSW Water Heating.
 f. HESco Industries, Inc.
 g. Lochinvar Corporation.
 h. Precision Boilers, Inc.
 i. PVI Industries, LLC.
 j. RECO USA.
 k. Rheem Manufacturing Company.
 l. Smith, A. O. Water Products Co.; a division of A. O. Smith Corporation.
m. **State Industries.**

n. ** Vaughn Manufacturing Corporation.**

4. **Storage-Tank Construction:** Non-ASME-code, steel horizontal or vertical arrangement.
 a. **Tappings:** Factory fabricated of materials compatible with tank and piping connections. Attach tappings to tank before testing.
 1) NPS 2 (DN 50) and Smaller: Threaded ends according to ASME B1.20.1.
 2) NPS 2-1/2 (DN 65) and Larger: Flanged ends according to ASME B16.5 for steel and stainless-steel flanges, and according to ASME B16.24 for copper and copper-alloy flanges.
 b. **Pressure Rating:** 150 psig.
 c. **Interior Finish:** Comply with NSF 61 barrier materials for potable-water tank linings, including extending lining material into tappings.

5. **Factory-Installed Storage-Tank Appurtenances:**
 a. **Anode Rod:** Replaceable magnesium.
 b. **Drain Valve:** Corrosion-resistant metal complying with ASSE 1005.
 c. **Insulation:** Comply with ASHRAE/IESNA 90.1.
 d. **Jacket:** Steel with enameled finish.
 e. **Heating Elements:** Electric, screw-in or bolt-on immersion type arranged in multiples of three.
 f. **Temperature Control:** Adjustable thermostat.
 g. **Safety Controls:** High-temperature-limit and low-water cutoff devices or systems.
 h. **Relief Valves:** ASME rated and stamped for combination temperature-and-pressure relief valves. Include one or more relief valves with total relieving capacity at least as great as heat input, and include pressure setting less than domestic-water heater working-pressure rating. Select one relief valve with sensing element that extends into storage tank.

6. **Special Requirements:** NSF 5 construction.

C. **Commercial, Light-Duty, Storage, Electric, Domestic-Water Heaters:**

1. **Manufacturers:** Subject to compliance with requirements, provide products by one of the following.
2. **Basis-of-Design Product:** Subject to compliance with requirements, provide product indicated on Drawings.
 a. **American Water Heaters.**
 b. **Bradford White Corporation.**
 c. **Electric Heater Company (The).**
 d. **GSW Water Heating.**
 e. **Heat Transfer Products, Inc.**
 f. **Lochinvar Corporation.**
 g. **Rheem Manufacturing Company.**
h. Smith, A. O. Water Products Co.; a division of A. O. Smith Corporation.
i. State Industries.

 b. Pressure Rating: 150 psig (1035 kPa).
 c. Interior Finish: Comply with NSF 61 barrier materials for potable-water tank linings, including extending lining material into tappings.

5. Factory-Installed Storage-Tank Appurtenances:
 a. Anode Rod: Replaceable magnesium.
 b. Dip Tube: Required unless cold-water inlet is near bottom of tank.
 c. Drain Valve: ASSE 1005.
 d. Insulation: Comply with ASHRAE/IESNA 90.1.
 e. Jacket: Steel with enameled finish.
 f. Heat-Trap Fittings: Inlet type in cold-water inlet and outlet type in hot-water outlet.
 g. Heating Elements: Two; electric, screw-in immersion type; wired for simultaneous operation unless otherwise indicated. Limited to 12 kW total.
 h. Temperature Control: Adjustable thermostat.
 i. Safety Control: High-temperature-limit cutoff device or system.
 j. Relief Valve: ASME rated and stamped for combination temperature-and-pressure relief valves. Include relieving capacity at least as great as heat input, and include pressure setting less than domestic-water heater working-pressure rating. Select relief valve with sensing element that extends into storage tank.

6. Special Requirements: NSF 5 construction with legs for off-floor installation.

D. Capacity and Characteristics: Refer to schedules on plans

2.2 domestic-WATER HEATER ACCESSORIES

A. Domestic-Water Compression Tanks:
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following.
 2. Basis-of-Design Product: Subject to compliance with requirements, provide product indicated on Drawings
 a. AMTROL Inc.
 b. Flexcon Industries.
 c. Honeywell International Inc.
 d. Pentair Pump Group (The); Myers.
 e. Smith, A. O. Water Products Co.; a division of A. O. Smith Corporation.
 f. State Industries.
 g. Taco, Inc.
3. Description: Steel pressure-rated tank constructed with welded joints and factory-installed butyl-rubber diaphragm. Include air precharge to minimum system-operating pressure at tank.

4. Construction:
 a. Tappings: Factory-fabricated steel, welded to tank before testing and labeling. Include ASME B1.20.1 pipe thread.
 b. Interior Finish: Comply with NSF 61 barrier materials for potable-water tank linings, including extending finish into and through tank fittings and outlets.
 c. Air-Charging Valve: Factory installed.

5. Capacity and Characteristics:
 b. Capacity Acceptable: 10 gal. minimum.

B. Drain Pans: Corrosion-resistant metal with raised edge. Comply with ANSI/CSA LC 3. Include dimensions not less than base of domestic-water heater, and include drain outlet not less than NPS 3/4 (DN 20) with ASME B1.20.1 pipe threads or with ASME B1.20.7 garden-hose threads.

C. Piping-Type Heat Traps: Field-fabricated piping arrangement according to ASHRAE/IESNA 90.1.

D. Heat-Trap Fittings: ASHRAE 90.2.

E. Manifold Kits: Domestic-water heater manufacturer's factory-fabricated inlet and outlet piping for field installation, for multiple domestic-water heater installation. Include ball-, butterfly-, or gate-type shutoff valves to isolate each domestic-water heater and calibrated balancing valves to provide balanced flow through each domestic-water heater.
 1. Comply with requirements for ball-, butterfly-, or gate-type shutoff valves specified in Section 220523 "General-Duty Valves for Plumbing Piping."
 2. Comply with requirements for balancing valves specified in Section 221119 "Domestic Water Piping Specialties."

F. Pressure-Reducing Valves: ASSE 1003 for water. Set at 25-psig- (172.5-kPa-) maximum outlet pressure unless otherwise indicated.

G. Combination Temperature-and-Pressure Relief Valves: ASME rated and stamped. Include relieving capacity at least as great as heat input, and include pressure setting less than domestic-water heater working-pressure rating. Select relief valves with sensing element that extends into storage tank.

H. Pressure Relief Valves: ASME rated and stamped. Include pressure setting less than domestic-water heater working-pressure rating.

J. Shock Absorbers: ASSE 1010 or PDI-WH 201, Size A water hammer arrester.
K. Domestic-Water Heater Stands: Manufacturer's factory-fabricated steel stand for floor mounting, capable of supporting domestic-water heater and water. Include dimension that will support bottom of domestic-water heater a minimum of 18 inches (457 mm) above the floor.

L. Domestic-Water Heater Mounting Brackets: Manufacturer's factory-fabricated steel bracket for wall mounting, capable of supporting domestic-water heater and water.

2.3 SOURCE QUALITY CONTROL

A. Factory Tests: Test and inspect domestic-water heaters specified to be ASME-code construction, according to ASME Boiler and Pressure Vessel Code.

B. Hydrostatically test commercial domestic-water heaters to minimum of one and one-half times pressure rating before shipment.

C. Electric, domestic-water heaters will be considered defective if they do not pass tests and inspections. Comply with requirements in Section 014000 "Quality Requirements" for retesting and reinspecting requirements and Section 017300 "Execution" for requirements for correcting the Work.

D. Prepare test and inspection reports.

PART 3 - EXECUTION

3.1 DOMESTIC-WATER HEATER INSTALLATION

A. Commercial, Electric, Domestic-Water Heater Mounting: Install commercial, electric, domestic-water heaters on concrete base. Comply with requirements for concrete bases specified in Section 033000 "Cast-in-Place Concrete." or Section 033053 "Miscellaneous Cast-in-Place Concrete."

1. Exception: Omit concrete bases for commercial, electric, domestic-water heaters if installation on stand, bracket, suspended platform, or directly on floor is indicated.
2. Maintain manufacturer's recommended clearances.
3. Arrange units so controls and devices that require servicing are accessible.
4. Install dowel rods to connect concrete base to concrete floor. Unless otherwise indicated, install dowel rods on 18-inch (450-mm) centers around the full perimeter of concrete base.
5. For supported equipment, install epoxy-coated anchor bolts that extend through concrete base and anchor into structural concrete floor.
6. Place and secure anchorage devices. Use setting drawings, templates, diagrams, instructions, and directions furnished with items to be embedded.
7. Install anchor bolts to elevations required for proper attachment to supported equipment.
8. Anchor domestic-water heaters to substrate.

B. Electric, Tankless, Domestic-Water Heater Mounting: Install electric, tankless, domestic-water heaters at least 18 inches (457 mm) above floor on wall bracket.
1. Maintain manufacturer's recommended clearances.
2. Arrange units so controls and devices that require servicing are accessible.
3. Place and secure anchorage devices. Use setting drawings, templates, diagrams, instructions, and directions furnished with items to be embedded.
4. Install anchor bolts to elevations required for proper attachment to supported equipment.
5. Anchor domestic-water heaters to substrate.

C. Install electric, domestic-water heaters level and plumb, according to layout drawings, original design, and referenced standards. Maintain manufacturer's recommended clearances. Arrange units so controls and devices needing service are accessible.

1. Install shutoff valves on domestic-water-supply piping to domestic-water heaters and on domestic-hot-water outlet piping. Comply with requirements for shutoff valves specified in Section 220523 "General-Duty Valves for Plumbing Piping."

D. Install commercial, electric, domestic-water heaters with seismic-restraint devices. Comply with requirements for seismic-restraint devices specified in Section 220548 "Vibration and Seismic Controls for Plumbing Piping and Equipment."

E. Install combination temperature-and-pressure relief valves in top portion of storage tanks. Use relief valves with sensing elements that extend into tanks. Extend commercial-water-heater relief-valve outlet, with drain piping same as domestic-water piping in continuous downward pitch, and discharge by positive air gap onto closest floor drain.

F. Install combination temperature-and-pressure relief valves in water piping for electric, domestic-water heaters without storage. Extend commercial-water-heater relief-valve outlet, with drain piping same as domestic-water piping in continuous downward pitch, and discharge by positive air gap onto closest floor drain.

G. Install water-heater drain piping as indirect waste to spill by positive air gap into open drains or over floor drains. Install hose-end drain valves at low points in water piping for electric, domestic-water heaters that do not have tank drains. Comply with requirements for hose-end drain valves specified in Section 221119 "Domestic Water Piping Specialties."

H. Install thermometers on outlet piping of electric, domestic-water heaters. Comply with requirements for thermometers specified in Section 220519 "Meters and Gages for Plumbing Piping."

I. Install thermometers on inlet and outlet piping of residential, solar, electric, domestic-water heaters. Comply with requirements for thermometers specified in Section 220519 "Meters and Gages for Plumbing Piping."

J. Assemble and install inlet and outlet piping manifold kits for multiple electric, domestic-water heaters. Fabricate, modify, or arrange manifolds for balanced water flow through each electric, domestic-water heater. Include shutoff valve and thermometer in each domestic-water heater inlet and outlet, and throttling valve in each electric, domestic-water heater outlet. Comply with requirements for valves specified in Section 220523 "General-Duty Valves for Plumbing Piping," and comply with requirements for thermometers specified in Section 220519 "Meters and Gages for Plumbing Piping."
K. Install pressure-reducing valve with integral bypass relief valve in electric, domestic-water booster-heater inlet piping and water hammer arrester in booster-heater outlet piping. Set pressure-reducing valve for outlet pressure of 25 psig. Comply with requirements for pressure-reducing valves and water hammer arresters specified in Section 221119 "Domestic Water Piping Specialties."

L. Install piping-type heat traps on inlet and outlet piping of electric, domestic-water heater storage tanks without integral or fitting-type heat traps.

M. Fill electric, domestic-water heaters with water.

N. Charge domestic-water compression tanks with air.

3.2 CONNECTIONS

A. Comply with requirements for piping specified in Section 221116 "Domestic Water Piping." Drawings indicate general arrangement of piping, fittings, and specialties.

B. Where installing piping adjacent to electric, domestic-water heaters, allow space for service and maintenance of water heaters. Arrange piping for easy removal of domestic-water heaters.

3.3 IDENTIFICATION

A. Identify system components. Comply with requirements for identification specified in Section 220553 "Identification for Plumbing Piping and Equipment."

3.4 FIELD QUALITY CONTROL

A. Perform tests and inspections.
 1. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect components, assemblies, and equipment installations, including connections, and to assist in testing.
 2. Leak Test: After installation, charge system and test for leaks. Repair leaks and retest until no leaks exist.
 3. Operational Test: After electrical circuitry has been energized, start units to confirm proper operation.
 4. Test and adjust controls and safeties. Replace damaged and malfunctioning controls and equipment.

B. Electric, domestic-water heaters will be considered defective if they do not pass tests and inspections. Comply with requirements in Section 014000 "Quality Requirements" for retesting and reinspecting requirements and Section 017300 "Execution" for requirements for correcting the Work.

C. Prepare test and inspection reports.
3.5 DEMONSTRATION

A. Engage a factory-authorized service representative to train Owner's maintenance personnel to adjust, operate, and maintain commercial tank and tankless electric water heaters.

END OF SECTION
SECTION 230513 COMMON MOTOR REQUIREMENTS FOR HVAC EQUIPMENT

PART 1 - GENERAL

1.1 SUMMARY

A. Section includes general requirements for single-phase and polyphase, general-purpose, horizontal, small and medium, squirrel-cage induction motors for use on ac power systems up to 600 V and installed at equipment manufacturer's factory or shipped separately by equipment manufacturer for field installation.

1.2 COORDINATION

A. Coordinate features of motors, installed units, and accessory devices to be compatible with the following:
 1. Motor controllers.
 2. Torque, speed, and horsepower requirements of the load.
 3. Ratings and characteristics of supply circuit and required control sequence.
 4. Ambient and environmental conditions of installation location.

PART 2 - PRODUCTS

2.1 GENERAL MOTOR REQUIREMENTS

A. Comply with NEMA MG 1 unless otherwise indicated.

B. Comply with IEEE 841 for severe-duty motors.

2.2 MOTOR CHARACTERISTICS

A. Duty: Continuous duty at ambient temperature of 40 deg C and at altitude of 3300 feet above sea level.

B. Capacity and Torque Characteristics: Sufficient to start, accelerate, and operate connected loads at designated speeds, at installed altitude and environment, with indicated operating sequence, and without exceeding nameplate ratings or considering service factor.

2.3 POLYPHASE MOTORS

A. Description: NEMA MG 1, Design B, medium induction motor.

B. Efficiency: Premium efficient, as defined in NEMA MG 1.
C. Service Factor: 1.15.

D. Multispeed Motors: Variable torque.
 1. For motors with 2:1 speed ratio, consequent pole, single winding.
 2. For motors with other than 2:1 speed ratio, separate winding for each speed.

E. Multispeed Motors: Separate winding for each speed.

F. Rotor: Random-wound, squirrel cage.

G. Bearings: Regreasable, shielded, antifriction ball bearings suitable for radial and thrust loading.

H. Temperature Rise: Match insulation rating.

I. Insulation: Class F.

J. Code Letter Designation:
 1. Motors 15 HP and Larger: NEMA starting Code F or Code G.
 2. Motors Smaller than 15 HP: Manufacturer's standard starting characteristic.

K. Enclosure Material: Cast iron for motor frame sizes 324T and larger; rolled steel for motor frame sizes smaller than 324T.

2.4 POLYPHASE MOTORS WITH ADDITIONAL REQUIREMENTS

A. Motors Used with Reduced-Voltage and Multispeed Controllers: Match wiring connection requirements for controller with required motor leads. Provide terminals in motor terminal box, suited to control method.

B. Motors Used with Variable Frequency Controllers:
 1. Windings: Copper magnet wire with moisture-resistant insulation varnish, designed and tested to resist transient spikes, high frequencies, and short time rise pulses produced by pulse-width modulated inverters.
 2. Premium-Efficient Motors: Class B temperature rise; Class F insulation.
 3. Inverter-Duty Motors: Class F temperature rise; Class H insulation.
 4. Thermal Protection: Comply with NEMA MG 1 requirements for thermally protected motors.

C. Severe-Duty Motors: Comply with IEEE 841, with 1.15 minimum service factor.

2.5 SINGLE-PHASE MOTORS

A. Motors larger than 1/20 hp shall be one of the following, to suit starting torque and requirements of specific motor application:
 1. Permanent-split capacitor.
 2. Split phase.
3. Capacitor start, inductor run.
4. Capacitor start, capacitor run.

B. Multispeed Motors: Variable-torque, permanent-split-capacitor type.

C. Bearings: Prelubricated, antifriction ball bearings or sleeve bearings suitable for radial and thrust loading.

D. Motors 1/20 HP and Smaller: Shaded-pole type.

E. Thermal Protection: Internal protection to automatically open power supply circuit to motor when winding temperature exceeds a safe value calibrated to temperature rating of motor insulation. Thermal-protection device shall automatically reset when motor temperature returns to normal range.

PART 3 - EXECUTION (Not Applicable)

END OF SECTION
PART 1 - GENERAL

1.1 SUMMARY
A. Section Includes:
 1. Brass ball valves.
 2. Bronze ball valves.

B. Related Sections:
 1. Section 230553 "Identification for HVAC Piping and Equipment" for valve tags and schedules.

1.2 DEFINITIONS
A. CWP: Cold working pressure.
B. EPDM: Ethylene propylene copolymer rubber.
C. NBR: Acrylonitrile-butadiene, Buna-N, or nitrile rubber.
D. NRS: Nonrising stem.
E. OS&Y: Outside screw and yoke.
F. RS: Rising stem.
G. SWP: Steam working pressure.

1.3 SUBMITTALS
A. Product Data: For each type of valve indicated.
B. All equipment and accessories (including piping) shall be made in the United States of America. No exceptions unless approved prior to bidding.

1.4 QUALITY ASSURANCE
A. Source Limitations for Valves: Obtain each type of valve from single source from single manufacturer.
B. ASME Compliance:
1. ASME B16.10 and ASME B16.34 for ferrous valve dimensions and design criteria.
2. ASME B31.1 for power piping valves.
3. ASME B31.9 for building services piping valves.

1.5 DELIVERY, STORAGE, AND HANDLING

A. Prepare valves for shipping as follows:
 1. Protect internal parts against rust and corrosion.
 2. Protect threads, flange faces, grooves, and weld ends.
 3. Set angle, gate, and globe valves closed to prevent rattling.
 4. Set ball and plug valves open to minimize exposure of functional surfaces.
 5. Set butterfly valves closed or slightly open.
 6. Block check valves in either closed or open position.

B. Use the following precautions during storage:
 1. Maintain valve end protection.
 2. Store valves indoors and maintain at higher than ambient dew point temperature. If outdoor storage is necessary, store valves off the ground in watertight enclosures.

C. Use sling to handle large valves; rig sling to avoid damage to exposed parts. Do not use handwheels or stems as lifting or rigging points.

PART 2 - PRODUCTS

2.1 GENERAL REQUIREMENTS FOR VALVES

A. Refer to HVAC valve schedule articles for applications of valves.

B. Valve Pressure and Temperature Ratings: Not less than indicated and as required for system pressures and temperatures.

C. Valve Sizes: Same as upstream piping unless otherwise indicated.

D. Valve Actuator Types:
 1. Gear Actuator: For quarter-turn valves NPS 8 and larger.
 2. Handwheel: For valves other than quarter-turn types.
 3. Handlever: For quarter-turn valves NPS 6 and smaller.

E. Valves in Insulated Piping: With 2-inchstem extensions and the following features:
 1. Ball Valves: With extended operating handle of non-thermal-conductive material, and protective sleeve that allows operation of valve without breaking the vapor seal or disturbing insulation.

F. Valve-End Connections:
1. Flanged: With flanges according to ASME B16.1 for iron valves.
2. Solder Joint: With sockets according to ASME B16.18.
3. Threaded: With threads according to ASME B1.20.1.

G. Valve Bypass and Drain Connections: MSS SP-45.

2.2 BRASS BALL VALVES

A. Two-Piece, Full-Port, Brass Ball Valves with Brass Trim:

1. Manufacturers: Subject to compliance with requirements provide products by one of the following:
 a. Crane Co.; Crane Valve Group; Crane Valves.
 b. Crane Co.; Crane Valve Group; Jenkins Valves.
 c. DynaQuip Controls.
 d. Flow-Tek, Inc.; a subsidiary of Bray International, Inc.
 e. Hammond Valve.
 f. Jamesbury; a subsidiary of Metso Automation.
 g. Jomar International, LTD.
 h. Kitz Corporation.
 i. Legend Valve.
 j. Marwin Valve; a division of Richards Industries.
 k. Milwaukee Valve Company.
 l. NIBCO INC.
 m. Red-White Valve Corporation.
 n. RuB Inc.

2. Description:
 b. SWP Rating: 150 psig.
 c. CWP Rating: 600 psig
 d. Body Design: Two piece.
 e. Body Material: Forged brass.
 f. Ends: Threaded.
 g. Seats: PTFE or TFE.
 h. Stem: Brass.
 i. Ball: Chrome-plated brass.
 j. Port: Full.

2.3 BRONZE BALL VALVES

A. Two-Piece, Full-Port, Bronze Ball Valves with Bronze Trim:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
a. American Valve, Inc.
b. Conbraco Industries, Inc.; Apollo Valves.
c. Crane Co.; Crane Valve Group; Crane Valves.
d. Hammond Valve.
e. Lance Valves; a division of Advanced Thermal Systems, Inc.
f. Legend Valve.
g. Milwaukee Valve Company.
h. NIBCO INC.
i. Red-White Valve Corporation.
j. Watts Regulator Co.; a division of Watts Water Technologies, Inc.

2. Description:
 b. SWP Rating: 150 psig.
 c. CWP Rating: 600 psig.
 d. Body Design: Two piece.
 e. Body Material: Bronze.
 f. Ends: Threaded.
 g. Seats: PTFE or TFE.
 h. Stem: Bronze.
 i. Ball: Chrome-plated brass.
 j. Port: Full.

2.4 IRON, SINGLE-FLANGE BUTTERFLY VALVES

A. 150 CWP, Iron, Single-Flange Butterfly Valves with EPDM Seat and Aluminum-Bronze Disc:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. ABZ Valve and Controls; a division of ABZ Manufacturing, Inc.
 b. Bray Controls; a division of Bray International.
 c. Conbraco Industries, Inc.; Apollo Valves.
 d. Cooper Cameron Valves; a division of Cooper Cameron Corp.
 e. Crane Co.; Crane Valve Group; Jenkins Valves.
 f. Crane Co.; Crane Valve Group; Stockham Division.
 g. DeZurik Water Controls.
 h. Hammond Valve.
 i. Kitz Corporation.
 j. Milwaukee Valve Company.
 k. NIBCO INC.
 l. Norriseal; a Dover Corporation company.
 m. Red-White Valve Corporation.
 n. Spence Strainers International; a division of CIRCOR International.
 o. Tyco Valves & Controls; a unit of Tyco Flow Control.
 p. Watts Regulator Co.; a division of Watts Water Technologies, Inc.

2. Description:
a. Standard: MSS SP-67, Type I.
b. CWP Rating: 150 psig.
c. Body Design: Lug type; suitable for bidirectional dead-end service at rated pressure without use of downstream flange.
d. Body Material: ASTM A 126, cast iron or ASTM A 536, ductile iron.
e. Seat: EPDM.
f. Stem: One- or two-piece stainless steel.
g. Disc: Aluminum bronze.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine valve interior for cleanliness, freedom from foreign matter, and corrosion. Remove special packing materials, such as blocks, used to prevent disc movement during shipping and handling.

B. Operate valves in positions from fully open to fully closed. Examine guides and seats made accessible by such operations.

C. Examine threads on valve and mating pipe for form and cleanliness.

D. Examine mating flange faces for conditions that might cause leakage. Check bolting for proper size, length, and material. Verify that gasket is of proper size, that its material composition is suitable for service, and that it is free from defects and damage.

E. Do not attempt to repair defective valves; replace with new valves.

3.2 VALVE INSTALLATION

A. Install valves with unions or flanges at each piece of equipment arranged to allow service, maintenance, and equipment removal without system shutdown.

B. Locate valves for easy access and provide separate support where necessary.

C. Install valves in horizontal piping with stem at or above center of pipe.

D. Install valves in position to allow full stem movement.

3.3 ADJUSTING

A. Adjust or replace valve packing after piping systems have been tested and put into service but before final adjusting and balancing. Replace valves if persistent leaking occurs.

3.4 GENERAL REQUIREMENTS FOR VALVE APPLICATIONS

A. If valve applications are not indicated, use the following:
1. Shutoff Service: Ball, and butterfly valves.

B. If valves with specified SWP classes or CWP ratings are not available, the same types of valves with higher SWP classes or CWP ratings may be substituted.

C. Select valves, except wafer types, with the following end connections:
 1. For Copper Tubing, NPS 2 and Smaller: Threaded ends except where solder-joint valve-end option is indicated in valve schedules below.
 2. For Copper Tubing, NPS 2-1/2 to NPS 4: Flanged ends except where threaded valve-end option is indicated in valve schedules below.
 3. For Steel Piping, NPS 2 and Smaller: Threaded ends.
 4. For Steel Piping, NPS 2-1/2 to NPS 4: Flanged ends except where threaded valve-end option is indicated in valve schedules below.

3.5 CHILLED-WATER VALVE SCHEDULE

A. Pipe NPS 2 and Smaller:
 1. Bronze and Brass Valves: May be provided with solder-joint ends instead of threaded ends.
 2. Ball Valves: Two pieces, full port, brass or bronze with brass or bronze trim.

B. Pipe NPS 2-1/2 and Larger:
 1. Iron Valves, NPS 2-1/2 to NPS 4: May be provided with threaded ends instead of flanged ends.

3.6 HEATING-WATER VALVE SCHEDULE

A. Pipe NPS 2 and Smaller:
 1. Bronze and Brass Valves: May be provided with solder-joint ends instead of threaded ends.
 2. Ball Valves: Two pieces, full port, brass or bronze with brass or bronze trim.

B. Pipe NPS 2-1/2 and Larger:

END OF SECTION
SECTION 230529

HANGERS AND SUPPORTS FOR HVAC EQUIPMENT

PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes:

1. Equipment supports.

1.2 PERFORMANCE REQUIREMENTS

A. Delegated Design: Design equipment supports, including comprehensive engineering analysis by a qualified professional engineer, using performance requirements and design criteria indicated.

B. Structural Performance: Hangers and supports for HVAC equipment shall withstand the effects of gravity loads and stresses within limits and under conditions indicated according to ASCE/SEI 7.

1. Design equipment supports capable of supporting combined operating weight of supported equipment and connected systems and components.

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product indicated.

B. Shop Drawings: Show fabrication and installation details and include calculations for the following; include Product Data for components:

1. Equipment supports.

C. Delegated-Design Submittal: For trapeze hangers indicated to comply with performance requirements and design criteria, including analysis data signed and sealed by the qualified professional engineer responsible for their preparation.

1. Detail fabrication and assembly of trapeze hangers.
2. Design Calculations: Calculate requirements for designing trapeze hangers.

1.4 INFORMATIONAL SUBMITTALS

A. Welding certificates.
1.5 QUALITY ASSURANCE

A. Structural Steel Welding Qualifications: Qualify procedures and personnel according to AWS D1.1/D1.1M, "Structural Welding Code - Steel."

B. Pipe Welding Qualifications: Qualify procedures and operators according to ASME Boiler and Pressure Vessel Code.

PART 2 - PRODUCTS

2.1 METAL FRAMING SYSTEMS

A. MFMA Manufacturer Metal Framing Systems:

 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 a. Cooper B-Line, Inc.
 b. Flex-Strut Inc.
 c. Thomas & Betts Corporation.
 d. Unistrut Corporation; Tyco International, Ltd.

2. Description: Shop- or field-fabricated pipe-support assembly for supporting multiple parallel pipes.
4. Channels: Continuous slotted steel channel with inturned lips.
5. Channel Nuts: Formed or stamped steel nuts or other devices designed to fit into channel slot and, when tightened, prevent slipping along channel.

2.2 FASTENER SYSTEMS

A. Powder-Actuated Fasteners: Threaded-steel stud, for use in hardened portland cement concrete with pull-out, tension, and shear capacities appropriate for supported loads and building materials where used.

B. Mechanical-Expansion Anchors: Insert-wedge-type, zinc-coated steel anchors, for use in hardened portland cement concrete; with pull-out, tension, and shear capacities appropriate for supported loads and building materials where used.

2.3 EQUIPMENT SUPPORTS

A. Description: Welded, shop- or field-fabricated equipment support made from structural carbon-steel shapes.
2.4 MISCELLANEOUS MATERIALS

A. Structural Steel: ASTM A 36/A 36M, carbon-steel plates, shapes, and bars; black and galvanized.

B. Grout: ASTM C 1107, factory-mixed and -packaged, dry, hydraulic-cement, nonshrink and nonmetallic grout; suitable for interior and exterior applications.
 2. Design Mix: 5000-psi 28-day compressive strength.

PART 3 - EXECUTION

3.1 EQUIPMENT SUPPORTS

A. Fabricate structural-steel stands to suspend equipment from structure overhead or to support equipment above floor.

B. Grouting: Place grout under supports for equipment and make bearing surface smooth.

C. Provide lateral bracing, to prevent swaying, for equipment supports.

3.2 METAL FABRICATIONS

A. Cut, drill, and fit miscellaneous metal fabrications for equipment supports.

B. Fit exposed connections together to form hairline joints. Field weld connections that cannot be shop welded because of shipping size limitations.

C. Field Welding: Comply with AWS D1.1/D1.1M procedures for shielded, metal arc welding; appearance and quality of welds; and methods used in correcting welding work; and with the following:
 1. Use materials and methods that minimize distortion and develop strength and corrosion resistance of base metals.
 2. Obtain fusion without undercut or overlap.
 3. Remove welding flux immediately.
 4. Finish welds at exposed connections so no roughness shows after finishing and so contours of welded surfaces match adjacent contours.

3.3 ADJUSTING

A. Hanger Adjustments: Adjust hangers to distribute loads equally on attachments and to achieve indicated slope of pipe.

B. Trim excess length of continuous-thread hanger and support rods to 1-1/2 inches
3.4 PAINTING

A. Touchup: Clean field welds and abraded areas of shop paint. Paint exposed areas immediately after erecting hangers and supports. Use same materials as used for shop painting. Comply with SSPC-PA 1 requirements for touching up field-painted surfaces.

1. Apply paint by brush or spray to provide a minimum dry film thickness of 2.0 mils

B. Galvanized Surfaces: Clean welds, bolted connections, and abraded areas and apply galvanizing-repair paint to comply with ASTM A 780.

3.5 HANGER AND SUPPORT SCHEDULE

A. Specific hanger and support requirements are in Sections specifying piping systems and equipment.

B. Use hangers and supports with galvanized metallic coatings for equipment that will not have field-applied finish.

C. Use nonmetallic coatings on attachments for electrolytic protection where attachments are in direct contact with copper tubing.

D. Use carbon-steel supports and metal framing systems and attachments for general service applications.

E. Building Attachments: Unless otherwise indicated and except as specified in system Sections, install the following types:

1. Steel or Malleable Concrete Inserts (MSS Type 18): For upper attachment to suspend hangers from concrete ceiling.
2. Top-Beam C-Clamps (MSS Type 19): For use under roof installations with bar-joist construction, to attach to top flange of structural shape.
3. Side-Beam or Channel Clamps (MSS Type 20): For attaching to bottom flange of beams, channels, or angles.
4. Center-Beam Clamps (MSS Type 21): For attaching to center of bottom flange of beams.
5. Welded Beam Attachments (MSS Type 22): For attaching to bottom of beams if loads are considerable and rod sizes are large.
6. C-Clamps (MSS Type 23): For structural shapes.
7. Top-Beam Clamps (MSS Type 25): For top of beams if hanger rod is required tangent to flange edge.
8. Side-Beam Clamps (MSS Type 27): For bottom of steel I-beams.
9. Steel-Beam Clamps with Eye Nuts (MSS Type 28): For attaching to bottom of steel I-beams for heavy loads.
10. Linked-Steel Clamps with Eye Nuts (MSS Type 29): For attaching to bottom of steel I-beams for heavy loads, with link extensions.
11. Malleable-Beam Clamps with Extension Pieces (MSS Type 30): For attaching to structural steel.
12. Welded-Steel Brackets: For support of pipes from below or for suspending from above by using clip and rod. Use one of the following for indicated loads:
a. Light (MSS Type 31): 750 lb
b. Medium (MSS Type 32): 1500 lb
c. Heavy (MSS Type 33): 3000 lb

13. Side-Beam Brackets (MSS Type 34): For sides of steel or wooden beams.
14. Plate Lugs (MSS Type 57): For attaching to steel beams if flexibility at beam is required.
15. Horizontal Travelers (MSS Type 58): For supporting piping systems subject to linear horizontal movement where headroom is limited.

F. Spring Hangers and Supports: Unless otherwise indicated and except as specified in system Sections, install the following types:

1. Spring Cushions (MSS Type 48): For light loads if vertical movement does not exceed 1-1/4 inches

G. Comply with MFMA-103 for metal framing system selections and applications that are not specified in piping system Sections.

H. Use powder-actuated fasteners or mechanical-expansion anchors instead of building attachments where required in concrete construction.

END OF SECTION
PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes:
 1. Equipment labels.
 2. Duct labels.
 3. Stencils.

1.2 ACTION SUBMITTALS

A. Product Data: For each type of product indicated.

1.3 COORDINATION

A. Coordinate installation of identifying devices with completion of covering and painting of surfaces where devices are to be applied.

B. Coordinate installation of identifying devices with locations of access panels and doors.

C. Install identifying devices before installing acoustical ceilings and similar concealment.

PART 2 - PRODUCTS

2.1 EQUIPMENT LABELS

A. Metal Labels for Equipment:
 1. Material and Thickness: Aluminum, 0.032-inch minimum thickness, and having predrilled or stamped holes for attachment hardware.
 2. Minimum Label Size: Length and width vary for required label content, but not less than 2-1/2 by 3/4 inch.
 3. Minimum Letter Size: 1/4 inch for name of units if viewing distance is less than 24 inches, 1/2 inch for viewing distances up to 72 inches, and proportionately larger lettering for greater viewing distances. Include secondary lettering two-thirds to three-fourths the size of principal lettering.

B. Label Content: Include equipment's Drawing designation or unique equipment number.
2.2 STENCILS

A. Stencils: Prepared with letter sizes according to ASME A13.1 for piping; minimum letter height of 1-1/4 inches for ducts; and minimum letter height of 3/4 inch for access panel and door labels, equipment labels, and similar operational instructions.

1. Stencil Material: Fiberboard or metal.
2. Stencil Paint: Exterior, gloss, alkyd enamel black unless otherwise indicated. Paint may be in pressurized spray-can form.
3. Identification Paint: Exterior, alkyd enamel in colors according to ASME A13.1 unless otherwise indicated.

PART 3 - EXECUTION

3.1 PREPARATION

A. Clean equipment and duct surfaces of substances that could impair bond of identification devices, including dirt, oil, grease, release agents, and incompatible primers, paints, and encapsulants.

3.2 EQUIPMENT LABEL INSTALLATION

A. Install or permanently fasten labels on each major item of mechanical equipment.

B. Locate equipment labels where accessible and visible.

3.3 DUCT LABEL INSTALLATION

A. Stenciled Duct Label: Stenciled labels, showing service and flow direction.

B. Locate labels near points where ducts enter into concealed spaces and at maximum intervals of 50 feet in each space where ducts are exposed or concealed by removable ceiling system.

END OF SECTION
PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes:

1. Balancing Air Systems:
 a. Variable-air-volume systems.

2. Balancing Hydronic Piping Systems:
 a. Variable-flow hydronic systems.

3. Balancing steam systems.

4. Testing, Adjusting, and Balancing Equipment:
 a. Heat exchangers.
 b. Motors.
 c. Condensing units.
 d. Heat-transfer coils.

5. Testing, adjusting, and balancing existing systems and equipment.

6. Control system verification.

1.2 DEFINITIONS

B. BAS: Building automation systems.

D. TAB: Testing, adjusting, and balancing.

F. TAB Specialist: An independent entity meeting qualifications to perform TAB work.

G. TDH: Total dynamic head.
1.3 PREINSTALLATION MEETINGS

A. TAB Conference: If requested by the Owner, conduct a TAB conference after approval of the TAB strategies and procedures plan to develop a mutual understanding of the details. Provide a minimum of 14 days' advance notice of scheduled meeting time and location.

1. Minimum Agenda Items:
 b. The TAB plan.
 c. Needs for coordination and cooperation of trades and subcontractors.
 d. Proposed procedures for documentation and communication flow.

1.4 INFORMATIONAL SUBMITTALS

A. Qualification Data: Within 30 days of Contractor's Notice to Proceed, submit documentation that the TAB specialist and this Project's TAB team members meet the qualifications specified in "Quality Assurance" Article.

D. System Readiness Checklists: Within 30 days of Contractor's Notice to Proceed, submit system readiness checklists as specified in "Preparation" Article.

E. Examination Report: Submit a summary report of the examination review required in "Examination" Article.

F. Certified TAB reports.

G. Sample report forms.

H. Instrument calibration reports, to include the following:
 1. Instrument type and make.
 2. Serial number.
 3. Application.
 4. Dates of use.
 5. Dates of calibration.

1.5 QUALITY ASSURANCE

A. TAB Specialists Qualifications: Certified by AABC or NEBB.

1. TAB Field Supervisor: Employee of the TAB specialist and certified by AABC or NEBB.
B. Instrumentation Type, Quantity, Accuracy, and Calibration: Comply with requirements in ASHRAE 111, Section 4, "Instrumentation."

C. ASHRAE Compliance: Applicable requirements in ASHRAE 62.1, Section 7.2.2 – “Air Balancing”

D. ASHRAE/IES 90.1 Compliance: Applicable requirements in ASHRAE/IES 90.1, Section 6.7.2.3 - "System Balancing."

1.6 FIELD CONDITIONS

A. Partial Owner Occupancy: Owner may occupy completed areas of building before Substantial Completion. Cooperate with Owner during TAB operations to minimize conflicts with Owner's operations.

PART 2 - PRODUCTS (Not Applicable)

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine the Contract Documents to become familiar with Project requirements and to discover conditions in systems designs that may preclude proper TAB of systems and equipment.

B. Examine installed systems for balancing devices, such as test ports, gage cocks, thermometer wells, flow-control devices, balancing valves and fittings, and manual volume dampers. Verify that locations of these balancing devices are applicable for intended purpose and are accessible.

C. Examine the approved submittals for HVAC systems and equipment.

D. Examine design data including HVAC system descriptions, statements of design assumptions for environmental conditions and systems output, and statements of philosophies and assumptions about HVAC system and equipment controls.

E. Examine ceiling plenums and underfloor air plenums used for supply, return, or relief air to verify that they are properly separated from adjacent areas. Verify that penetrations in plenum walls are sealed and fire-stopped if required.

F. Examine equipment performance data including fan and pump curves.

1. Relate performance data to Project conditions and requirements, including system effects that can create undesired or unpredicted conditions that cause reduced capacities in all or part of a system.

2. Calculate system-effect factors to reduce performance ratings of HVAC equipment when installed under conditions different from the conditions used to rate equipment performance. To calculate system effects for air systems, use tables and charts found in AMCA 201, "Fans and Systems," or in SMACNA's "HVAC Systems - Duct Design." Compare results with the design data and installed conditions.
G. Examine system and equipment installations and verify that field quality-control testing, cleaning, and adjusting specified in individual Sections have been performed.

H. Examine test reports specified in individual system and equipment Sections.

I. Examine HVAC equipment and verify that bearings are greased, belts are aligned and tight, filters are clean, and equipment with functioning controls is ready for operation.

J. Examine terminal units, such as variable-air-volume boxes, and verify that they are accessible and their controls are connected and functioning.

K. Examine strainers. Verify that startup screens have been replaced by permanent screens with indicated perforations.

L. Examine control valves for proper installation for their intended function of throttling, diverting, or mixing fluid flows.

M. Examine heat-transfer coils for correct piping connections and for clean and straight fins.

N. Examine system pumps to ensure absence of entrained air in the suction piping.

O. Examine operating safety interlocks and controls on HVAC equipment.

P. Report deficiencies discovered before and during performance of TAB procedures. Observe and record system reactions to changes in conditions. Record default set points if different from indicated values.

3.2 PREPARATION

A. Prepare a TAB plan that includes the following:

1. Equipment and systems to be tested.
3. Instrumentation to be used.
4. Sample forms with specific identification for all equipment.

B. Perform system-readiness checks of HVAC systems and equipment to verify system readiness for TAB work. Include, at a minimum, the following:

1. Airside:
 a. Verify that leakage and pressure tests on air distribution systems have been satisfactorily completed.
 b. Duct systems are complete with terminals installed.
 c. Volume, smoke, and fire dampers are open and functional.
 d. Clean filters are installed.
 e. Fans are operating, free of vibration, and rotating in correct direction.
 f. Variable-frequency controllers' startup is complete and safeties are verified.
 g. Automatic temperature-control systems are operational.
 h. Ceilings are installed.
 i. Windows and doors are installed.
j. Suitable access to balancing devices and equipment is provided.

2. Hydronics:
 a. Verify leakage and pressure tests on water distribution systems have been satisfactorily completed.
 b. Piping is complete with terminals installed.
 c. Water treatment is complete.
 d. Systems are flushed, filled, and air purged.
 e. Strainers are pulled and cleaned.
 f. Control valves are functioning per the sequence of operation.
 g. Shutoff and balance valves have been verified to be 100 percent open.
 h. Pumps are started and proper rotation is verified.
 i. Pump gage connections are installed directly at pump inlet and outlet flanges or in discharge and suction pipe prior to valves or strainers.
 j. Variable-frequency controllers' startup is complete and safeties are verified.
 k. Suitable access to balancing devices and equipment is provided.

3.3 GENERAL PROCEDURES FOR TESTING AND BALANCING

A. Perform testing and balancing procedures on each system according to the procedures contained in the certifying organization standards and in this section and in this Section.

B. Cut insulation, ducts, pipes, and equipment cabinets for installation of test probes to the minimum extent necessary for TAB procedures.
 1. After testing and balancing, patch probe holes in ducts with same material and thickness as used to construct ducts.
 2. After testing and balancing, install test ports and duct access doors that comply with requirements in Section 233300 "Air Duct Accessories."
 3. Install and join new insulation that matches removed materials. Restore insulation, coverings, vapor barrier, and finish according to Section 230713 "Duct Insulation," Section 230716 "HVAC Equipment Insulation," and Section 230719 "HVAC Piping Insulation."

C. Mark equipment and balancing devices, including damper-control positions, valve position indicators, fan-speed-control levers, and similar controls and devices, with paint or other suitable, permanent identification material to show final settings.

D. Take and report testing and balancing measurements in inch-pound (IP) units.

3.4 GENERAL PROCEDURES FOR BALANCING AIR SYSTEMS

A. Prepare test reports for both fans and outlets. Obtain manufacturer's outlet factors and recommended testing procedures. Cross-check the summation of required outlet volumes with required fan volumes.

B. Prepare schematic diagrams of systems' "as-built" duct layouts.
C. For variable-air-volume systems, develop a plan to simulate diversity.

D. Determine the best locations in main and branch ducts for accurate duct-airflow measurements.

E. Check airflow patterns from the outdoor-air louvers and dampers and the return- and exhaust-air dampers through the supply-fan discharge and mixing dampers.

F. Locate start-stop and disconnect switches, electrical interlocks, and motor starters.

G. Verify that motor starters are equipped with properly sized thermal protection.

H. Check dampers for proper position to achieve desired airflow path.

I. Check for airflow blockages.

J. Check condensate drains for proper connections and functioning.

K. Check for proper sealing of air-handling-unit components.

L. Verify that air duct system is sealed as specified in Section 233113 "Metal Ducts."

3.5 PROCEDURES FOR VARIABLE-AIR-VOLUME SYSTEMS

A. Adjust the variable-air-volume systems as follows:

1. Verify that the system static pressure sensor is located two-thirds of the distance down the duct from the fan discharge.
2. Verify that the system is under static pressure control.
3. Select the terminal unit that is most critical to the supply-fan airflow. Measure inlet static pressure, and adjust system static pressure control set point so the entering static pressure for the critical terminal unit is not less than the sum of the terminal-unit manufacturer's recommended minimum inlet static pressure plus the static pressure needed to overcome terminal-unit discharge system losses.
4. Calibrate and balance each terminal unit for maximum and minimum design airflow as follows:

 a. Adjust controls so that terminal is calling for maximum airflow. Some controllers require starting with minimum airflow. Verify calibration procedure for specific project.
 b. Measure airflow and adjust calibration factor as required for design maximum airflow. Record calibration factor.
 c. When maximum airflow is correct, balance the air outlets downstream from terminal units.
 d. Adjust controls so that terminal is calling for minimum airflow.
 e. Measure airflow and adjust calibration factor as required for design minimum airflow. Record calibration factor. If no minimum calibration is available, note any deviation from design airflow.
 f. When in full cooling or full heating, ensure that there is no mixing of hot-deck and cold-deck airstreams unless so designed.
g. On constant volume terminals, in critical areas where room pressure is to be maintained, verify that the airflow remains constant over the full range of full cooling to full heating. Note any deviation from design airflow or room pressure.

5. After terminals have been calibrated and balanced, test and adjust system for total airflow. Adjust fans to deliver total design airflows within the maximum allowable fan speed listed by fan manufacturer.

 a. Set outside-air, return-air, and relief-air dampers for proper position that simulates minimum outdoor-air conditions.
 b. Set terminals for maximum airflow. If system design includes diversity, adjust terminals for maximum and minimum airflow so that connected total matches fan selection and simulates actual load in the building.
 c. Where duct conditions allow, measure airflow by Pitot-tube traverse. If necessary, perform multiple Pitot-tube traverses to obtain total airflow.
 d. Where duct conditions are not suitable for Pitot-tube traverse measurements, a coil traverse may be acceptable.
 e. If a reliable Pitot-tube traverse or coil traverse is not possible, measure airflow at terminals and calculate the total airflow.

6. Measure fan static pressures as follows:

 a. Measure static pressure directly at the fan outlet or through the flexible connection.
 b. Measure static pressure directly at the fan inlet or through the flexible connection.
 c. Measure static pressure across each component that makes up the air-handling system.
 d. Report any artificial loading of filters at the time static pressures are measured.

7. Set final return and outside airflow to the fan while operating at maximum return airflow and minimum outdoor airflow.

 a. Balance the return-air ducts and inlets the same as described for constant-volume air systems.
 b. Verify that terminal units are meeting design airflow under system maximum flow.

8. Re-measure the inlet static pressure at the most critical terminal unit and adjust the system static pressure set point to the most energy-efficient set point to maintain the optimum system static pressure. Record set point and give to controls contractor.

9. Verify final system conditions as follows:

 a. Re-measure and confirm that minimum outdoor, return, and relief airflows are within design. Readjust to match design if necessary.
 b. Re-measure and confirm that total airflow is within design.
 c. Re-measure final fan operating data, rpms, volts, amps, and static profile.
 d. Mark final settings.
 e. Test system in economizer mode. Verify proper operation and adjust if necessary. Measure and record all operating data.
 f. Verify tracking between supply and return fans.
3.6 GENERAL PROCEDURES FOR HYDRONIC SYSTEMS

A. Prepare test reports for pumps, coils, and heat exchangers. Obtain approved submittals and manufacturer-recommended testing procedures. Crosscheck the summation of required coil and heat exchanger flow rates with pump design flow rate.

B. Prepare schematic diagrams of systems' "as-built" piping layouts.

C. In addition to requirements in "Preparation" Article, prepare hydronic systems for testing and balancing as follows:

1. Check liquid level in expansion tank.
2. Check highest vent for adequate pressure.
3. Check flow-control valves for proper position.
4. Locate start-stop and disconnect switches, electrical interlocks, and motor starters.
5. Verify that motor starters are equipped with properly sized thermal protection.
6. Check that air has been purged from the system.

3.7 PROCEDURES FOR VARIABLE-FLOW HYDRONIC SYSTEMS

A. Balance systems with automatic two- and three-way control valves by setting systems at maximum flow through heat-exchange terminals, and proceed as specified above for hydronic systems.

B. Adjust the variable-flow hydronic system as follows:

1. Verify that the differential-pressure sensor is located as indicated.
2. Determine whether there is diversity in the system.

C. For systems with no diversity:

1. Adjust pumps to deliver total design gpm.
 a. Measure total water flow.
 1) Position valves for full flow through coils.
 2) Measure flow by main flow meter, if installed.
 3) If main flow meter is not installed, determine flow by pump TDH or exchanger pressure drop.
 b. Measure pump TDH as follows:
 1) Measure discharge pressure directly at the pump outlet flange or in discharge pipe prior to any valves.
 2) Measure inlet pressure directly at the pump inlet flange or in suction pipe prior to any valves or strainers.
 3) Convert pressure to head and correct for differences in gage heights.
 4) Verify pump impeller size by measuring the TDH with the discharge valve closed. Note the point on manufacturer's pump curve at zero flow and verify that the pump has the intended impeller size.
5) With valves open, read pump TDH. Adjust pump discharge valve until design water flow is achieved.

2. Adjust flow-measuring devices installed in mains and branches to design water flows.
 a. Measure flow in main and branch pipes.
 b. Adjust main and branch balance valves for design flow.
 c. Re-measure each main and branch after all have been adjusted.

3. Adjust flow-measuring devices installed at terminals for each space to design water flows.
 a. Measure flow at terminals.
 b. Adjust each terminal to design flow.
 c. Re-measure each terminal after it is adjusted.
 d. Position control valves to bypass the coil and adjust the bypass valve to maintain design flow.
 e. Perform temperature tests after flows have been balanced.

4. For systems with pressure-independent valves at terminals:
 a. Measure differential pressure and verify that it is within manufacturer's specified range.
 b. Perform temperature tests after flows have been verified.

5. For systems without pressure-independent valves or flow-measuring devices at terminals:
 a. Measure and balance coils by either coil pressure drop or temperature method.
 b. If balanced by coil pressure drop, perform temperature tests after flows have been verified.

6. Prior to verifying final system conditions, determine the system differential-pressure set point.
7. If the pump discharge valve was used to set total system flow with variable-frequency controller at 60 Hz, at completion open discharge valve 100 percent and allow variable-frequency controller to control system differential-pressure set point. Record pump data under both conditions.

8. Mark final settings and verify that all memory stops have been set.
9. Verify final system conditions as follows:
 a. Re-measure and confirm that total water flow is within design.
 b. Re-measure final pumps' operating data, TDH, volts, amps, and static profile.
 c. Mark final settings.

10. Verify that memory stops have been set.

D. For systems with diversity:
1. Determine diversity factor.
2. Simulate system diversity by closing required number of control valves, as approved by the design engineer.
3. Adjust pumps to deliver total design gpm.
 a. Measure total water flow.
 1) Position valves for full flow through coils.
 2) Measure flow by main flow meter, if installed.
 3) If main flow meter is not installed, determine flow by pump TDH or exchanger pressure drop.
 b. Measure pump TDH as follows:
 1) Measure discharge pressure directly at the pump outlet flange or in discharge pipe prior to any valves.
 2) Measure inlet pressure directly at the pump inlet flange or in suction pipe prior to any valves or strainers.
 3) Convert pressure to head and correct for differences in gage heights.
 4) Verify pump impeller size by measuring the TDH with the discharge valve closed. Note the point on manufacturer's pump curve at zero flow and verify that the pump has the intended impeller size.
 5) With valves open, read pump TDH. Adjust pump discharge valve until design water flow is achieved.
4. Adjust flow-measuring devices installed in mains and branches to design water flows.
 a. Measure flow in main and branch pipes.
 b. Adjust main and branch balance valves for design flow.
 c. Re-measure each main and branch after all have been adjusted.
5. Adjust flow-measuring devices installed at terminals for each space to design water flows.
 a. Measure flow at terminals.
 b. Adjust each terminal to design flow.
 c. Re-measure each terminal after it is adjusted.
 d. Position control valves to bypass the coil, and adjust the bypass valve to maintain design flow.
 e. Perform temperature tests after flows have been balanced.
6. For systems with pressure-independent valves at terminals:
 a. Measure differential pressure, and verify that it is within manufacturer's specified range.
 b. Perform temperature tests after flows have been verified.
7. For systems without pressure-independent valves or flow-measuring devices at terminals:
a. Measure and balance coils by either coil pressure drop or temperature method.
b. If balanced by coil pressure drop, perform temperature tests after flows have been verified.

8. Open control valves that were shut. Close a sufficient number of control valves that were previously open to maintain diversity, and balance terminals that were just opened.
9. Prior to verifying final system conditions, determine system differential-pressure set point.
10. If the pump discharge valve was used to set total system flow with variable-frequency controller at 60 Hz, at completion open discharge valve 100 percent and allow variable-frequency controller to control system differential-pressure set point. Record pump data under both conditions.
11. Mark final settings and verify that memory stops have been set.
12. Verify final system conditions as follows:
 a. Re-measure and confirm that total water flow is within design.
 b. Re-measure final pumps' operating data, TDH, volts, amps, and static profile.
 c. Mark final settings.
13. Verify that memory stops have been set.

3.8 PROCEDURES FOR HEAT EXCHANGERS

A. Adjust water flow to within specified tolerances.
B. Measure inlet and outlet water temperatures.
C. Measure inlet steam pressure.
D. Check settings and operation of safety and relief valves. Record settings.

3.9 PROCEDURES FOR MOTORS

A. Motors 1/2 HP and Larger: Test at final balanced conditions and record the following data:

1. Manufacturer's name, model number, and serial number.
4. Phase and hertz.
5. Nameplate and measured voltage, each phase.
6. Nameplate and measured amperage, each phase.
7. Starter size and thermal-protection-element rating.
8. Service factor and frame size.

B. Motors Driven by Variable-Frequency Controllers: Test manual bypass of controller to prove proper operation.
3.10 PROCEDURES FOR CONDENSING UNITS
A. Verify proper rotation of fans.
B. Measure entering- and leaving-air temperatures.
C. Record fan and motor operating data.

3.11 PROCEDURES FOR BOILERS
A. Hydronic Boilers:
 1. Measure and record entering- and leaving-water temperatures.
 2. Measure and record water flow.
 3. Record relief valve pressure setting.
B. Steam Boilers:
 1. Measure and record entering-water temperature.
 2. Measure and record feed water flow.
 3. Measure and record leaving-steam pressure and temperature.
 4. Record relief valve pressure setting.

3.12 PROCEDURES FOR HEAT-TRANSFER COILS
A. Measure, adjust, and record the following data for each water coil:
 1. Entering- and leaving-water temperature.
 2. Water flow rate.
 3. Water pressure drop for major (more than 20 gpm) equipment coils, excluding unitary equipment such as reheat coils, unit heaters, and fan-coil units.
 4. Dry-bulb temperature of entering and leaving air.
 5. Wet-bulb temperature of entering and leaving air for cooling coils.
 6. Airflow.
B. Measure, adjust, and record the following data for each electric heating coil:
 1. Nameplate data.
 2. Airflow.
 3. Entering- and leaving-air temperature at full load.
 4. Voltage and amperage input of each phase at full load.
 5. Calculated kilowatt at full load.
 6. Fuse or circuit-breaker rating for overload protection.
C. Measure, adjust, and record the following data for each steam coil:
 1. Dry-bulb temperature of entering and leaving air.
 2. Airflow.
 3. Inlet steam pressure.
D. Measure, adjust, and record the following data for each refrigerant coil:

1. Dry-bulb temperature of entering and leaving air.
2. Wet-bulb temperature of entering and leaving air.
3. Airflow.

3.13 CONTROLS VERIFICATION

A. In conjunction with system balancing, perform the following:

1. Verify temperature control system is operating within the design limitations.
2. Confirm that the sequences of operation are in compliance with Contract Documents.
3. Verify that controllers are calibrated and function as intended.
4. Verify that controller set points are as indicated.
5. Verify the operation of lockout or interlock systems.
6. Verify the operation of valve and damper actuators.
7. Verify that controlled devices are properly installed and connected to correct controller.
8. Verify that controlled devices travel freely and are in position indicated by controller: open, closed, or modulating.
9. Verify location and installation of sensors to ensure that they sense only intended temperature, humidity, or pressure.

B. Reporting: Include a summary of verifications performed, remaining deficiencies, and variations from indicated conditions.

3.14 PROCEDURES FOR TESTING, ADJUSTING, AND BALANCING EXISTING SYSTEMS

A. Perform a preconstruction inspection of existing equipment that is to remain and be reused.

1. Measure and record the operating speed, airflow, and static pressure of each fan.
2. Measure motor voltage and amperage. Compare the values to motor nameplate information.
3. Check the refrigerant charge.
4. Check the condition of filters.
5. Check the condition of coils.
6. Check the operation of the drain pan and condensate-drain trap.
7. Check bearings and other lubricated parts for proper lubrication.

B. Before performing testing and balancing of existing systems, inspect existing equipment that is to remain and be reused to verify that existing equipment has been cleaned and refurbished. Verify the following:

1. New filters are installed.
2. Coils are clean and fins combed.
3. Drain pans are clean.
4. Fans are clean.
5. Bearings and other parts are properly lubricated.
Deficiencies noted in the preconstruction report are corrected.

C. Perform testing and balancing of existing systems to the extent that existing systems are affected by the renovation work.

1. Compare the indicated airflow of the renovated work to the measured fan airflows, and determine the new fan speed and the face velocity of filters and coils.
2. Verify that the indicated airflows of the renovated work result in filter and coil face velocities and fan speeds that are within the acceptable limits defined by equipment manufacturer.
3. If calculations increase or decrease the airflow rates and water flow rates by more than 5 percent, make equipment adjustments to achieve the calculated rates. If increase or decrease is 5 percent or less, equipment adjustments are not required.
4. Balance each air outlet.

3.15 TOLERANCES

A. Set HVAC system's airflow rates and water flow rates within the following tolerances:

1. Supply, Return, and Exhaust Fans and Equipment with Fans: Plus or minus 5 percent.
2. Air Outlets and Inlets: Plus or minus 5 percent.
3. Heating-Water Flow Rate: Plus 5 percent.

B. Maintaining pressure relationships as designed shall have priority over the tolerances specified above.

3.16 FINAL REPORT

A. General: Prepare a certified written report; tabulate and divide the report into separate sections for tested systems and balanced systems.

1. Include a certification sheet at the front of the report's binder, signed and sealed by the certified testing and balancing engineer.
2. Include a list of instruments used for procedures, along with proof of calibration.
3. Certify validity and accuracy of field data.

B. Final Report Contents: In addition to certified field-report data, include the following:

1. Pump curves.
2. Fan curves.
3. Manufacturers’ test data.
4. Field test reports prepared by system and equipment installers.
5. Other information relative to equipment performance; do not include Shop Drawings and Product Data.

C. General Report Data: In addition to form titles and entries, include the following data:

1. Title page.
2. Name and address of the TAB specialist.
3. Project name.
4. Project location.
5. Architect's name and address.
6. Engineer's name and address.
7. Contractor's name and address.
9. Signature of TAB supervisor who certifies the report.
10. Table of Contents with the total number of pages defined for each section of the report. Number each page in the report.
11. Summary of contents including the following:
 a. Indicated versus final performance.
 b. Notable characteristics of systems.
 c. Description of system operation sequence if it varies from the Contract Documents.
12. Nomenclature sheets for each item of equipment.
13. Data for terminal units, including manufacturer's name, type, size, and fittings.
14. Notes to explain why certain final data in the body of reports vary from indicated values.
15. Test conditions for fans and pump performance forms including the following:
 a. Settings for outdoor-, return-, and exhaust-air dampers.
 b. Conditions of filters.
 c. Cooling coil, wet- and dry-bulb conditions.
 d. Face and bypass damper settings at coils.
 e. Fan drive settings including settings and percentage of maximum pitch diameter.
 f. Inlet vane settings for variable-air-volume systems.
 g. Settings for supply-air, static-pressure controller.
 h. Other system operating conditions that affect performance.

D. System Diagrams: Include schematic layouts of air and hydronic distribution systems. Present each system with single-line diagram and include the following:
1. Quantities of outdoor, supply, return, and exhaust airflows.
2. Water and steam flow rates.
3. Duct, outlet, and inlet sizes.
4. Pipe and valve sizes and locations.
5. Terminal units.

E. Air-Handling-Unit Test Reports: For air-handling units with coils, include the following:
1. Unit Data:
 a. Unit identification.
 b. Location.
 c. Make and type.
 d. Model number and unit size.
 e. Manufacturer's serial number.
f. Unit arrangement and class.
g. Discharge arrangement.
h. Sheave make, size in inches, and bore.
i. Center-to-center dimensions of sheave and amount of adjustments in inches.
j. Number, make, and size of belts.
k. Number, type, and size of filters.

2. Motor Data:
 a. Motor make, and frame type and size.
 b. Horsepower and rpm.
 c. Volts, phase, and hertz.
 d. Full-load amperage and service factor.
 e. Sheave make, size in inches, and bore.
 f. Center-to-center dimensions of sheave and amount of adjustments in inches.

3. Test Data (Indicated and Actual Values):
 a. Total airflow rate in cfm.
 b. Total system static pressure in inches wg.
 c. Fan rpm.
 d. Discharge static pressure in inches wg.
 e. Filter static-pressure differential in inches wg.
 f. Preheat-coil static-pressure differential in inches wg.
 g. Cooling-coil static-pressure differential in inches wg.
 h. Heating-coil static-pressure differential in inches wg.
 i. Outdoor airflow in cfm.
 j. Return airflow in cfm.
 k. Outdoor-air damper position.
 l. Return-air damper position.
 m. Vortex damper position.

F. Apparatus-Coil Test Reports:

1. Coil Data:
 a. System identification.
 b. Location.
 c. Coil type.
 d. Number of rows.
 e. Fin spacing in fins per inch o.c.
 f. Make and model number.
 g. Face area in sq. ft..
 h. Tube size in NPS.
 i. Tube and fin materials.
 j. Circuiting arrangement.

2. Test Data (Indicated and Actual Values):
 a. Airflow rate in cfm.
 b. Average face velocity in fpm.
c. Air pressure drop in inches wg.
d. Outdoor-air, wet- and dry-bulb temperatures in deg F.
e. Return-air, wet- and dry-bulb temperatures in deg F.
f. Entering-air, wet- and dry-bulb temperatures in deg F.
g. Leaving-air, wet- and dry-bulb temperatures in deg F.
h. Water flow rate in gpm.
i. Water pressure differential in feet of head or psig.
j. Entering-water temperature in deg F.
k. Leaving-water temperature in deg F.
l. Refrigerant expansion valve and refrigerant types.
m. Refrigerant suction pressure in psig.
n. Refrigerant suction temperature in deg F.
o. Inlet steam pressure in psig.

G. Fan Test Reports: For supply, return, and exhaust fans, include the following:

1. Fan Data:
 a. System identification.
 b. Location.
 c. Make and type.
 d. Model number and size.
 e. Manufacturer's serial number.
 f. Arrangement and class.
 g. Sheave make, size in inches, and bore.
 h. Center-to-center dimensions of sheave and amount of adjustments in inches.

2. Motor Data:
 a. Motor make, and frame type and size.
 b. Horsepower and rpm.
 c. Volts, phase, and hertz.
 d. Full-load amperage and service factor.
 e. Sheave make, size in inches, and bore.
 f. Center-to-center dimensions of sheave, and amount of adjustments in inches.
 g. Number, make, and size of belts.

3. Test Data (Indicated and Actual Values):
 a. Total airflow rate in cfm.
 b. Total system static pressure in inches wg.
 c. Fan rpm.
 d. Discharge static pressure in inches wg.
 e. Suction static pressure in inches wg.

H. Round, Flat-Oval, and Rectangular Duct Traverse Reports: Include a diagram with a grid representing the duct cross-section and record the following:

1. Report Data:
 a. System and air-handling-unit number.
b. Location and zone.
c. Traverse air temperature in deg F.
d. Duct static pressure in inches wg.
e. Duct size in inches.
f. Duct area in sq. ft.
g. Indicated airflow rate in cfm.
h. Indicated velocity in fpm.
i. Actual airflow rate in cfm.
j. Actual average velocity in fpm.
k. Barometric pressure in psig.

I. Air-Terminal-Device Reports:

1. Unit Data:
 a. System and air-handling unit identification.
 b. Location and zone.
 c. Apparatus used for test.
 d. Area served.
 e. Make.
 f. Number from system diagram.
 g. Type and model number.
 h. Size.
 i. Effective area in sq. ft.

2. Test Data (Indicated and Actual Values):
 a. Airflow rate in cfm.
 b. Air velocity in fpm.
 c. Preliminary airflow rate as needed in cfm.
 d. Preliminary velocity as needed in fpm.
 e. Final airflow rate in cfm.
 f. Final velocity in fpm.
 g. Space temperature in deg F.

J. System-Coil Reports: For reheat coils and water coils of terminal units, include the following:

1. Unit Data:
 a. System and air-handling-unit identification.
 b. Location and zone.
 c. Room or riser served.
 d. Coil make and size.
 e. Flowmeter type.

2. Test Data (Indicated and Actual Values):
 a. Airflow rate in cfm.
 b. Entering-water temperature in deg F.
 c. Leaving-water temperature in deg F.
 d. Water pressure drop in feet of head or psig.
K. Pump Test Reports: Calculate impeller size by plotting the shutoff head on pump curves and include the following:

1. Unit Data:
 a. Unit identification.
 b. Location.
 c. Service.
 d. Make and size.
 e. Model number and serial number.
 f. Water flow rate in gpm.
 g. Water pressure differential in feet of head or psig.
 h. Required net positive suction head in feet of head or psig.
 i. Pump rpm.
 j. Impeller diameter in inches.
 k. Motor make and frame size.
 l. Motor horsepower and rpm.
 m. Voltage at each connection.
 n. Amperage for each phase.
 o. Full-load amperage and service factor.
 p. Seal type.

2. Test Data (Indicated and Actual Values):
 a. Static head in feet of head or psig.
 b. Pump shutoff pressure in feet of head or psig.
 c. Actual impeller size in inches.
 d. Full-open flow rate in gpm.
 e. Full-open pressure in feet of head or psig.
 f. Final discharge pressure in feet of head or psig.
 g. Final suction pressure in feet of head or psig.
 h. Final total pressure in feet of head or psig.
 i. Final water flow rate in gpm.
 j. Voltage at each connection.
 k. Amperage for each phase.

L. Instrument Calibration Reports:

1. Report Data:
 a. Instrument type and make.
 b. Serial number.
 c. Application.
 d. Dates of use.
 e. Dates of calibration.
3.17 VERIFICATION OF TAB REPORT

A. If rechecks yield measurements that differ from the measurements documented in the final report by more than the tolerances allowed, the measurements shall be noted as "FAILED."

B. If the number of "FAILED" measurements is greater than 10 percent of the total measurements checked during the final inspection, the testing and balancing shall be considered incomplete and shall be rejected.

C. If TAB work fails, proceed as follows:

1. TAB specialists shall recheck all measurements and make adjustments. Revise the final report and balancing device settings to include all changes; resubmit the final report and request a second final inspection.

2. If the second final inspection also fails, Owner may contract the services of another TAB specialist to complete TAB work according to the Contract Documents and deduct the cost of the services from the original TAB specialist's final payment.

3. If the second verification also fails, design professional or Architect may contact AABC Headquarters regarding the AABC National Performance Guaranty.

D. Prepare test and inspection reports.

3.18 ADDITIONAL TESTS

A. Within 90 days of completing TAB, perform additional TAB to verify that balanced conditions are being maintained throughout and to correct unusual conditions.

B. Seasonal Periods: If initial TAB procedures were not performed during near-peak summer and winter conditions, perform additional TAB during near-peak summer and winter conditions.

END OF SECTION
PART 1 - GENERAL

1.1 SUMMARY

A. Section includes insulating the following duct services:

1. Indoor, concealed supply and outdoor air.
2. Indoor, exposed supply and outdoor air.
3. Indoor, concealed return located in unconditioned space.
4. Indoor, exposed return located in unconditioned space.
5. Indoor, concealed exhaust between isolation damper and penetration of building exterior.
6. Indoor, exposed exhaust between isolation damper and penetration of building exterior.
7. Outdoor, concealed supply and return.
8. Outdoor, exposed supply and return.

B. Related Sections:

1. Section 233113 "Metal Ducts" for duct liners.

1.2 ACTION SUBMITTALS

A. Product Data: For each type of product indicated. Include thermal conductivity, water-vapor permeance thickness, and jackets (both factory- and field-applied if any).

B. Shop Drawings: Include plans, elevations, sections, details, and attachments to other work.

1. Detail application of protective shields, saddles, and inserts at hangers for each type of insulation and hanger.
2. Detail insulation application at elbows, fittings, dampers, specialties and flanges for each type of insulation.
3. Detail application at linkages of control devices.

1.3 INFORMATIONAL SUBMITTALS

A. Qualification Data: For qualified Installer.

B. Material Test Reports: From a qualified testing agency acceptable to authorities having jurisdiction indicating, interpreting, and certifying test results for compliance of insulation materials, sealers, attachments, cements, and jackets, with requirements indicated. Include dates of tests and test methods employed.

C. Field quality-control reports.
1.4 QUALITY ASSURANCE

A. Surface-Burning Characteristics: For insulation and related materials, as determined by testing identical products according to ASTM E 84, by a testing agency acceptable to authorities having jurisdiction. Factory label insulation and jacket materials and adhesive, mastic, tapes, and cement material containers, with appropriate markings of applicable testing agency.

1. Insulation Installed Indoors: Flame-spread index of 25 or less, and smoke-developed index of 50 or less.
2. Insulation Installed Outdoors: Flame-spread index of 75 or less, and smoke-developed index of 150 or less.

1.5 DELIVERY, STORAGE, AND HANDLING

A. Packaging: Insulation material containers shall be marked by manufacturer with appropriate ASTM standard designation, type and grade, and maximum use temperature.

1.6 COORDINATION

A. Coordinate sizes and locations of supports, hangers, and insulation shields.

B. Coordinate clearance requirements with duct Installer for duct insulation application. Before preparing ductwork Shop Drawings, establish and maintain clearance requirements for installation of insulation and field-applied jackets and finishes and for space required for maintenance.

1.7 SCHEDULING

A. Schedule insulation application with other trades.

PART 2 - PRODUCTS

2.1 INSULATION MATERIALS

B. Products shall not contain asbestos, lead, mercury, or mercury compounds.

C. Mineral-Fiber Blanket Insulation: Mineral or glass fibers bonded with a thermosetting resin. Comply with ASTM C 553, Type II and ASTM C 1290, Type III with factory-applied FSP jacket. Factory-applied jacket requirements are specified in "Factory-Applied Jackets" Article.

1. Products: Subject to compliance with requirements, provide one of the following:

a. CertainTeed Corp.; SoftTouch Duct Wrap.
b. Johns Manville; Microlite.
c. Knauf Insulation; Friendly Feel Duct Wrap.
d. Manson Insulation Inc.; Alley Wrap.
e. Owens Corning; SOFTR All-Service Duct Wrap.

2.2 ADHESIVES

A. Materials shall be compatible with insulation materials, jackets, and substrates and for bonding insulation to itself and to surfaces to be insulated unless otherwise indicated.

B. Mineral-Fiber Adhesive: Comply with MIL-A-3316C, Class 2, Grade A.

1. **Products:** Subject to compliance with requirements, provide one of the following:

2. For indoor applications, adhesive shall have a VOC content of 80 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).

1. **Products:** Subject to compliance with requirements, provide one of the following:
 b. Eagle Bridges - Marathon Industries; 225.

2. For indoor applications, adhesive shall have a VOC content of 50 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).

2.3 MASTICS

A. Materials shall be compatible with insulation materials, jackets, and substrates; comply with MIL-PRF-19565C, Type II.

1. For indoor applications, use mastics that have a VOC content of 50 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).

B. Vapor-Barrier Mastic: Water based; suitable for indoor use on below ambient services.

1. **Products:** Subject to compliance with requirements, provide one of the following:
b. **Vimasco Corporation: 749.**

2. Water-Vapor Permeance: ASTM E 96/E 96M, Procedure B, 0.013 perm at 43-mil dry film thickness.
3. Service Temperature Range: Minus 20 to plus 180 deg F.
4. Solids Content: ASTM D 1644, 58 percent by volume and 70 percent by weight.

C. Vapor-Barrier Mastic: Solvent based; suitable for indoor use on below ambient services.

1. **Products:** Subject to compliance with requirements, provide one of the following:
 a. **Childers Brand, Specialty Construction Brands, Inc., a business of H. B. Fuller Company; CP-30.**
 b. **Eagle Bridges - Marathon Industries; 501.**
 c. **Foster Brand, Specialty Construction Brands, Inc., a business of H. B. Fuller Company; 30-35.**
 d. **Mon-Eco Industries, Inc.: 55-10.**

2. Water-Vapor Permeance: ASTM F 1249, 0.05 perm at 35-mil dry film thickness.
3. Service Temperature Range: 0 to 180 deg F.

2.4 FACTORY-APPLIED JACKETS

A. Insulation system schedules indicate factory-applied jackets on various applications. When factory-applied jackets are indicated, comply with the following:

1. **FSK Jacket:** Aluminum-foil, fiberglass-reinforced scrim with kraft-paper backing; complying with ASTM C 1136, Type II.

2.5 SECUREMENTS

A. Insulation Pins and Hangers:

1. Metal, Adhesively Attached, Perforated-Base Insulation Hangers: Baseplate welded to projecting spindle that is capable of holding insulation, of thickness indicated, securely in position indicated when self-locking washer is in place. Comply with the following requirements:
 a. **Products:** Subject to compliance with requirements, provide one of the following:
 1) **AGM Industries, Inc.; Tactoo Perforated Base Insul-Hangers.**
 2) **GEMCO; Perforated Base.**
 3) **Midwest Fasteners, Inc.; Spindle.**
 b. **Baseplate:** Perforated, galvanized carbon-steel sheet, 0.030 inch thick by 2 inches square.
c. **Spindle:** Copper- or zinc-coated, low-carbon steel, fully annealed, 0.106-inch-diameter Shank, length to suit depth of insulation indicated.

d. **Adhesive:** Recommended by hanger manufacturer. Product with demonstrated capability to bond insulation hanger securely to substrates indicated without damaging insulation, hangers, and substrates.

2. **Insulation-Retaining Washers:** Self-locking washers formed from 0.016-inch-thick, galvanized-steel sheet, with beveled edge sized as required to hold insulation securely in place but not less than 1-1/2 inches in diameter.

 a. **Products:** Subject to compliance with requirements, provide one of the following:

 1) *AGM Industries, Inc.; RC-150.*
 2) *GEMCO; R-150.*
 3) *Midwest Fasteners, Inc.; WA-150.*
 4) *Nelson Stud Welding; Speed Clips.*

 b. Protect ends with capped self-locking washers incorporating a spring steel insert to ensure permanent retention of cap in exposed locations.

B. **Staples:** Outward-clinching insulation staples, nominal 3/4-inch-wide, stainless steel or Monel.

PART 3 - EXECUTION

3.1 **EXAMINATION**

 A. Examine substrates and conditions for compliance with requirements for installation tolerances and other conditions affecting performance of insulation application.

 1. Verify that systems to be insulated have been tested and are free of defects.
 2. Verify that surfaces to be insulated are clean and dry.

 B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 **PREPARATION**

 A. **Surface Preparation:** Clean and dry surfaces to receive insulation. Remove materials that will adversely affect insulation application.

3.3 **GENERAL INSTALLATION REQUIREMENTS**

 A. Install insulation materials, accessories, and finishes with smooth, straight, and even surfaces; free of voids throughout the length of ducts and fittings.

 B. Install insulation materials, vapor barriers or retarders, jackets, and thicknesses required for each item of duct system as specified in insulation system schedules.
C. Install accessories compatible with insulation materials and suitable for the service. Install accessories that do not corrode, soften, or otherwise attack insulation or jacket in either wet or dry state.

D. Install insulation with longitudinal seams at top and bottom of horizontal runs.

E. Install multiple layers of insulation with longitudinal and end seams staggered.

F. Keep insulation materials dry during application and finishing.

G. Install insulation with tight longitudinal seams and end joints. Bond seams and joints with adhesive recommended by insulation material manufacturer.

H. Install insulation with least number of joints practical.

I. Where vapor barrier is indicated, seal joints, seams, and penetrations in insulation at hangers, supports, anchors, and other projections with vapor-barrier mastic.

1. Install insulation continuously through hangers and around anchor attachments.
2. For insulation application where vapor barriers are indicated, extend insulation on anchor legs from point of attachment to supported item to point of attachment to structure. Taper and seal ends at attachment to structure with vapor-barrier mastic.
3. Install insert materials and install insulation to tightly join the insert. Seal insulation to insulation inserts with adhesive or sealing compound recommended by insulation material manufacturer.

J. Apply adhesives, mastics, and sealants at manufacturer's recommended coverage rate and wet and dry film thicknesses.

K. Install insulation with factory-applied jackets as follows:

1. Draw jacket tight and smooth.
2. Cover circumferential joints with 3-inch-wide strips, of same material as insulation jacket. Secure strips with adhesive and outward clinching staples along both edges of strip, spaced 4 inches o.c.
3. Overlap jacket longitudinal seams at least 1-1/2 inches. Clean and dry surface to receive self-sealing lap. Staple laps with outward clinching staples along edge at 4 inches o.c.
 a. For below ambient services, apply vapor-barrier mastic over staples.
4. Where vapor barriers are indicated, apply vapor-barrier mastic on seams and joints and at ends adjacent to duct flanges and fittings.

L. Cut insulation in a manner to avoid compressing insulation more than 75 percent of its nominal thickness.

M. Finish installation with systems at operating conditions. Repair joint separations and cracking due to thermal movement.

N. Repair damaged insulation facings by applying same facing material over damaged areas. Extend patches at least 4 inches beyond damaged areas. Adhere, staple, and seal patches similar to butt joints.
3.4 PENETRATIONS

A. Insulation Installation at Roof Penetrations: Install insulation continuously through roof penetrations.
 1. Seal penetrations with flashing sealant.
 2. For applications requiring only indoor insulation, terminate insulation above roof surface and seal with joint sealant. For applications requiring indoor and outdoor insulation, install insulation for outdoor applications tightly joined to indoor insulation ends. Seal joint with joint sealant.
 3. Extend jacket of outdoor insulation outside roof flashing at least 2 inches below top of roof flashing.
 4. Seal jacket to roof flashing with flashing sealant.

B. Insulation Installation at Aboveground Exterior Wall Penetrations: Install insulation continuously through wall penetrations.
 1. Seal penetrations with flashing sealant.
 2. For applications requiring only indoor insulation, terminate insulation inside wall surface and seal with joint sealant. For applications requiring indoor and outdoor insulation, install insulation for outdoor applications tightly joined to indoor insulation ends. Seal joint with joint sealant.
 3. Extend jacket of outdoor insulation outside wall flashing and overlap wall flashing at least 2 inches.
 4. Seal jacket to wall flashing with flashing sealant.

C. Insulation Installation at Interior Wall and Partition Penetrations (That Are Not Fire Rated): Install insulation continuously through walls and partitions.

D. Insulation Installation at Fire-Rated Wall and Partition Penetrations: Terminate insulation at fire damper sleeves for fire-rated wall and partition penetrations. Externally insulate damper sleeves to match adjacent insulation and overlap duct insulation at least 2 inches.
 1. Comply with requirements in Section 078413 "Penetration Firestopping" and fire-resistant joint sealers.

E. Insulation Installation at Floor Penetrations:
 1. Duct: For penetrations through fire-rated assemblies, terminate insulation at fire damper sleeves and externally insulate damper sleeve beyond floor to match adjacent duct insulation. Overlap damper sleeve and duct insulation at least 2 inches.
 2. Seal penetrations through fire-rated assemblies. Comply with requirements in Section 078413 "Penetration Firestopping."

3.5 INSTALLATION OF MINERAL-FIBER INSULATION

A. Blanket Insulation Installation on Ducts and Plenums: Secure with adhesive and insulation pins.
1. Apply adhesives according to manufacturer’s recommended coverage rates per unit area, for 50 percent coverage of duct and plenum surfaces.
2. Apply adhesive to entire circumference of ducts and to all surfaces of fittings and transitions.
3. Install pins and speed washers on sides and bottom of horizontal ducts and sides of vertical ducts as follows:
 a. On duct sides with dimensions 18 inches and smaller, place pins along longitudinal centerline of duct. Space 3 inches maximum from insulation end joints, and 16 inches o.c.
 b. On duct sides with dimensions larger than 18 inches, place pins 16 inches o.c. each way, and 3 inches maximum from insulation joints. Install additional pins to hold insulation tightly against surface at cross bracing.
 c. Pins may be omitted from top surface of horizontal, rectangular ducts and plenums.
 d. Do not overcompress insulation during installation.
 e. Impale insulation over pins and attach speed washers.
 f. Cut excess portion of pins extending beyond speed washers or bend parallel with insulation surface. Cover exposed pins and washers with tape matching insulation facing.
4. For ducts and plenums with surface temperatures below ambient, install a continuous unbroken vapor barrier. Create a facing lap for longitudinal seams and end joints with insulation by removing 2 inches from one edge and one end of insulation segment. Secure laps to adjacent insulation section with 1/2-inch outward-clinching staples, 1 inch o.c. Install vapor barrier consisting of factory-applied jacket, adhesive, vapor-barrier mastic, and sealant at joints, seams, and protrusions.
 a. Repair punctures, tears, and penetrations with tape or mastic to maintain vapor-barrier seal.
 b. Install vapor stops for ductwork and plenums operating below 50 deg F at 18-foot intervals. Vapor stops shall consist of vapor-barrier mastic applied in a Z-shaped pattern over insulation face, along butt end of insulation, and over the surface. Cover insulation face and surface to be insulated a width equal to two times the insulation thickness, but not less than 3 inches.
5. Overlap unfaced blankets a minimum of 2 inches on longitudinal seams and end joints. At end joints, secure with steel bands spaced a maximum of 18 inches o.c.
6. Install insulation on rectangular duct elbows and transitions with a full insulation section for each surface. Install insulation on round and flat-oval duct elbows with individually mitered gores cut to fit the elbow.
7. Insulate duct stiffeners, hangers, and flanges that protrude beyond insulation surface with 6-inch-wide strips of same material used to insulate duct. Secure on alternating sides of stiffener, hanger, and flange with pins spaced 6 inches o.c.

3.6 DUCT INSULATION SCHEDULE, GENERAL

A. Plenums and Ducts Requiring Insulation:
 1. Indoor, concealed supply and outdoor air.
 2. Indoor, exposed supply and outdoor air.
3. Indoor, concealed return located in unconditioned space.
4. Indoor, exposed return located in unconditioned space.
5. Indoor, concealed exhaust between isolation damper and penetration of building exterior.
6. Indoor, exposed exhaust between isolation damper and penetration of building exterior.
7. Outdoor, concealed supply and return.
8. Outdoor, exposed supply and return.

B. Items Not Insulated:

1. Metal ducts with duct liner of sufficient thickness to comply with energy code and ASHRAE/IESNA 90.1.
2. Factory-insulated flexible ducts.
3. Factory-insulated plenums and casings.
4. Flexible connectors.
5. Vibration-control devices.
6. Factory-insulated access panels and doors.

3.7 INDOOR DUCT AND PLENUM INSULATION SCHEDULE

A. Concealed, round, supply and return-air duct insulation shall be the following:

1. Mineral-Fiber Blanket: 2 inches thick and 1.5-lb/cu. ft. nominal density.

B. Concealed, round, outdoor-air duct insulation shall be the following:

1. Mineral-Fiber Blanket: 3 inches thick and 0.75-lb/cu. ft. nominal density.

C. Concealed, round, exhaust-air duct insulation shall be the following:

1. Mineral-Fiber Blanket: 1-1/2 inches thick and 0.75-lb/cu. ft. nominal density.

D. Concealed, rectangular, air duct insulation shall be the following:

1. Comply with requirements in Section 233113 "Metal Ducts".

E. Concealed, air plenum insulation shall be the following:

1. Comply with requirements in Section 233113 "Metal Ducts".

F. Exposed, round, air duct insulation shall be the following:

1. Comply with requirements in Section 233113 "Metal Ducts".

END OF SECTION
PART 1 - GENERAL

1.1 SUMMARY

A. Section includes insulating the following HVAC piping systems:

1. Chilled-water piping, indoors.
2. Hot-water piping, indoors.

1.2 SUBMITTALS

A. GENERAL MECHANICAL SUBMITTAL REQUIREMENTS

1. In addition to submittal procedures indicated in other sections of this specification, all Division 23 items shall be submitted as one complete set, tabbed and indexed with all equipment and systems properly and clearly identified per project document designations (partial submittals will not be accepted without the written permission of the Engineer). All capacities, standard accessories, options and characteristics shall be clearly and individually identified. Any deviations from the specified systems and equipment shall be clearly identified and accompanied by descriptions, explanations, drawings and calculations, etc. to support their use, indicating specifically how the submitted items will meet requirements of the original design specifications. The Engineer shall have sole discretion, without recourse, as to the determination of what items are deemed suitable for approval. Alternative submittals/substitutions: If re-design of the building and/or systems is required to accommodate the proposed alternative equipment/systems, such re-design shall be performed by the A/E of record, and paid for (on an hourly basis, plus expenses) by the contractor requesting the substitution. Submittals not meeting these requirements are subject to return without notice or review.

B. Product Data: For each type of product indicated. Include thermal conductivity, water-vapor permeance thickness, and jackets (both factory and field applied if any).

C. Shop Drawings: Include plans, elevations, sections, details, and attachments to other work.

1. Detail application of protective shields, saddles, and inserts at hangers for each type of insulation and hanger.
2. Detail insulation application at pipe expansion joints for each type of insulation.
3. Detail insulation application at elbows, fittings, flanges, valves, and specialties for each type of insulation.
4. Detail removable insulation at piping specialties.
5. Detail application of field-applied jackets.
6. Detail application at linkages of control devices.
D. Qualification Data: For qualified Installer.

E. Material Test Reports: From a qualified testing agency acceptable to authorities having jurisdiction indicating, interpreting, and certifying test results for compliance of insulation materials, sealers, attachments, cements, and jackets, with requirements indicated. Include dates of tests and test methods employed.

F. Field quality-control reports.

G. All equipment and accessories (including piping) shall be made in the United States of America. No exceptions unless approved prior to bidding.

1.3 QUALITY ASSURANCE

A. Installer Qualifications: Skilled mechanics who have successfully completed an apprenticeship program or another craft training program certified by the Department of Labor, Bureau of Apprenticeship and Training.

B. Surface-Burning Characteristics: For insulation and related materials, as determined by testing identical products according to ASTM E84, by a testing and inspecting agency acceptable to authorities having jurisdiction. Factory label insulation and jacket materials and adhesive, mastic, tapes, and cement material containers, with appropriate markings of applicable testing agency.

1. Insulation Installed Indoors: Flame-spread index of 25 or less, and smoke-developed index of 50 or less.
2. Insulation Installed Outdoors: Flame-spread index of 75 or less, and smoke-developed index of 150 or less.

1.4 DELIVERY, STORAGE, AND HANDLING

A. Packaging: Insulation material containers shall be marked by manufacturer with appropriate ASTM standard designation, type and grade, and maximum use temperature.

1.5 COORDINATION

A. Coordinate sizes and locations of supports, hangers, and insulation shields specified in Section 230529 "Hangers and Supports for HVAC Piping and Equipment."

B. Coordinate clearance requirements with piping Installer for piping insulation application. Before preparing piping Shop Drawings, establish and maintain clearance requirements for installation of insulation and field-applied jackets and finishes and for space required for maintenance.
2.1 INSULATION MATERIALS

B. Products shall not contain asbestos, lead, mercury, or mercury compounds.

C. Products that come in contact with stainless steel shall have a leachable chloride content of less than 50 ppm when tested according to ASTM C 871.

D. Insulation materials for use on austenitic stainless steel shall be qualified as acceptable according to ASTM C 795.

E. Foam insulation materials shall not use CFC or HCFC blowing agents in the manufacturing process.

F. Phenolic:
 1. Preformed pipe insulation of rigid, expanded, closed-cell structure. Comply with ASTM C 1126, Type III, Grade 1.
 2. Block insulation of rigid, expanded, closed-cell structure. Comply with ASTM C 1126, Type II, Grade 1.
 3. Factory fabricate shapes according to ASTM C 450 and ASTM C 585.
 a. Preformed Pipe Insulation: ASJ.

G. Cellular Glass: Inorganic, incom bustible, foamed or cellu lated glass with annealed, rigid, hermetically sealed cells. Factory-applied jacket requirements are specified in "Factory-Applied Jackets" Article.
 1. Block Insulation: ASTM C 552, Type I.
 2. Special-Shaped Insulation: ASTM C 552, Type III.
 3. Board Insulation: ASTM C 552, Type IV.
 5. Factory fabricate shapes according to ASTM C 450 and ASTM C 585.

H. Mineral-Fiber, Preformed Pipe Insulation:
 1. Type I, 850 deg F Materials: Mineral or glass fibers bonded with a thermosetting resin. Comply with ASTM C 547, Type I, Grade A, with factory-applied ASJ. Factory-applied jacket requirements are specified in "Factory-Applied Jackets" Article.
2.2 INSULATING CEMENTS

 1. **Products:** Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:

 a. [Ramco Insulation, Inc.; Super-Stik](#).

2.3 ADHESIVES

A. Materials shall be compatible with insulation materials, jackets, and substrates and for bonding insulation to itself and to surfaces to be insulated unless otherwise indicated.

B. Cellular-Glass Adhesive: Two-component, thermosetting urethane adhesive containing no flammable solvents, with a service temperature range of minus 100 to plus 200 deg F.

 1. For indoor applications, adhesive shall have a VOC content of 50 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).

C. Phenolic Adhesive: Solvent-based resin adhesive, with a service temperature range of minus 75 to plus 300 deg F.

 1. For indoor applications, adhesive shall have a VOC content of 50 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).

 1. **Products:** Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:

 a. [Childers Brand](#), Specialty Construction Brands, Inc., a business of H. B. Fuller Company; CP-82.
 b. [Eagle Bridges](#) - Marathon Industries; 225.
 d. [Mon-Eco Industries, Inc.](#); 22-25.

 2. For indoor applications, adhesive shall have a VOC content of 50 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).

E. PVC Jacket Adhesive: Compatible with PVC jacket.

 1. For indoor applications, adhesive shall have a VOC content of 50 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).

 2. Adhesive shall comply with the testing and product requirements of the California Department of Health Services’ “Standard Practice for the Testing of Volatile
Organic Emissions from Various Sources Using Small-Scale Environmental Chambers."

2.4 MASTICS

A. Materials shall be compatible with insulation materials, jackets, and substrates; comply with MIL-PRF-19565C, Type II.

1. For indoor applications, use mastics that have a VOC content of 50 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).

B. Vapor-Barrier Mastic: Water based; suitable for indoor use on below-ambient services.

1. **Products:** Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:

 b. Vimasco Corporation; 749.

2. Water-Vapor Permeance: ASTM E 96/E 96M, Procedure B, 0.013 perm at 43-mil dry film thickness.

3. Service Temperature Range: Minus 20 to plus 180 deg F.

4. Solids Content: ASTM D 1644, 58 percent by volume and 70 percent by weight.

C. Vapor-Barrier Mastic: Solvent based; suitable for outdoor use on below-ambient services.

1. **Products:** Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:

 b. Eagle Bridges - Marathon Industries; 570.

2. Water-Vapor Permeance: ASTM F 1249, 0.05 perm at 30-mil dry film thickness.

3. Service Temperature Range: Minus 50 to plus 220 deg F.

4. Solids Content: ASTM D 1644, 33 percent by volume and 46 percent by weight.

D. Breather Mastic: Water based; suitable for indoor and outdoor use on above-ambient services.

1. **Products:** Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:

d. **Mon-Eco Industries, Inc.**; 55-50.
e. **Vimasco Corporation**; WC-1/WC-5.

2. Water-Vapor Permeance: ASTM F 1249, 1.8 perms at 0.0625-inch dry film thickness.
3. Service Temperature Range: Minus 20 to plus 180 deg F.
4. Solids Content: 60 percent by volume and 66 percent by weight.

2.5 LAGGING ADHESIVES

A. Description: Comply with MIL-A-3316C, Class I, Grade A and shall be compatible with insulation materials, jackets, and substrates.

1. For indoor applications, use lagging adhesives that have a VOC content of 50 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
2. **Products:** Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:

 c. **Vimasco Corporation**; 713 and 714.

3. Fire-resistant, water-based lagging adhesive and coating for use indoors to adhere fire-resistant lagging cloths over pipe insulation.
4. Service Temperature Range: 0 to plus 180 deg F.

2.6 SEALANTS

A. FSK and Metal Jacket Flashing Sealants:

1. **Products:** Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:

 b. **Eagle Bridges** - Marathon Industries; 405.
 c. **Foster Brand**, Specialty Construction Brands, Inc., a business of H. B. Fuller Company; 95-44.
 d. **Mon-Eco Industries, Inc.**; 44-05.

2. Materials shall be compatible with insulation materials, jackets, and substrates.
3. Fire- and water-resistant, flexible, elastomeric sealant.
4. Service Temperature Range: Minus 40 to plus 250 deg F.
5. Color: Aluminum.
6. For indoor applications, sealants shall have a VOC content of 420 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).

B. ASJ Flashing Sealants, and Vinyl, PVDC, and PVC Jacket Flashing Sealants:
 1. **Products**: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:
 2. Materials shall be compatible with insulation materials, jackets, and substrates.
 3. Fire- and water-resistant, flexible, elastomeric sealant.
 4. Service Temperature Range: Minus 40 to plus 250 deg F.
 6. For indoor applications, sealants shall have a VOC content of 420 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).

2.7 FACTORY-APPLIED JACKETS
A. Insulation system schedules indicate factory-applied jackets on various applications. When factory-applied jackets are indicated, comply with the following:
 1. ASJ: White, kraft-paper, fiberglass-reinforced scrim with aluminum-foil backing; complying with ASTM C 1136, Type I.

2.8 FIELD-APPLIED JACKETS
A. Field-applied jackets shall comply with ASTM C 921, Type I, unless otherwise indicated.
B. PVC Jacket: High-impact-resistant, UV-resistant PVC complying with ASTM D 1784, Class 16354-C; thickness as scheduled; roll stock ready for shop or field cutting and forming. Thickness is indicated in field-applied jacket schedules.
 1. Adhesive: As recommended by jacket material manufacturer.
 2. Color: Color-code jackets based on TCCD COLOR CHART.
 3. Factory-fabricated fitting covers to match jacket if available; otherwise, field fabricate.
 a. Shapes: 45- and 90-degree, short- and long-radius elbows, tees, valves, flanges, unions, reducers, end caps, soil-pipe hubs, traps, mechanical joints, and P-trap and supply covers for lavatories.

2.9 SECUREMENTS
A. Bands:
1. **Products:** Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:

a. [ITW Insulation Systems](#); Gerrard Strapping and Seals.
b. [RPR Products, Inc.](#); Insul-Mate Strapping, Seals, and Springs.

2. Stainless Steel: ASTM A 167 or ASTM A 240/A 240M, Type 316; 0.015 inch thick, 3/4 inch wide with wing seal or closed seal.

B. Staples: Outward-clinching insulation staples, nominal 3/4-inch-wide, stainless steel or Monel.

C. Wire: 0.062-inch soft-annealed, stainless steel.

1. **Manufacturers:** Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:

a. [C & F Wire](#).

PART 3 - EXECUTION

3.1 **EXAMINATION**

A. Examine substrates and conditions for compliance with requirements for installation tolerances and other conditions affecting performance of insulation application.

1. Verify that systems to be insulated have been tested and are free of defects.
2. Verify that surfaces to be insulated are clean and dry.
3. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 **PREPARATION**

A. Surface Preparation: Clean and dry surfaces to receive insulation. Remove materials that will adversely affect insulation application.

B. Coordinate insulation installation with the trade installing heat tracing. Comply with requirements for heat tracing that apply to insulation.

C. Mix insulating cements with clean potable water; if insulating cements are to be in contact with stainless-steel surfaces, use demineralized water.
3.3 GENERAL INSTALLATION REQUIREMENTS

A. Install insulation materials, accessories, and finishes with smooth, straight, and even surfaces; free of voids throughout the length of piping including fittings, valves, and specialties.

B. Install insulation materials, forms, vapor barriers or retarders, jackets, and thicknesses required for each item of pipe system as specified in insulation system schedules.

C. Install accessories compatible with insulation materials and suitable for the service. Install accessories that do not corrode, soften, or otherwise attack insulation or jacket in either wet or dry state.

D. Install insulation with longitudinal seams at top and bottom of horizontal runs.

E. Install multiple layers of insulation with longitudinal and end seams staggered.

F. Do not weld brackets, clips, or other attachment devices to piping, fittings, and specialties.

G. Keep insulation materials dry during application and finishing.

H. Install insulation with tight longitudinal seams and end joints. Bond seams and joints with adhesive recommended by insulation material manufacturer.

I. Install insulation with least number of joints practical.

J. Where vapor barrier is indicated, seal joints, seams, and penetrations in insulation at hangers, supports, anchors, and other projections with vapor-barrier mastic.
 1. Install insulation continuously through hangers and around anchor attachments.
 2. For insulation application where vapor barriers are indicated, extend insulation on anchor legs from point of attachment to supported item to point of attachment to structure. Taper and seal ends at attachment to structure with vapor-barrier mastic.
 3. Install insert materials and install insulation to tightly join the insert. Seal insulation to insulation inserts with adhesive or sealing compound recommended by insulation material manufacturer.
 4. Cover inserts with jacket material matching adjacent pipe insulation. Install shields over jacket, arranged to protect jacket from tear or puncture by hanger, support, and shield.

K. Apply adhesives, mastics, and sealants at manufacturer's recommended coverage rate and wet and dry film thicknesses.

L. Install insulation with factory-applied jackets as follows:
 1. Draw jacket tight and smooth.
 2. Cover circumferential joints with 3-inch-wide strips, of same material as insulation jacket. Secure strips with adhesive and outward clinching staples along both edges of strip, spaced 4 inches o.c.
3. Overlap jacket longitudinal seams at least 1-1/2 inches. Install insulation with longitudinal seams at bottom of pipe. Clean and dry surface to receive self-sealing lap. Staple laps with outward clinching staples along edge at 2 inches o.c.

 a. For below-ambient services, apply vapor-barrier mastic over staples.

4. Cover joints and seams with tape, according to insulation material manufacturer's written instructions, to maintain vapor seal.

5. Where vapor barriers are indicated, apply vapor-barrier mastic on seams and joints and at ends adjacent to pipe flanges and fittings.

M. Cut insulation in a manner to avoid compressing insulation more than 75 percent of its nominal thickness.

N. Finish installation with systems at operating conditions. Repair joint separations and cracking due to thermal movement.

O. Repair damaged insulation facings by applying same facing material over damaged areas. Extend patches at least 4 inches beyond damaged areas. Adhere, staple, and seal patches similar to butt joints.

P. For above-ambient services, do not install insulation to the following:

 1. Vibration-control devices.
 2. Testing agency labels and stamps.
 3. Nameplates and data plates.
 5. Handholes.
 6. Cleanouts.

3.4 PENETRATIONS

A. Insulation Installation at Roof Penetrations: Install insulation continuously through roof penetrations.

 1. Seal penetrations with flashing sealant.
 2. For applications requiring only indoor insulation, terminate insulation above roof surface and seal with joint sealant. For applications requiring indoor and outdoor insulation, install insulation for outdoor applications tightly joined to indoor insulation ends. Seal joint with joint sealant.
 3. Extend jacket of outdoor insulation outside roof flashing at least 2 inches below top of roof flashing.
 4. Seal jacket to roof flashing with flashing sealant.

B. Insulation Installation at Underground Exterior Wall Penetrations: Terminate insulation flush with sleeve seal. Seal terminations with flashing sealant.

C. Insulation Installation at Aboveground Exterior Wall Penetrations: Install insulation continuously through wall penetrations.
1. Seal penetrations with flashing sealant.

2. For applications requiring only indoor insulation, terminate insulation inside wall surface and seal with joint sealant. For applications requiring indoor and outdoor insulation, install insulation for outdoor applications tightly joined to indoor insulation ends. Seal joint with joint sealant.

3. Extend jacket of outdoor insulation outside wall flashing and overlap wall flashing at least 2 inches.

4. Seal jacket to wall flashing with flashing sealant.

D. Insulation Installation at Interior Wall and Partition Penetrations (That Are Not Fire Rated): Install insulation continuously through walls and partitions.

E. Insulation Installation at Fire-Rated Wall and Partition Penetrations: Install insulation continuously through penetrations of fire-rated walls and partitions.

1. Comply with requirements in Section 078413 "Penetration Firestopping" for firestopping and fire-resistive joint sealers.

F. Insulation Installation at Floor Penetrations:

1. Pipe: Install insulation continuously through floor penetrations.

2. Seal penetrations through fire-rated assemblies. Comply with requirements in Section 078413 "Penetration Firestopping."

3.5 GENERAL PIPE INSULATION INSTALLATION

A. Requirements in this article generally apply to all insulation materials except where more specific requirements are specified in various pipe insulation material installation articles.

B. Insulation Installation on Fittings, Valves, Strainers, Flanges, and Unions:

1. Install insulation over fittings, valves, strainers, flanges, unions, and other specialties with continuous thermal and vapor-retarder integrity unless otherwise indicated.

2. Insulate pipe elbows using preformed fitting insulation or mitered fittings made from same material and density as adjacent pipe insulation. Each piece shall be butted tightly against adjoining piece and bonded with adhesive. Fill joints, seams, voids, and irregular surfaces with insulating cement finished to a smooth, hard, and uniform contour that is uniform with adjoining pipe insulation.

3. Insulate tee fittings with preformed fitting insulation or sectional pipe insulation of same material and thickness as used for adjacent pipe. Cut sectional pipe insulation to fit. Butt each section closely to the next and hold in place with tie wire. Bond pieces with adhesive.

4. Insulate valves using preformed fitting insulation or sectional pipe insulation of same material, density, and thickness as used for adjacent pipe. Overlap adjoining pipe insulation by not less than two times the thickness of pipe insulation, or one pipe diameter, whichever is thicker. For valves, insulate up to and including the bonnets, valve stuffing-box studs, bolts, and nuts. Fill joints, seams, and irregular surfaces with insulating cement.

5. Insulate strainers using preformed fitting insulation or sectional pipe insulation of same material, density, and thickness as used for adjacent pipe. Overlap adjoining
pipe insulation by not less than two times the thickness of pipe insulation, or one pipe diameter, whichever is thicker. Fill joints, seams, and irregular surfaces with insulating cement. Insulate strainers so strainer basket flange or plug can be easily removed and replaced without damaging the insulation and jacket. Provide a removable reusable insulation cover. For below-ambient services, provide a design that maintains vapor barrier.

6. Insulate flanges and unions using a section of oversized preformed pipe insulation. Overlap adjoining pipe insulation by not less than two times the thickness of pipe insulation, or one pipe diameter, whichever is thicker.

7. Cover segmented insulated surfaces with a layer of finishing cement and coat with a mastic. Install vapor-barrier mastic for below-ambient services and a breather mastic for above-ambient services. Reinforce the mastic with fabric-reinforcing mesh. Trowel the mastic to a smooth and well-shaped contour.

8. For services not specified to receive a field-applied jacket except for flexible elastomeric and polyolefin, install fitted PVC cover over elbows, tees, strainers, valves, flanges, and unions. Terminate ends with PVC end caps. Tape PVC covers to adjoining insulation facing using PVC tape.

9. Stencil or label the outside insulation jacket of each union with the word "union." Match size and color of pipe labels.

C. Insulate instrument connections for thermometers, pressure gages, pressure temperature taps, test connections, flow meters, sensors, switches, and transmitters on insulated pipes. Shape insulation at these connections by tapering it to and around the connection with insulating cement and finish with finishing cement, mastic, and flashing sealant.

D. Install removable insulation covers at locations indicated. Installation shall conform to the following:

1. Make removable flange and union insulation from sectional pipe insulation of same thickness as that on adjoining pipe. Install same insulation jacket as adjoining pipe insulation.

2. When flange and union covers are made from sectional pipe insulation, extend insulation from flanges or union long at least two times the insulation thickness over adjacent pipe insulation on each side of flange or union. Secure flange cover in place with stainless-steel or aluminum bands. Select band material compatible with insulation and jacket.

3. Construct removable valve insulation covers in same manner as for flanges, except divide the two-part section on the vertical center line of valve body.

4. When covers are made from block insulation, make two halves, each consisting of mitered blocks wired to stainless-steel fabric. Secure this wire frame, with its attached insulation, to flanges with tie wire. Extend insulation at least 2 inches over adjacent pipe insulation on each side of valve. Fill space between flange or union cover and pipe insulation with insulating cement. Finish cover assembly with insulating cement applied in two coats. After first coat is dry, apply and trowel second coat to a smooth finish.

5. Unless a PVC jacket is indicated in field-applied jacket schedules, finish exposed surfaces with a metal jacket.
3.6 INSTALLATION OF CELLULAR-GLASS INSULATION

A. Insulation Installation on Straight Pipes and Tubes:
 1. Secure each layer of insulation to pipe with wire or bands and tighten bands without deforming insulation materials.
 2. Where vapor barriers are indicated, seal longitudinal seams, end joints, and protrusions with vapor-barrier mastic and joint sealant.
 3. For insulation with factory-applied jackets on above-ambient services, secure laps with outward-clinched staples at 6 inches o.c.
 4. For insulation with factory-applied jackets on below-ambient services, do not staple longitudinal tabs. Instead, secure tabs with additional adhesive as recommended by insulation material manufacturer and seal with vapor-barrier mastic and flashing sealant.

B. Insulation Installation on Pipe Flanges:
 1. Install preformed pipe insulation to outer diameter of pipe flange.
 2. Make width of insulation section same as overall width of flange and bolts, plus twice the thickness of pipe insulation.
 3. Fill voids between inner circumference of flange insulation and outer circumference of adjacent straight pipe segments with cut sections of cellular-glass block insulation of same thickness as pipe insulation.
 4. Install jacket material with manufacturer's recommended adhesive, overlap seams at least 1 inch, and seal joints with flashing sealant.

C. Insulation Installation on Pipe Fittings and Elbows:
 1. Install preformed sections of same material as straight segments of pipe insulation when available. Secure according to manufacturer's written instructions.
 2. When preformed sections of insulation are not available, install mitered sections of cellular-glass insulation. Secure insulation materials with wire or bands.

D. Insulation Installation on Valves and Pipe Specialties:
 1. Install preformed sections of cellular-glass insulation to valve body.
 2. Arrange insulation to permit access to packing and to allow valve operation without disturbing insulation.
 3. Install insulation to flanges as specified for flange insulation application.

3.7 INSTALLATION OF PHENOLIC INSULATION

A. General Installation Requirements:
 1. Secure single-layer insulation with stainless-steel bands at 12-inch intervals and tighten bands without deforming insulation materials.
 2. Install 2-layer insulation with joints tightly butted and staggered at least 3 inches. Secure inner layer with 0.062-inch wire spaced at 12-inch intervals. Secure outer layer with stainless-steel bands at 12-inch intervals.
B. Insulation Installation on Straight Pipes and Tubes:

1. Secure each layer of insulation to pipe with wire or bands and tighten bands without deforming insulation materials.
2. Where vapor barriers are indicated, seal longitudinal seams, end joints, and protrusions with vapor-barrier mastic and joint sealant.
3. For insulation with factory-applied jackets on above-ambient services, secure laps with outward-clinched staples at 6 inches o.c.
4. For insulation with factory-applied jackets with vapor retarders on below-ambient services, do not staple longitudinal tabs. Instead, secure tabs with additional adhesive as recommended by insulation material manufacturer and seal with vapor-barrier mastic and flashing sealant.

C. Insulation Installation on Pipe Flanges:

1. Install preformed pipe insulation to outer diameter of pipe flange.
2. Make width of insulation section same as overall width of flange and bolts, plus twice the thickness of pipe insulation.
3. Fill voids between inner circumference of flange insulation and outer circumference of adjacent straight pipe segments with cut sections of block insulation of same material and thickness as pipe insulation.

D. Insulation Installation on Pipe Fittings and Elbows:

1. Install preformed insulation sections of same material as straight segments of pipe insulation. Secure according to manufacturer's written instructions.

E. Insulation Installation on Valves and Pipe Specialties:

1. Install preformed insulation sections of same material as straight segments of pipe insulation. Secure according to manufacturer's written instructions.
2. Arrange insulation to permit access to packing and to allow valve operation without disturbing insulation.
3. Install insulation to flanges as specified for flange insulation application.

3.8 FIELD-APPLIED JACKET INSTALLATION

A. Where PVC jackets are indicated, install with 1-inch overlap at longitudinal seams and end joints; for horizontal applications. Seal with manufacturer's recommended adhesive.

1. Apply two continuous beads of adhesive to seams and joints, one bead under lap and the finish bead along seam and joint edge.

3.9 FINISHES

A. Pipe Insulation with ASJ, Glass-Cloth, or Other Paintable Jacket Material: Paint jacket with paint system identified below and as specified in Section 230553 "Identification for HVAC Piping and Equipment."
1. Flat Acrylic Finish: Two finish coats over a primer that is compatible with jacket material and finish coat paint. Add fungicidal agent to render fabric mildew proof (only paint in exposed areas).

B. Flexible Elastomeric Thermal Insulation: After adhesive has fully cured, apply two coats of insulation manufacturer's recommended protective coating.

C. Do not field paint aluminum or stainless-steel jackets.

3.10 FIELD QUALITY CONTROL

A. Testing Agency: Engage a qualified testing agency to perform tests and inspections.

B. Perform tests and inspections.

C. Tests and Inspections:

1. Inspect pipe, fittings, strainers, and valves, randomly selected by Architect, by removing field-applied jacket and insulation in layers in reverse order of their installation. Extent of inspection shall be limited to three locations of straight pipe, three locations of threaded fittings, three locations of welded fittings, two locations of threaded strainers, two locations of welded strainers, three locations of threaded valves, and three locations of flanged valves for each pipe service defined in the "Piping Insulation Schedule, General" Article.

D. All insulation applications will be considered defective Work if sample inspection reveals noncompliance with requirements.

3.11 PIPING INSULATION SCHEDULE, GENERAL

A. Acceptable preformed pipe and tubular insulation materials and thicknesses are identified for each piping system and pipe size range. If more than one material is listed for a piping system, selection from materials listed is Contractor's option.

3.12 INDOOR PIPING INSULATION SCHEDULE

A. Chilled Water Supply and Return, 40 Deg F and Above:

1. NPS 18 and Smaller: Insulation shall be the following:
 a. Phenolic or Cellular Glass: 2 inches thick (WITH PVC JACKET).

B. Heating-Hot-Water Supply and Return, 200 Deg F and Below:

1. NPS 12 and Smaller: Insulation shall be the following:
 a. Mineral-Fiber, Preformed Pipe, Type I: 2 inches thick.
END OF SECTION
PART 1 - GENERAL

1.1 SUMMARY

A. This Section includes pipe and fitting materials, joining methods, special-duty valves, and specialties for the following:

 1. Hot-water heating and chilled water piping.

1.2 PERFORMANCE REQUIREMENTS

A. Hydronic piping components and installation shall be capable of withstanding the following minimum working pressure and temperature:

 1. Chilled Water Piping: 100 psig at 40 to 180 deg F.

1.3 SUBMITTALS

A. Product Data: For each type of the following:

 1. Valves. Include flow and pressure drop curves based on manufacturer's testing for calibrated-orifice balancing valves and automatic flow-control valves.
 2. Hydronic specialties.

B. Shop Drawings: Detail, at 1/8 scale, the piping layout, fabrication of pipe anchors, hangers, supports for multiple pipes, alignment guides, expansion joints and loops, and attachments of the same to the building structure. Detail location of anchors, alignment guides, and expansion joints and loops.

C. Qualification Data: For Installer.

D. Welding certificates.

E. Field quality-control test reports.

F. All equipment and accessories (including piping) shall be made in the United States of America. No exceptions unless approved prior to bidding.

1.4 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For air control devices, hydronic specialties, and special-duty valves to include in emergency, operation, and maintenance manuals.
1.5 MAINTENANCE MATERIAL SUBMITTALS

A. Differential Pressure Meter: For each type of balancing valve and automatic flow control valve, include flowmeter, probes, hoses, flow charts, and carrying case.

1.6 QUALITY ASSURANCE

A. Steel Support Welding: Qualify processes and operators according to AWS D1.1/D1.1M, "Structural Welding Code - Steel."

B. Welding: Qualify processes and operators according to ASME Boiler and Pressure Vessel Code: Section IX.
1. Comply with provisions in ASME B31 Series, "Code for Pressure Piping."
2. Certify that each welder has passed AWS qualification tests for welding processes involved and that certification is current.

C. ASME Compliance: Comply with ASME B31.9, "Building Services Piping," for materials, products, and installation. Safety valves and pressure vessels shall bear the appropriate ASME label. Fabricate and stamp air separators and expansion tanks to comply with ASME Boiler and Pressure Vessel Code: Section VIII, Division 1.

PART 2 - PRODUCTS

2.1 COPPER TUBE AND FITTINGS

A. Annealed-Temper Copper Tubing: ASTM B 88, Type K.

B. Wrought-Copper Fittings: ASME B16.22.
1. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
2. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
3. Basis-of-Design Product: Subject to compliance with requirements, provide a comparable product by one of the following:
 a. Anvil International, Inc.
 b. S. P. Fittings; a division of Star Pipe Products.
 c. Victaulic Company.

C. Wrought-Copper Unions: ASME B16.22.

2.2 STEEL PIPE AND FITTINGS

A. Steel Pipe: ASTM A 53/A 53M, black steel with plain ends; type, grade, and wall thickness as indicated in Part 3 "Piping Applications" Article.
B. Cast-Iron Threaded Fittings: ASME B16.4; Classes 125 and 250 as indicated in Part 3 "Piping Applications" Article.

E. Cast-Iron Pipe Flanges and Flanged Fittings: ASME B16.1, Classes 25, 125, and 250; raised ground face, and bolt holes spot faced as indicated in Part 3 "Piping Applications" Article.

F. Wrought-Steel Fittings: ASTM A 234/A 234M, wall thickness to match adjoining pipe.

G. Wrought Cast- and Forged-Steel Flanges and Flanged Fittings: ASME B16.5, including bolts, nuts, and gaskets of the following material group, end connections, and facings:
 2. End Connections: Butt welding.
 3. Facings: Raised face.

H. Steel Pipe Nipples: ASTM A 733, made of same materials and wall thicknesses as pipe in which they are installed.

2.3 JOINING MATERIALS

A. Pipe-Flange Gasket Materials: Suitable for chemical and thermal conditions of piping system contents.
 1. ASME B16.21, nonmetallic, flat, asbestos free, 1/8-inch maximum thickness unless thickness or specific material is indicated.
 a. Full-Face Type: For flat-face, Class 125, cast-iron and cast-bronze flanges.
 b. Narrow-Face Type: For raised-face, Class 250, cast-iron and steel flanges.

B. Flange Bolts and Nuts: ASME B18.2.1, carbon steel, unless otherwise indicated.

C. Brazing Filler Metals: AWS A5.8, BCuP Series, copper-phosphorus alloys for joining copper with copper; or BAg-1, silver alloy for joining copper with bronze or steel.

E. Gasket Material: Thickness, material, and type suitable for fluid to be handled and working temperatures and pressures.

2.4 DIELECTRIC FITTINGS

A. General Requirements: Assembly of copper alloy and ferrous materials with separating nonconductive insulating material. Include end connections compatible with pipes to be joined.
B. Dielectric Unions:

1. **Manufacturers:** Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 b. Central Plastics Company.
 d. Jomar International Ltd.
 e. Matco-Norca, Inc.
 g. Watts Regulator Co.; a division of Watts Water Technologies, Inc.
 h. Wilkins; a Zurn company.

2. Description:
 b. Pressure Rating: 125 psig minimum at 180 deg F.
 c. End Connections: Solder-joint copper alloy and threaded ferrous.

C. Dielectric Flanges:

1. **Manufacturers:** Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 b. Central Plastics Company.
 c. Matco-Norca, Inc.
 d. Watts Regulator Co.; a division of Watts Water Technologies, Inc.
 e. Wilkins; a Zurn company.

2. Description:
 b. Factory-fabricated, bolted, companion-flange assembly.
 c. Pressure Rating: 125 psig minimum at 180 deg F.
 d. End Connections: Solder-joint copper alloy and threaded ferrous; threaded solder-joint copper alloy and threaded ferrous.

D. Dielectric-Flange Insulating Kits:

1. **Manufacturers:** Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 a. Advance Products & Systems, Inc.
 b. Calpico, Inc.
 c. Central Plastics Company.
 d. Pipeline Seal and Insulator, Inc.
2. Description:
 a. Nonconducting materials for field assembly of companion flanges.
 b. Pressure Rating: 150 psig.
 c. Gasket: Neoprene or phenolic.
 d. Bolt Sleeves: Phenolic or polyethylene.
 e. Washers: Phenolic with steel backing washers.

E. Dielectric Nipples:
1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 a. Elster Perfection.
 b. Grinnell Mechanical Products.
 c. Matco-Norca, Inc.
 d. Precision Plumbing Products, Inc.

2. Description:
 a. Standard: IAPMO PS 66
 b. Electroplated steel nipple. complying with ASTM F 1545.
 c. Pressure Rating: 125 psig at 180 deg F.
 d. End Connections: Male threaded
 e. Lining: Inert and noncorrosive, propylene.

2.5 AIR CONTROL DEVICES

A. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:

B. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. Amtrol, Inc.
2. Armstrong Pumps, Inc.
3. Bell & Gossett Domestic Pump; a division of ITT Industries.
4. Taco.

C. Manual Air Vents:

1. Body: Bronze.
2. Internal Parts: Nonferrous.
3. Operator: Screwdriver or thumbscrew.
4. Inlet Connection: NPS 1/2.
7. Maximum Operating Temperature: 225 deg F.
D. Automatic Air Vents:
 1. Body: Bronze or cast iron.
 2. Internal Parts: Nonferrous.
 4. Inlet Connection: NPS 1/2.
 7. Maximum Operating Temperature: 240 deg F.

2.6 HYDRONIC PIPING SPECIALTIES

A. Y-Pattern Strainers:
 1. Body: ASTM A 126, Class B, cast iron with bolted cover and bottom drain connection.
 2. End Connections: Threaded ends for NPS 2 and smaller; flanged ends for NPS 2-1/2 and larger.
 3. Strainer Screen: 40-mesh startup strainer, and perforated stainless-steel basket with 50 percent free area.

B. Stainless-Steel Bellow, Flexible Connectors:
 2. End Connections: Threaded or flanged to match equipment connected.
 4. CWP Rating: 150 psig.
 5. Maximum Operating Temperature: 250 deg F.

PART 3 - EXECUTION

3.1 PIPING APPLICATIONS

A. Chilled-water piping, aboveground, NPS 2 and smaller, shall be the following:
 1. Type K, drawn-temper copper tubing, wrought-copper fittings, and brazed joints.
 2. Schedule 40 steel pipe; Class 150, malleable-iron fittings; cast-iron flanges and flange fittings; and threaded joints.

B. Chilled-water piping, aboveground, NPS 2-1/2 and larger, shall be the following:
 1. Schedule 40 steel pipe, wrought-steel fittings and wrought-cast or forged-steel flanges and flange fittings, and welded and flanged joints.

C. Condenser-water piping, aboveground, NPS 2-1/2 and larger, shall be the following:
 1. Schedule 40 steel pipe, wrought-steel fittings and wrought-cast or forged-steel flanges and flange fittings, and welded and flanged joints.
D. Blowdown-Drain Piping: Same materials and joining methods as for piping specified for the service in which blowdown drain is installed.

E. Air-Vent Piping:
 1. Inlet: Same as service where installed with metal-to-plastic transition fittings for plastic piping systems according to the piping manufacturer's written instructions.
 2. Outlet: Type K, annealed-temper copper tubing with soldered or flared joints.

F. Safety-Valve-Inlet and -Outlet Piping for Hot-Water Piping: Same materials and joining methods as for piping specified for the service in which safety valve is installed with metal-to-plastic transition fittings for plastic piping systems according to the piping manufacturer's written instructions.

3.2 VALVE APPLICATIONS

A. Install shutoff-duty valves at each branch connection to supply mains, and at supply connection to each piece of equipment.

3.3 PIPING INSTALLATIONS

A. Drawing plans, schematics, and diagrams indicate general location and arrangement of piping systems. Indicate piping locations and arrangements if such were used to size pipe and calculate friction loss, expansion, pump sizing, and other design considerations. Install piping as indicated unless deviations to layout are approved on Coordination Drawings.

B. Install piping in concealed locations, unless otherwise indicated and except in equipment rooms and service areas.

C. Install piping indicated to be exposed and piping in equipment rooms and service areas at right angles or parallel to building walls. Diagonal runs are prohibited unless specifically indicated otherwise.

D. Install piping above accessible ceilings to allow sufficient space for ceiling panel removal.

E. Install piping to permit valve servicing.

F. Install piping at indicated slopes.

G. Install piping free of sags and bends.

H. Install fittings for changes in direction and branch connections.

I. Install piping to allow application of insulation.

J. Select system components with pressure rating equal to or greater than system operating pressure.

K. Install groups of pipes parallel to each other, spaced to permit applying insulation and servicing of valves.
L. Install drains, consisting of a tee fitting, NPS 3/4 ball valve, and short NPS 3/4 threaded nipple with cap, at low points in piping system mains and elsewhere as required for system drainage.

M. Install piping at a uniform grade of 0.2 percent upward in direction of flow.

N. Reduce pipe sizes using eccentric reducer fitting installed with level side up.

O. Install branch connections to mains using mechanically formed tee fittings in main pipe, with the branch connected to the bottom of the main pipe. For up-feed risers, connect the branch to the top of the main pipe.

P. Install unions in piping, NPS 2 and smaller, adjacent to valves, at final connections of equipment, and elsewhere as indicated.

Q. Install flanges in piping, NPS 2-1/2 and larger, at final connections of equipment and elsewhere as indicated.

R. Install strainers on inlet side of each control valve, pressure-reducing valve, solenoid valve, inline pump, and elsewhere as indicated. Install NPS 3/4 nipple and ball valve in blowdown connection of strainers NPS 2 and larger. Match size of strainer blowoff connection for strainers smaller than NPS 2.

S. Identify piping as specified in Section 230553 "Identification for HVAC Piping and Equipment."

T. Install sleeves for piping penetrations of walls, ceilings, and floors.

U. Install sleeve seals for piping penetrations of concrete walls and slabs.

V. Install escutcheons for piping penetrations of walls, ceilings, and floors.

3.4 HANGERS AND SUPPORTS

A. Hanger, support, and anchor devices are specified in Section 230529 "Hangers and Supports for HVAC Piping and Equipment." Comply with the following requirements for maximum spacing of supports.

3.5 PIPE JOINT CONSTRUCTION

A. Ream ends of pipes and tubes and remove burrs. Bevel plain ends of steel pipe.

B. Remove scale, slag, dirt, and debris from inside and outside of pipe and fittings before assembly.

D. Threaded Joints: Thread pipe with tapered pipe threads according to ASME B1.20.1. Cut threads full and clean using sharp dies. Ream threaded pipe ends to remove burrs and restore full ID. Join pipe fittings and valves as follows:
1. Apply appropriate tape or thread compound to external pipe threads unless dry seal threading is specified.
2. Damaged Threads: Do not use pipe or pipe fittings with threads that are corroded or damaged. Do not use pipe sections that have cracked or open welds.

F. Flanged Joints: Select appropriate gasket material, size, type, and thickness for service application. Install gasket concentrically positioned. Use suitable lubricants on bolt threads.

3.6 HYDRONIC SPECIALTIES INSTALLATION

A. Install manual air vents at high points in piping, at heat-transfer coils, and elsewhere as required for system air venting. Pipe vent to nearest drain.

B. Install automatic air vents at high points of system piping in mechanical equipment rooms only. Manual vents at heat-transfer coils and elsewhere as required for air venting. Pipe vent to nearest drain.

3.7 TERMINAL EQUIPMENT CONNECTIONS

A. Sizes for supply and return piping connections shall be the same as or larger than equipment connections.

B. Install control valves in accessible locations close to connected equipment.

C. Install ports for pressure gages and thermometers at coil inlet and outlet connections.

3.8 CHEMICAL TREATMENT

A. Fill system with fresh water and add liquid alkaline compound with emulsifying agents and detergents to remove grease and petroleum products from piping. Circulate solution for a minimum of 24 hours, drain, clean strainer screens, and refill with fresh water.

B. Add initial chemical treatment and maintain water quality in ranges noted above for the first year of operation.

3.9 FIELD QUALITY CONTROL

A. Prepare hydronic piping according to ASME B31.9 and as follows:

1. Leave joints, including welds, uninsulated and exposed for examination during test.
2. Provide temporary restraints for expansion joints that cannot sustain reactions due to test pressure. If temporary restraints are impractical, isolate expansion joints from testing.
3. Flush hydronic piping systems with clean water; then remove and clean or replace strainer screens.
4. Isolate equipment from piping. If a valve is used to isolate equipment, its closure shall be capable of sealing against test pressure without damage to valve. Install blinds in flanged joints to isolate equipment.

5. Install safety valve, set at a pressure no more than one-third higher than test pressure, to protect against damage by expanding liquid or other source of overpressure during test.

B. Perform the following tests on hydronic piping:

1. Use ambient temperature water as a testing medium unless there is risk of damage due to freezing. Another liquid that is safe for workers and compatible with piping may be used.

2. While filling system, use vents installed at high points of system to release air. Use drains installed at low points for complete draining of test liquid.

3. Isolate expansion tanks and determine that hydronic system is full of water.

4. Subject piping system to hydrostatic test pressure that is not less than 1.5 times the system's working pressure. Test pressure shall not exceed maximum pressure for any vessel, pump, valve, or other component in system under test. Verify that stress due to pressure at bottom of vertical runs does not exceed 90 percent of specified minimum yield strength or 1.7 times "SE" value in Appendix A in ASME B31.9, "Building Services Piping."

5. After hydrostatic test pressure has been applied for at least 10 minutes, examine piping, joints, and connections for leakage. Eliminate leaks by tightening, repairing, or replacing components, and repeat hydrostatic test until there are no leaks.

6. Prepare written report of testing.

C. Perform the following before operating the system:

1. Open manual valves fully.

2. Inspect air vents at high points of system and determine if all are installed and operating freely (automatic type), or bleed air completely (manual type).

3. Set temperature controls so all coils are calling for full flow.

4. Inspect and set operating temperatures of hydronic equipment, such as boilers, chillers, cooling towers, to specified values.

5. Verify lubrication of motors and bearings.

END OF SECTION
SECTION 232123

HYDRONIC PUMPS

PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes:
 1. Separately coupled, vertically mounted, in-line centrifugal pumps.

1.2 DEFINITIONS

A. Buna-N: Nitrile rubber.

B. EPT: Ethylene propylene terpolymer.

1.3 ACTION SUBMITTALS

A. Product Data: For each type of pump. Include certified performance curves and rated capacities, operating characteristics, furnished specialties, final impeller dimensions, and accessories for each type of product indicated. Indicate pump's operating point on curves.

B. Shop Drawings: For each pump.
 1. Show pump layout and connections.
 2. Include setting drawings with templates for installing foundation and anchor bolts and other anchorages.
 3. Include diagrams for power, signal, and control wiring.

1.4 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For pumps to include in emergency, operation, and maintenance manuals.

1.5 MAINTENANCE MATERIAL SUBMITTALS

A. Furnish extra materials described below that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
 1. Mechanical Seals: One mechanical seal(s) for each pump.
PART 2 - PRODUCTS

2.1 SEPARATELY COUPLED, VERTICALLY MOUNTED, IN-LINE CENTRIFUGAL PUMPS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. Armstrong Pumps, Inc
2. Aurora Pump: Pentair Ltd
3. PACO Pumps; Grundfos Pumps Corporation, USA

B. Description: Factory-assembled and -tested, centrifugal, overhung-impeller, separately coupled, in-line pump as defined in HI 1.1-1.2 and HI 1.3; designed for installation with pump and motor shafts mounted vertically.

C. Capacities and Characteristics:

1. Capacity: 102 GPM
2. Total Dynamic Head: 60 feet
3. Maximum Operating Pressure: 175 psig
4. Maximum Continuous Operating Temperature: 200 °F
5. Motor Speed: 2876 rpm
6. Motor Horsepower: 3 H.P.
7. Electrical Characteristics:
 a. Volts: 240 V.
 b. Phase: 3 ph.
 c. Hertz: 60.

D. Pump Construction:

1. Casing: Radially split, cast iron, with threaded gage tappings at inlet and outlet and threaded companion-flange connections.
2. Impeller: ASTM B 584, cast bronze; statically and dynamically balanced, keyed to shaft, and secured with a locking cap screw. For pumps not frequency-drive controlled, trim impeller to match specified performance.
4. Seal: Mechanical seal consisting of carbon rotating ring against a ceramic seat held by a stainless-steel spring, and Viton bellows and gasket. Include water slinger on shaft between motor and seal.
5. Seal: Packing seal consisting of stuffing box with a minimum of four rings of graphite-impregnated braided yarn with bronze lantern ring between center two graphite rings, and bronze packing gland.
6. Pump Bearings shall have minimum 100,000 hours of rating life.

E. Shaft Coupling: Axially split spacer coupling.

F. Motor: Single speed and rigidly mounted to pump casing with lifting eyebolt and supporting lugs in motor enclosure.
1. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
2. Comply with NEMA designation, temperature rating, service factor, and efficiency requirements for motors specified in Section 230513 "Common Motor Requirements for HVAC Equipment."
 a. Enclosure: Totally enclosed, fan cooled.
 b. Enclosure Materials: Cast iron.
 c. Motor Type: Permanent Magnet.

PART 3 - EXECUTION

3.1 EXAMINATION
 A. Examine equipment foundations and anchor-bolt locations for compliance with requirements for installation tolerances and other conditions affecting performance of the Work.
 B. Examine roughing-in for piping systems to verify actual locations of piping connections before pump installation.
 C. Examine foundations and inertia bases for suitable conditions where pumps are to be installed.
 D. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 PUMP INSTALLATION
 A. Install pumps to provide access for periodic maintenance including removing motors, impellers, couplings, and accessories.
 B. Independently support pumps and piping so weight of piping is not supported by pumps and weight of pumps is not supported by piping.
 C. Automatic Condensate Pump Units: Install units for collecting condensate and extend to open drain.
 D. Equipment Mounting:
 1. Install base-mounted pumps on cast-in-place concrete equipment bases. Comply with requirements for equipment bases and foundations specified in Section 033000 "Cast-in-Place Concrete."

3.3 ALIGNMENT
 A. Engage a factory-authorized service representative to perform alignment service.
B. Comply with requirements in Hydronics Institute standards for alignment of pump and motor shaft. Add shims to the motor feet and bolt motor to base frame. Do not use grout between motor feet and base frame.

C. Comply with pump and coupling manufacturers' written instructions.

D. After alignment is correct, tighten foundation bolts evenly but not too firmly. Completely fill baseplate with nonshrink, nonmetallic grout while metal blocks and shims or wedges are in place. After grout has cured, fully tighten foundation bolts.

3.4 CONNECTIONS

A. Comply with requirements for piping specified in Section 232123 "Hydronic Piping." Drawings indicate general arrangement of piping, fittings, and specialties.

B. Where installing piping adjacent to pump, allow space for service and maintenance.

C. Connect piping to pumps. Install valves that are same size as piping connected to pumps.

D. Install suction and discharge pipe sizes equal to or greater than diameter of pump nozzles.

E. Install check valve and throttling valve with memory stop on discharge side of pumps.

F. Install Y-type strainer and shutoff valve on suction side of pumps.

G. Install flexible connectors on suction and discharge sides of base-mounted pumps between pump casing and valves.

H. Install pressure gages on pump suction and discharge or at integral pressure-gage tapping, or install single gage with multiple-input selector valve.

I. Install check valve and gate or ball valve on each condensate pump unit discharge.

J. Ground equipment according to Section 260526 "Grounding and Bonding for Electrical Systems."

K. Connect wiring according to Section 260519 "Low-Voltage Electrical Power Conductors and Cables."

3.5 STARTUP SERVICE

A. Engage a factory-authorized service representative to perform startup service.

1. Complete installation and startup checks according to manufacturer's written instructions.
2. Check piping connections for tightness.
3. Clean strainers on suction piping.
4. Perform the following startup checks for each pump before starting:

 a. Verify bearing lubrication.
b. Verify that pump is free to rotate by hand and that pump for handling hot liquid is free to rotate with pump hot and cold. If pump is bound or drags, do not operate until cause of trouble is determined and corrected.

c. Verify that pump is rotating in the correct direction.

5. Prime pump by opening suction valves and closing drains, and prepare pump for operation.
7. Open discharge valve slowly.

3.6 DEMONSTRATION

A. Engage a factory-authorized service representative to train Owner's maintenance personnel to adjust, operate, and maintain hydronic pumps.

END OF SECTION
PART 1 - GENERAL

1.1 SUMMARY

A. This Section includes refrigerant piping used for air-conditioning applications.

1.2 PERFORMANCE REQUIREMENTS

A. Line Test Pressure for Refrigerant R-410A:

1.3 ACTION SUBMITTALS

A. Shop Drawings: Show layout of refrigerant piping and specialties, including pipe, tube, and fitting sizes, flow capacities, valve arrangements and locations, slopes of horizontal runs, oil traps, double risers, wall and floor penetrations, and equipment connection details. Show interface and spatial relationships between piping and equipment.

1. Shop Drawing Scale: 1/4 inch equals 1 foot.
2. Refrigerant piping indicated on Drawings is schematic only. Size piping and design actual piping layout, including oil traps, double risers, specialties, and pipe and tube sizes to accommodate, as a minimum, equipment provided, elevation difference between compressor and evaporator, and length of piping to ensure proper operation and compliance with warranties of connected equipment.
3. Refrigerant piping and insulation materials.

1.4 INFORMATIONAL SUBMITTALS

A. Welding certificates.

B. Field quality-control test reports.

1.5 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For refrigerant valves and piping specialties to include in maintenance manuals.
1.6 QUALITY ASSURANCE

A. Welding: Qualify procedures and personnel according to ASME Boiler and Pressure Vessel Code: Section IX, "Welding and Brazing Qualifications."

C. Comply with ASME B31.5, "Refrigeration Piping and Heat Transfer Components."

D. Installer Qualifications: Skilled mechanics who have successfully completed an apprenticeship program or another craft training program.

E. Surface-Burning Characteristics: For insulation and related materials, as determined by testing identical products according to ASTM E 84, by a testing and inspecting agency acceptable to authorities having jurisdiction. Factory label insulation and jacket materials and adhesive, mastic, tapes, and cement material containers, with appropriate markings of applicable testing agency.

1. Insulation Installed Indoors: Flame-spread index of 25 or less, and smoke-developed index of 50 or less.
2. Insulation Installed Outdoors: Flame-spread index of 75 or less, and smoke-developed index of 150 or less.

1.7 PRODUCT STORAGE AND HANDLING

A. Store piping in a clean and protected area with end caps in place to ensure that piping interior and exterior are clean when installed.

1.8 COORDINATION

A. Coordinate size and location of roof curbs, piping supports, and roof penetrations. These items are specified in Section 077200 "Roof Accessories."

B. Coordinate sizes and locations of supports, hangers, and insulation shields.

C. Coordinate clearance requirements with piping Installer for piping insulation application. Before preparing piping Shop Drawings, establish and maintain clearance requirements for installation of insulation and field-applied jackets and finishes and for space required for maintenance.

1.9 SCHEDULING

A. Schedule insulation application after pressure testing systems and, where required, after installing and testing heat tracing. Insulation application may begin on segments that have satisfactory test results.

B. Complete installation and concealment of plastic materials as rapidly as possible in each area of construction.
PART 2 - PRODUCTS

2.1 COPPER TUBE AND FITTINGS

A. Copper Tube: ASTM B 280, Type ACR.

B. Wrought-Copper Fittings: ASME B16.22.

C. Wrought-Copper Unions: ASME B16.22.

D. Brazing Filler Metals: AWS A5.8.

E. Flexible Connectors:
 2. End Connections: Socket ends.
 3. Offset Performance: Capable of minimum 3/4-inch misalignment in minimum 7-inch-long assembly.
 5. Maximum Operating Temperature: 250 deg F.

2.2 VALVES AND SPECIALTIES

A. Moisture/Liquid Indicators:
 2. Window: Replaceable, clear, fused glass window with indicating element protected by filter screen.
 3. Indicator: Color coded to show moisture content in ppm.
 5. End Connections: Socket or flare.
 7. Maximum Operating Temperature: 240 deg F.

B. Permanent Filter Dryers: Comply with ARI 730.
 2. Filter Media: 10 micron, pleated with integral end rings; stainless-steel support.
 4. Designed for reverse flow (for heat-pump applications).
 5. End Connections: Socket.
 9. Maximum Operating Temperature: 240 deg F.
C. Solenoid Valves: Comply with AHRI 760 and UL 429; listed and labeled by a National Recognized Testing Laboratory (NRTL).

5. Electrical: Molded, watertight coil in NEMA 250 enclosure of type required by location with 1/2-inch (16-GRC) conduit adapter, and 24-V ac coil.

2.3 INSULATION MATERIALS

A. Flexible Elastomeric Insulation: Closed-cell, sponge- or expanded-rubber materials. Comply with ASTM C 534, Type I for tubular materials.

1. Products: Subject to compliance with requirements, provide one of the following:
 a. Aeroflex USA, Inc.; Aerocel.
 b. Armacell LLC; AP Armaflex.
 c. K-Flex USA; Insul-Lock, Insul-Tube, and K-FLEX LS.

2.4 ADHESIVES

A. Materials shall be compatible with insulation materials, jackets, and substrates and for bonding insulation to itself and to surfaces to be insulated unless otherwise indicated.

B. Flexible Elastomeric and Polyolefin Adhesive: Comply with MIL-A-24179A, Type II, Class I.

1. Products: Subject to compliance with requirements, provide 1 inch thick insulation form one of the following:
 a. Aeroflex USA, Inc.; Aeroseal.
 b. Armacell LLC; Armaflex 520 Adhesive.
 d. K-Flex USA; R-373 Contact Adhesive.

2. For indoor applications, adhesive shall have a VOC content of 50 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).

2.5 REFRIGERANTS

A. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:

B. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
1. Atofina Chemicals, Inc.
2. DuPont Company; Fluorochemicals Div.
3. Honeywell, Inc.; Genetron Refrigerants.
4. INEOS Fluor Americas LLC.

C. ASHRAE 34, R-410A: Pentafluoroethane/Difluoromethane.

PART 3 - EXECUTION

3.1 PIPING APPLICATIONS FOR REFRIGERANT R-410A
A. Suction Lines NPS 1-1/2 and Smaller for Conventional Air-Conditioning Applications: Copper, Type ACR, annealed-temper tubing and wrought-copper fittings with brazed joints.
B. Hot-Gas and Liquid Lines, and Suction Lines for Heat-Pump Applications: Copper, Type ACR, annealed- or drawn-temper tubing and wrought-copper fittings with brazed joints.

3.2 VALVE AND SPECIALTY APPLICATIONS
A. Install moisture/liquid indicators in liquid line at the inlet of the thermostatic expansion valve or at the inlet of the evaporator coil capillary tube.
B. Install filter dryers in liquid line between compressor and thermostatic expansion valve.
C. Provide solenoid valve as required by equipment manufacturer.

3.3 PIPING INSTALLATION
A. Drawing plans, schematics, and diagrams indicate general location and arrangement of piping systems; indicated locations and arrangements were used to size pipe and calculate friction loss, expansion, and other design considerations. Install piping as indicated unless deviations to layout are approved on Shop Drawings.
B. Install refrigerant piping according to ASHRAE 15.
C. Install piping in concealed locations unless otherwise indicated and except in equipment rooms and service areas.
D. Install piping indicated to be exposed and piping in equipment rooms and service areas at right angles or parallel to building walls. Diagonal runs are prohibited unless specifically indicated otherwise.
E. Install piping above accessible ceilings to allow sufficient space for ceiling panel removal.
F. Install piping adjacent to machines to allow service and maintenance.
G. Install piping free of sags and bends.
H. Install fittings for changes in direction and branch connections.

I. Select system components with pressure rating equal to or greater than system operating pressure.

J. Install piping as short and direct as possible, with a minimum number of joints, elbows, and fittings.

K. Arrange piping to allow inspection and service of refrigeration equipment. Install valves and specialties in accessible locations to allow for service and inspection. Install access doors or panels as specified in Section 083113 "Access Doors and Frames" if valves or equipment requiring maintenance is concealed behind finished surfaces.

L. Install refrigerant piping in protective conduit where installed belowground.

M. Install refrigerant piping in rigid or flexible conduit in locations where exposed to mechanical injury.

N. Slope refrigerant piping as follows:
 1. Install horizontal hot-gas discharge piping with a uniform slope downward away from compressor.
 2. Install horizontal suction lines with a uniform slope downward to compressor.
 3. Install traps and double risers to entrain oil in vertical runs.
 4. Liquid lines may be installed level.

O. When brazing remove solenoid-valve coils and sight glasses; also remove valve stems, seats, and packing, and accessible internal parts of refrigerant specialties. Do not apply heat near expansion-valve bulb.

P. Install piping with adequate clearance between pipe and adjacent walls and hangers or between pipes for insulation installation.

Q. Install sleeves for piping penetrations of walls, ceilings, and floors.

R. Install sleeve seals for piping penetrations of concrete walls and slabs.

S. Install escutcheons for piping penetrations of walls, ceilings, and floors.

3.4 PIPE JOINT CONSTRUCTION

A. Ream ends of pipes and tubes and remove burrs. Bevel plain ends of steel pipe.

B. Remove scale, slag, dirt, and debris from inside and outside of pipe and fittings before assembly.

C. Fill pipe and fittings with an inert gas (nitrogen or carbon dioxide), during brazing or welding, to prevent scale formation.

D. Brazed Joints: Construct joints according to AWS's "Brazing Handbook," Chapter "Pipe and Tube."
1. Use Type BcuP, copper-phosphorus alloy for joining copper socket fittings with copper pipe.
2. Use Type BAg, cadmium-free silver alloy for joining copper with bronze or steel.

3.5 INSTALLATION OF FLEXIBLE ELASTOMERIC INSULATION

A. Seal longitudinal seams and end joints with manufacturer's recommended adhesive to eliminate openings in insulation that allow passage of air to surface being insulated.

B. Insulation Installation on Pipe Fittings and Elbows:
 1. Install mitered sections of pipe insulation.
 2. Secure insulation materials and seal seams with manufacturer's recommended adhesive to eliminate openings in insulation that allow passage of air to surface being insulated.

C. Insulation Installation on Valves and Pipe Specialties:
 1. Install preformed valve covers manufactured of same material as pipe insulation when available.
 2. When preformed valve covers are not available, install cut sections of pipe and sheet insulation to valve body. Arrange insulation to permit access to packing and to allow valve operation without disturbing insulation.
 3. Install insulation to flanges as specified for flange insulation application.
 4. Secure insulation to valves and specialties and seal seams with manufacturer's recommended adhesive to eliminate openings in insulation that allow passage of air to surface being insulated.

D. Flexible Elastomeric Thermal Insulation: After adhesive has fully cured, apply two coats of insulation manufacturer's recommended protective coating.

3.6 HANGERS AND SUPPORTS

A. Install the following pipe attachments:
 1. Adjustable steel clevis hangers for individual horizontal runs less than 20 feet long.
 2. Roller hangers and spring hangers for individual horizontal runs 20 feet or longer.
 3. Pipe Roller: MSS SP-58, Type 44 for multiple horizontal piping 20 feet or longer, supported on a trapeze.
 4. Spring hangers to support vertical runs.
 5. Copper-clad hangers and supports for hangers and supports in direct contact with copper pipe.

B. Install hangers for copper tubing with the following maximum spacing and minimum rod sizes:
 1. NPS 1/2: Maximum span, 60 inches; minimum rod size, 1/4 inch.
 2. NPS 5/8: Maximum span, 60 inches; minimum rod size, 1/4 inch.
 3. NPS 1: Maximum span, 72 inches; minimum rod size, 1/4 inch.
4. NPS 1-1/4: Maximum span, 96 inches; minimum rod size, 3/8 inch.

C. Support multifloor vertical runs at least at each floor.

D. Provide high density insulation at all support points matching the R value of the specified insulation.

3.7 FIELD QUALITY CONTROL

A. Perform tests and inspections and prepare test reports.

B. Tests and Inspections:

 1. Comply with ASME B31.5, Chapter VI.
 2. Test refrigerant piping, specialties, and receivers. Isolate compressor, condenser, evaporator, and safety devices from test pressure if they are not rated above the test pressure.
 3. Test high- and low-pressure side piping of each system separately at not less than the pressures indicated in Part 1 "Performance Requirements" Article.
 a. Fill system with nitrogen to the required test pressure.
 b. System shall maintain test pressure at the manifold gage throughout duration of test.
 c. Test joints and fittings with electronic leak detector or by brushing a small amount of soap and glycerin solution over joints.
 d. Remake leaking joints using new materials, and retest until satisfactory results are achieved.

3.8 SYSTEM CHARGING

A. Charge system using the following procedures:

 1. Evacuate entire refrigerant system with a vacuum pump to 500 micrometers. If vacuum holds for 12 hours, system is ready for charging.
 2. Break vacuum with refrigerant gas, allowing pressure to build up to 2 psig.

3.9 ADJUSTING

A. Adjust thermostatic expansion valve to obtain proper evaporator superheat.

B. Adjust set-point temperature of air-conditioning controllers to the system design temperature.

C. Perform the following adjustments before operating the refrigeration system, according to manufacturer's written instructions:

 1. Open compressor suction and discharge valves.
 2. Open refrigerant valves except bypass valves that are used for other purposes.
END OF SECTION
SECTION 233113 METAL DUCTS

PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes:
 1. Single-wall rectangular ducts and fittings.
 2. Single-wall round ducts and fittings.
 4. Duct liner.
 5. Sealants and gaskets.
 6. Hangers and supports.

B. Related Sections:
 1. Section 230593 "Testing, Adjusting, and Balancing for HVAC" for testing, adjusting, and balancing requirements for metal ducts.
 2. Section 233300 "Air Duct Accessories" for dampers, sound-control devices, duct-mounting access doors and panels, turning vanes, and flexible ducts.

1.2 PERFORMANCE REQUIREMENTS

A. Delegated Duct Design: Duct construction, including sheet metal thicknesses, seam and joint construction, reinforcements, and hangers and supports, shall comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible" and performance requirements and design criteria indicated in "Duct Schedule" Article.

B. Structural Performance: Duct hangers and supports shall withstand the effects of gravity loads and stresses within limits and under conditions described in SMACNA's "HVAC Duct Construction Standards - Metal and Flexible"

1.3 ACTION SUBMITTALS

A. Product Data: For each type of the following products:
 1. Liners and adhesives.
 2. Sealants and gaskets.
 3. Hanger, supports, and anchors.

B. Shop Drawings:
 1. Shop Drawings: 1/4" = 1' foot scale. Show fabrication and installation details for metal ducts.
 2. Fabrication, assembly, and installation, including plans, elevations, sections, components, and attachments to other work.
3. Factory- and shop-fabricated ducts and fittings.
4. Duct layout indicating sizes, configuration, liner material, and static-pressure classes.
5. Elevation of top of ducts.
6. Dimensions of main duct runs from building grid lines.
7. Fittings.
8. Reinforcement and spacing.
9. Seam and joint construction.
10. Penetrations through fire-rated and other partitions.
11. Equipment installation based on equipment being used on Project.
12. Locations for duct accessories, including dampers, turning vanes, and access doors and panels.
13. Hangers and supports, including methods for duct and building attachment and vibration isolation.

C. Delegated-Design Submittal:
1. Sheet metal thicknesses.
2. Joint and seam construction and sealing not listed below.
3. Reinforcement details and spacing.
4. Materials, fabrication, assembly, and spacing of hangers and supports.

1.4 INFORMATIONAL SUBMITTALS

A. Coordination Drawings: Plans, drawn to 1/4" = 1' scale, on which the following items are shown and coordinated with each other, using input from installers of the items involved:

1. Duct installation in congested spaces, indicating coordination with general construction, building components, and other building services. Indicate proposed changes to duct layout.
2. Suspended ceiling components.
3. Structural members to which duct will be attached.
4. Size and location of initial access modules for acoustical tile.
5. Penetrations of smoke barriers and fire-rated construction.
6. Items penetrating finished ceiling including the following:
 a. Lighting fixtures.
 b. Air outlets and inlets.
 c. Speakers.
 d. Sprinklers.
 e. Access panels.
 f. Perimeter moldings.
 g. Mill work.

B. Welding certificates.

C. Field quality-control reports.
PART 2 - PRODUCTS

2.1 SINGLE-WALL RECTANGULAR DUCTS AND FITTINGS

A. General Fabrication Requirements: Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible" based on indicated static-pressure class unless otherwise indicated.

B. Transverse Joints: Select joint types and fabricate according to SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," "Rectangular Duct Reinforcement Tables," for static-pressure class listed in this specification, applicable sealing requirements, materials involved, duct-support intervals, and other provisions in SMACNA's "HVAC Duct Construction Standards - Metal and Flexible."

C. Longitudinal Seams: Shall be Type L-1, Pittsburgh seam and fabricate according to SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," "Rectangular Duct/Longitudinal Seams," for applicable sealing requirements, materials involved, and other provisions in SMACNA's "HVAC Duct Construction Standards - Metal and Flexible."

D. Elbows, Transitions, Offsets, Branch Connections, and Other Duct Construction: Unless specified below select types and fabricate according to SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Chapter 4, "Fittings and Other Construction," for static-pressure class, applicable sealing requirements, materials involved, duct-support intervals, and other provisions in SMACNA's "HVAC Duct Construction Standards - Metal and Flexible."

2.2 SINGLE-WALL ROUND DUCTS AND FITTINGS

A. General Fabrication Requirements: Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Chapter 3, "Round, and Flexible Duct," based on indicated static-pressure class unless otherwise indicated.

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

 a. Lindab Inc.
 b. McGill AirFlow LLC.
 c. SEMCO Incorporated.
 d. Spiral Manufacturing Co., Inc.

B. Transverse Joints: Select joint types and fabricate according to SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Figure 3-1, "Round Duct Transverse Joints," for static-pressure class, applicable sealing requirements, materials involved, duct-support intervals, and other provisions in SMACNA's "HVAC Duct Construction Standards - Metal and Flexible."

C. Longitudinal Seams: Select seam types and fabricate according to SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Figure 3-2, "Round Duct Longitudinal Seams," for static-pressure class, applicable sealing requirements, materials involved, duct-support
intervals, and other provisions in SMACNA's "HVAC Duct Construction Standards - Metal and Flexible."

D. Tees and Laterals: Select types and fabricate according to SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Figure 3-5, "90 Degree Tees and Laterals," and Figure 3-6, "Conical Tees," for static-pressure class, applicable sealing requirements, materials involved, duct-support intervals, and other provisions in SMACNA's "HVAC Duct Construction Standards - Metal and Flexible."

2.3 SHEET METAL MATERIALS

A. General Material Requirements: Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible" for acceptable materials, material thicknesses, and duct construction methods unless otherwise indicated. Sheet metal materials shall be free of pitting, seam marks, roller marks, stains, discolorations, and other imperfections.

B. Galvanized Sheet Steel: Comply with ASTM A 653/A 653M.
 2. Finishes for Surfaces Exposed to View: Mill phosphatized.

C. PVC-Coated, Galvanized Sheet Steel: Comply with ASTM A 653/A 653M.
 1. Galvanized Coating Designation: G60.
 2. Minimum Thickness for Factory-Applied PVC Coating: 4 mils thick on sheet metal surface of ducts and fittings exposed to corrosive conditions, and minimum 1 mil thick on opposite surface.
 3. Coating Materials: Acceptable to authorities having jurisdiction for use on ducts listed and labeled by an NRTL for compliance with UL 181, Class 1.

D. Reinforcement Shapes and Plates: ASTM A 36/A 36M, steel plates, shapes, and bars; black and galvanized.
 1. Where black- and galvanized-steel shapes and plates are used to reinforce aluminum ducts, isolate the different metals with butyl rubber, neoprene, or EPDM gasket materials.

E. Tie Rods: Galvanized steel, 1/4-inch minimum diameter for lengths 36 inches or less; 3/8-inch minimum diameter for lengths longer than 36 inches.

2.4 DUCT LINER

A. Fibrous-Glass Duct Liner: Comply with ASTM C 1071, NFPA 90A, or NFPA 90B; and with NAIMA AH124, "Fibrous Glass Duct Liner Standard."
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. CertainTeed Corporation; Insulation Group.
 b. Johns Manville.
 c. Knauf Insulation.
2. Maximum Thermal Conductivity:

 1) Type I, Flexible: 0.27 Btu x in./h x sq. ft. x deg F at 75 deg F mean temperature.

3. Antimicrobial Erosion-Resistant Coating: Apply to the surface of the liner that will form the interior surface of the duct to act as a moisture repellent and erosion-resistant coating. Antimicrobial compound shall be tested for efficacy by an NRTL and registered by the EPA for use in HVAC systems.

4. Solvent or Water-Based Liner Adhesive: Comply with NFPA 90A or NFPA 90B and with ASTM C 916.
 a. For indoor applications, adhesive shall have a VOC content of 80 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
 b. Adhesive shall comply with the testing and product requirements of the California Department of Health Services' "Standard Practice for the Testing of Volatile Organic Emissions from Various Sources Using Small-Scale Environmental Chambers."

B. Insulation Pins and Washers:

 1. Cupped-Head, Capacitor-Discharge-Weld Pins: Copper- or zinc-coated steel pin, fully annealed for capacitor-discharge welding, 0.135-inch- diameter shank, length to suit depth of insulation indicated with integral 1-1/2-inch galvanized carbon-steel washer.
 2. Insulation-Retaining Washers: Self-locking washers formed from 0.016-inch- thick galvanized steel; with beveled edge sized as required to hold insulation securely in place but not less than 1-1/2 inches in diameter.

C. Shop Application of Duct Liner: Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Figure 7-11, "Flexible Duct Liner Installation."

 1. Adhere a single layer of indicated thickness of duct liner with at least 90 percent adhesive coverage at liner contact surface area. Attaining indicated thickness with multiple layers of duct liner is prohibited.
 2. Apply adhesive to transverse edges of liner facing upstream that do not receive metal nosing.
 3. Butt transverse joints without gaps, and coat joint with adhesive.
 4. Fold and compress liner in corners of rectangular ducts or cut and fit to ensure butted-edge overlapping.
 5. Do not apply liner in rectangular ducts with longitudinal joints, except at corners of ducts, unless duct size and dimensions of standard liner make longitudinal joints necessary.
 6. Apply adhesive coating on longitudinal seams in ducts with air velocity of 2500 fpm.
 7. Secure liner with mechanical fasteners 4 inches from corners and at intervals not exceeding 12 inches transversely; at 3 inches from transverse joints and at intervals not exceeding 18 inches longitudinally.
 8. Secure transversely oriented liner edges facing the airstream with metal nosings that have either channel or "Z" profiles or are integrally formed from duct wall. Fabricate edge facings at the following locations:

 d. Owens Corning.
a. Fan discharges.
b. Intervals of lined duct preceding unlined duct.
c. Upstream edges of transverse joints in ducts where air velocities are higher than 2500 fpm or where indicated.

9. Terminate inner ducts with buildouts attached to fire-damper sleeves, dampers, turning vane assemblies, or other devices. Fabricated buildouts (metal hat sections) or other buildout means are optional; when used, secure buildouts to duct walls with bolts, screws, rivets, or welds.

2.5 SEALANT AND GASKETS

A. General Sealant and Gasket Requirements: Surface-burning characteristics for sealants and gaskets shall be a maximum flame-spread index of 25 and a maximum smoke-developed index of 50 when tested according to UL 723; certified by an NRTL.

B. Water-Based Joint and Seam Sealant:
 1. Application Method: Brush on.
 2. Solids Content: Minimum 65 percent.
 5. Mold and mildew resistant.
 6. VOC: Maximum 75 g/L (less water).
 7. Maximum Static-Pressure Class: 10-inch wg, positive and negative.
 8. Service: Indoor or outdoor.
 9. Substrate: Compatible with galvanized sheet steel (both PVC coated and bare), stainless steel, or aluminum sheets.

C. Solvent-Based Joint and Seam Sealant:
 1. Application Method: Brush on.
 2. Base: Synthetic rubber resin.
 4. Solids Content: Minimum 60 percent.
 5. Shore A Hardness: Minimum 60.
 7. Mold and mildew resistant.
 8. For indoor applications, sealant shall have a VOC content of 250 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
 9. VOC: Maximum 395 g/L.
 10. Maximum Static-Pressure Class: 10-inch wg, positive or negative.
 11. Service: Indoor or outdoor.
 12. Substrate: Compatible with galvanized sheet steel (both PVC coated and bare), stainless steel, or aluminum sheets.

D. Flanged Joint Sealant: Comply with ASTM C 920.
 2. Type: S.
3. Grade: NS.
5. Use: O.
6. For indoor applications, sealant shall have a VOC content of 250 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
7. Sealant shall comply with the testing and product requirements of the California Department of Health Services' "Standard Practice for the Testing of Volatile Organic Emissions from Various Sources Using Small-Scale Environmental Chambers."

E. Flange Gaskets: Butyl rubber, neoprene, or EPDM polymer with polyisobutylene plasticizer.

F. Round Duct Joint O-Ring Seals:
 1. Seal shall provide maximum leakage class of 3 cfm/100 sq. ft. at 1-inch wg and shall be rated for 10-inch wg static-pressure class, positive or negative.
 2. EPDM O-ring to seal in concave bead in coupling or fitting spigot.
 3. Double-lipped, EPDM O-ring seal, mechanically fastened to factory-fabricated couplings and fitting spigots.

2.6 HANGERS AND SUPPORTS

A. Hanger Rods for Noncorrosive Environments: Cadmium-plated steel rods and nuts.

B. Hanger Rods for Corrosive Environments: Electrogalvanized, all-thread rods or galvanized rods with threads painted with zinc-chromate primer after installation.

C. Strap and Rod Sizes: Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Table 5-1, "Rectangular Duct Hangers Minimum Size," and Table 5-2, "Minimum Hanger Sizes for Round Duct."

D. Duct Attachments: Sheet metal screws, blind rivets, or self-tapping metal screws; compatible with duct materials.

E. Trapeze and Riser Supports:

PART 3 - EXECUTION

3.1 DUCT INSTALLATION

A. Drawing plans, schematics, and diagrams indicate general location and arrangement of duct system. Indicated duct locations, configurations, and arrangements were used to size ducts and calculate friction loss for air-handling equipment sizing and for other design considerations. Install duct systems as indicated unless deviations to layout are approved on Shop Drawings and Coordination Drawings.

B. Install ducts according to SMACNA's "HVAC Duct Construction Standards - Metal and Flexible" unless otherwise indicated.
C. Install round ducts in maximum practical lengths.

D. Install ducts with fewest possible joints.

E. Install factory- or shop-fabricated fittings for changes in direction, size, and shape and for branch connections.

F. Unless otherwise indicated, install ducts vertically and horizontally, and parallel and perpendicular to building lines.

G. Install ducts close to walls, overhead construction, columns, and other structural and permanent enclosure elements of building.

H. Install ducts with a clearance of 1 inch, plus allowance for insulation thickness.

I. Route ducts to avoid passing through transformer vaults, electrical equipment rooms and enclosures, and elevator equipment rooms.

J. Where ducts pass through non-fire-rated interior partitions and exterior walls and are exposed to view, cover the opening between the partition and duct or duct insulation with sheet metal flanges of same metal thickness as the duct. Overlap openings on four sides by at least 1-1/2 inches.

K. Where ducts pass through fire-rated interior partitions and exterior walls, install fire dampers. Comply with requirements in Section 233300 "Air Duct Accessories" for fire and smoke dampers.

L. Protect duct interiors from moisture, construction debris and dust, and other foreign materials.

3.2 INSTALLATION OF EXPOSED DUCTWORK

A. Protect ducts exposed in finished spaces from being dented, scratched, or damaged.

B. Trim duct sealants flush with metal. Create a smooth and uniform exposed bead. Do not use two-part tape sealing system.

C. Grind welds to provide smooth surface free of burrs, sharp edges, and weld splatter. When welding stainless steel with a No. 3 or 4 finish, grind the welds flush, polish the exposed welds, and treat the welds to remove discoloration caused by welding.

D. Maintain consistency, symmetry, and uniformity in the arrangement and fabrication of fittings, hangers and supports, duct accessories, and air outlets.

E. Repair or replace damaged sections and finished work that does not comply with these requirements.
3.3 DUCT SEALING

A. Seal ducts for duct static-pressure, seal classes, and leakage classes specified in "Duct Schedule" Article according to SMACNA's "HVAC Duct Construction Standards - Metal and Flexible."

3.4 HANGER AND SUPPORT INSTALLATION

A. Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Chapter 5, "Hangers and Supports."

B. Building Attachments: Concrete inserts, powder-actuated fasteners, or structural-steel fasteners appropriate for construction materials to which hangers are being attached.

1. Where practical, install concrete inserts before placing concrete.
2. Install powder-actuated concrete fasteners after concrete is placed and completely cured.
3. Use powder-actuated concrete fasteners for standard-weight aggregate concretes or for slabs more than 4 inches thick.
4. Do not use powder-actuated concrete fasteners for lightweight-aggregate concretes or for slabs less than 4 inches thick.

C. Hanger Spacing: Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Table 5-1, "Rectangular Duct Hangers Minimum Size," and Table 5-2, "Minimum Hanger Sizes for Round Duct," for maximum hanger spacing; install hangers and supports within 24 inches of each elbow and within 48 inches of each branch intersection.

D. Hangers Exposed to View: Threaded rod and angle or channel supports.

E. Support vertical ducts with steel angles or channel secured to the sides of the duct with welds, bolts, sheet metal screws, or blind rivets; support at each floor and at a maximum intervals of 16 feet.

F. Install upper attachments to structures. Select and size upper attachments with pull-out, tension, and shear capacities appropriate for supported loads and building materials where used.

3.5 CONNECTIONS

A. Make connections to equipment with flexible connectors complying with Section 233300 "Air Duct Accessories."

B. Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible" for branch, outlet and inlet, and terminal unit connections.

3.6 PAINTING

A. Paint interior of metal ducts that are visible through registers and grilles and that do not have duct liner. Apply one coat of flat, black, latex paint over a compatible galvanized-steel primer. Paint materials and application requirements are specified in Section 099113 "Exterior Painting" and Section 099123 "Interior Painting."
3.7 FIELD QUALITY CONTROL

A. Duct System Cleanliness Tests:

1. Visually inspect duct system to ensure that no visible contaminants are present.

3.8 DUCT CLEANING

A. Clean new and existing duct system(s) before testing, adjusting, and balancing.

B. Use service openings for entry and inspection.

1. Create new openings and install access panels appropriate for duct static-pressure class if required for cleaning access. Provide insulated panels for insulated or lined duct. Patch insulation and liner as recommended by duct liner manufacturer. Comply with Section 233300 "Air Duct Accessories" for access panels and doors.
2. Disconnect and reconnect flexible ducts as needed for cleaning and inspection.
3. Remove and reinstall ceiling to gain access during the cleaning process.

C. Particulate Collection and Odor Control:

1. When venting vacuuming system inside the building, use HEPA filtration with 99.97 percent collection efficiency for 0.3-micron-size (or larger) particles.
2. When venting vacuuming system to outdoors, use filter to collect debris removed from HVAC system, and locate exhaust downwind and away from air intakes and other points of entry into building.

D. Clean the following components by removing surface contaminants and deposits:

1. Air outlets and inlets (registers, grilles, and diffusers).
2. Supply, return, and exhaust fans including fan housings, plenums (except ceiling supply and return plenums), scrolls, blades or vanes, shafts, baffles, dampers, and drive assemblies.
3. Air-handling unit internal surfaces and components including mixing box, coil section, air wash systems, spray eliminators, condensate drain pans, humidifiers and dehumidifiers, filters and filter sections, and condensate collectors and drains.
5. Return-air ducts, dampers, actuators, and turning vanes except in ceiling plenums and mechanical equipment rooms.
7. Dedicated exhaust and ventilation components and makeup air systems.

E. Mechanical Cleaning Methodology:

1. Clean metal duct systems using mechanical cleaning methods that extract contaminants from within duct systems and remove contaminants from building.
2. Use vacuum-collection devices that are operated continuously during cleaning. Connect vacuum device to downstream end of duct sections so areas being cleaned are under negative pressure.
3. Use mechanical agitation to dislodge debris adhered to interior duct surfaces without damaging integrity of metal ducts, duct liner, or duct accessories.

4. Clean fibrous-glass duct liner with HEPA vacuuming equipment; do not permit duct liner to get wet. Replace fibrous-glass duct liner that is damaged, deteriorated, or delaminated or that has friable material, mold, or fungus growth.

5. Clean coils and coil drain pans according to NADCA 1992. Keep drain pan operational. Rinse coils with clean water to remove latent residues and cleaning materials; comb and straighten fins.

6. Provide drainage and cleanup for wash-down procedures.

7. Antimicrobial Agents and Coatings: Apply EPA-registered antimicrobial agents if fungus is present. Apply antimicrobial agents according to manufacturer’s written instructions after removal of surface deposits and debris.

3.9 START UP

A. Air Balance: Comply with requirements in Section 230593 "Testing, Adjusting, and Balancing for HVAC."

3.10 DUCT SCHEDULE

A. Fabricate ducts with galvanized sheet steel.

B. Supply Ducts:
 1. Ducts Connected to Constant-Volume Air-Handling Units:
 a. Pressure Class: Positive 2-inch wg.
 b. Minimum SMACNA Seal Class: A.

C. Return Ducts:
 1. Ducts Connected to Air-Handling Units:
 a. Pressure Class: Positive or negative 2-inch wg.
 b. Minimum SMACNA Seal Class: A.

D. Exhaust Ducts:
 1. Ducts Connected to Fans Exhausting (ASHRAE 62.1, Class 1 and 2) Air:
 a. Pressure Class: Negative 1-inch wg.
 b. Minimum SMACNA Seal Class: A.

E. Outdoor-Air (Not Filtered, Heated, or Cooled) Ducts:
 1. Ducts Connected to Air-Handling Units:
 a. Pressure Class: Positive or negative 1-inch wg.
 b. Minimum SMACNA Seal Class: A.
F. Intermediate Reinforcement:

G. Liner:

1. Supply Air Ducts: Fibrous glass, Type I, 1-1/2 inches thick.
2. Return Air Ducts: Fibrous glass, Type I, 1-1/2 inches thick.
3. Exhaust Air Ducts: Fibrous glass, Type I, 1 inch thick.
4. Supply Fan Plenums: Fibrous glass, Type II, 1-1/2 inches thick.
5. Return- and Exhaust-Fan Plenums: Fibrous glass, Type I, 1-1/2 inches thick.
6. Transfer Ducts: Fibrous glass, Type I, 1 inch thick.

H. Elbow Configuration:

1. Rectangular Duct: Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Figure 4-2, "Rectangular Elbows."
 a. Radius Type RE 3 with minimum 1.5 radius-to-diameter ratio.
 b. Mitered Type RE 2 with vanes complying with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Figure 2-3, "Vanes and Vane Runners," and Figure 4-4, "Vane Support in Elbows."

2. Round Duct: Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Figure 3-4, "Round Duct Elbows."
 a. Round Elbows, 12 Inches and Smaller in Diameter: Stamped or pleated.
 b. Round Elbows, 14 Inches and Larger in Diameter: Standing seam or Welded.

I. Branch Configuration:

1. Rectangular Duct: Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Figure 4-6, "Branch Connection."
 a. Rectangular Main to Rectangular Branch: 45-degree entry.
 b. Rectangular Main to Round Branch: Conical spin in or 45-degree lead in.

2. Round: Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Figure 3-5, "90 Degree Tees and Laterals," and Figure 3-6, "Conical Tees." Saddle taps are permitted in existing duct.
 a. Velocity all: 45-degree lateral.

END OF SECTION
PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes:
 1. In-line centrifugal fans.

1.2 PERFORMANCE REQUIREMENTS

A. Project Altitude: Base fan-performance ratings on actual Project site elevations.

B. Operating Limits: Classify according to AMCA 99.

1.3 PERFORMANCE REQUIREMENTS

A. Delegated Design: Design roof top fan supports to comply with wind performance requirements, including comprehensive engineering analysis by a qualified professional engineer, using performance requirements and design criteria indicated.

B. Wind-Restraint Performance:
 1. Basic Wind Speed: 90 mph.
 2. Building Classification Category: Refer to structural drawings.
 3. Minimum 10 lb/sq. ft multiplied by the maximum area of the mechanical component projected on a vertical plane that is normal to the wind direction, and 45 degrees either side of normal.

1.4 ACTION SUBMITTALS

A. Product Data: For each type of product indicated. Include rated capacities, operating characteristics, and furnished specialties and accessories. Also include the following:
 1. Certified fan performance curves with system operating conditions indicated.
 2. Certified fan sound-power ratings.
 3. Motor ratings and electrical characteristics, plus motor and electrical accessories.
 4. Material thickness and finishes, including color charts.
 5. Dampers, including housings, linkages, and operators.
 6. Roof curbs.
 7. Fan speed controllers.

B. Shop Drawings: Include plans, elevations, sections, details, and attachments to other work.
1. Detail equipment assemblies and indicate dimensions, weights, loads, required clearances, method of field assembly, components, and location and size of each field connection.
2. Wiring Diagrams: For power, signal, and control wiring.

C. Delegated-Design Submittal: For unit hangars and supports indicated to comply with performance requirements and design criteria, including analysis data signed and sealed by the qualified professional engineer responsible for their preparation.

1. Detail mounting, securing, and flashing of roof curb to roof structure. Indicate coordinating requirements with roof membrane system.
2. Wind Restraint Details: Detail fabrication and attachment of wind and seismic restraints and snubbers. Show anchorage details and indicate quantity, diameter, and depth of penetration of anchors.

1.5 INFORMATIONAL SUBMITTALS

A. Coordination Drawings: Reflected ceiling plans and other details, drawn to scale, on which the following items are shown and coordinated with each other, using input from Installers of the items involved:

1. Roof framing and support members relative to duct penetrations.
2. Ceiling suspension assembly members.
3. Size and location of initial access modules for acoustical tile.
4. Ceiling-mounted items including light fixtures, diffusers, grilles, speakers, sprinklers, access panels, and special moldings.

B. Field quality-control reports.

1.6 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For power ventilators to include in emergency, operation, and maintenance manuals.

1.7 MAINTENANCE MATERIAL SUBMITTALS

A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.

1. Belts: One set(s) for each belt-driven unit.

1.8 QUALITY ASSURANCE

A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

B. AMCA Compliance: Fans shall have AMCA-Certified performance ratings and shall bear the AMCA-Certified Ratings Seal.
1.9 COORDINATION

A. Coordinate size and location of structural-steel support members.

B. Coordinate sizes and locations of roof curbs, equipment supports, and roof penetrations with actual equipment provided.

C. Coordinate location with sprinkler contractor.

PART 2 - PRODUCTS

2.1 IN-LINE CENTRIFUGAL FANS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. Carnes Company
 2. Greenheck Fan Corporation
 3. Hartzell Fan Incorporated
 4. Loren Cook Company
 5. PennBarry
 6. Twin City Fans

B. Housing: Split, spun aluminum with aluminum straightening vanes, inlet and outlet flanges, and support bracket adaptable to floor, side wall, or ceiling mounting.

C. Direct-Drive Units: Motor mounted in airstream, factory wired to disconnect switch located on outside of fan housing.

D. Fan Wheels: Aluminum, forward curved blades welded to aluminum hub.

E. Accessories:
 1. Variable-Speed Controller: Solid-state control to reduce speed from 100 to less than 50 percent.
 2. Disconnect Switch (at unit): Nonfusible type, NEMA enclosure rated for installed environment.
 3. Starter Switch (in space): Nonfusible type, push button, with auxiliary contacts for damper and fire alarm interlock, NEMA enclosure rated for installed environment.
 5. Motor and Drive Cover (Belt Guard): Epoxy-coated steel.
 6. Vibration Isolators:
 a. Type: Spring vibration isolation hangers.
 b. Deflection: 1 inch.

F. Capacities and Characteristics:

1. Refer to schedule on drawings.
PART 3 - EXECUTION

3.1 INSTALLATION

A. Install power ventilators level and plumb.

B. Secure roof-mounted fans to roof curbs with cadmium-plated hardware. See Section 077200 "Roof Accessories" for installation of roof curbs.

C. Ceiling Units: Suspend units from structure; use manufacturers support kit.

D. Install units with clearances for service and maintenance.

E. Label units according to requirements specified in Section 230553 "Identification for HVAC Equipment."

F. In buildings equipped with sprinklers, including ESFR sprinklers, fan installation shall comply with all of the following: The maximum fan diameter shall be 24 ft. The HVLS fan shall be centered approximately between four adjacent sprinklers. The vertical clearance from the HVLS fan to the sprinkler deflector shall be a minimum of 3 ft.

G. All warehouse fans shall be interlocked to shut down immediately upon receiving a waterflow signal from the alarm system in accordance with the requirements of NFPA 72 - National Fire Alarm and Signaling Code.

3.2 CONNECTIONS

A. Drawings indicate general arrangement of ducts and duct accessories. Make final duct connections with flexible connectors. Flexible connectors are specified in Section 233300 "Air Duct Accessories."

B. Install ducts adjacent to power ventilators to allow service and maintenance.

C. Ground equipment according to Section 260526 "Grounding and Bonding for Electrical Systems."

D. Connect wiring according to Section 260519 "Low-Voltage Electrical Power Conductors and Cables."

3.3 FIELD QUALITY CONTROL

A. Perform tests and inspections.
 1. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect components, assemblies, and equipment installations, including connections, and to assist in testing.

B. Tests and Inspections:
1. Verify that shipping, blocking, and bracing are removed.
2. Verify that unit is secure on mountings and supporting devices and that connections to ducts and electrical components are complete. Verify that proper thermal-overload protection is installed in motors, starters, and disconnect switches.
3. Verify that cleaning and adjusting are complete.
4. Disconnect fan drive from motor, verify proper motor rotation direction, and verify fan wheel free rotation and smooth bearing operation. Reconnect fan drive system, align and adjust belts, and install belt guards.
5. Adjust belt tension.
6. Adjust damper linkages for proper damper operation.
7. Verify lubrication for bearings and other moving parts.
8. Verify that manual and automatic volume control and fire and smoke dampers in connected ductwork systems are in fully open position.
9. Disable automatic temperature-control operators, energize motor and adjust fan to indicated rpm, and measure and record motor voltage and amperage.
10. Shut unit down and reconnect automatic temperature-control operators.
11. Remove and replace malfunctioning units and retest as specified above.

C. Test and adjust controls and safeties. Replace damaged and malfunctioning controls and equipment.

D. Prepare test and inspection reports.

3.4 ADJUSTING

A. Adjust damper linkages for proper damper operation.

B. Comply with requirements in Section 230593 "Testing, Adjusting, and Balancing for HVAC" for testing, adjusting, and balancing procedures.

C. Replace fan and motor pulleys as required to achieve design airflow.

D. Lubricate bearings.

END OF SECTION
PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes:

1. Perforated diffusers.
2. Louver face diffusers.
3. Adjustable bar registers.

B. Related Sections:

1. Section 089116 "Operable Wall Louvers" and Section 089119 "Fixed Louvers" for fixed and adjustable louvers and wall vents, whether or not they are connected to ducts.
2. Section 233300 "Air Duct Accessories" for fire and smoke dampers and volume-control dampers not integral to diffusers, registers, and grilles.

1.2 ACTION SUBMITTALS

A. Product Data: For each type of product indicated, include the following:

1. Data Sheet: Indicate materials of construction, finish, and mounting details; and performance data including throw and drop, static-pressure drop, and noise ratings.
2. Diffuser, Register, and Grille Schedule: Indicate drawing designation, room location, quantity, model number, size, and accessories furnished.

1.3 INFORMATIONAL SUBMITTALS

A. Coordination Drawings: Reflected ceiling plans, drawn to scale, on which the following items are shown and coordinated with each other, using input from Installers of the items involved:

1. Ceiling suspension assembly members.
2. Method of attaching hangers to building structure.
3. Size and location of initial access modules for acoustical tile.
4. Ceiling-mounted items including lighting fixtures, diffusers, grilles, speakers, sprinklers, access panels, and special moldings.
5. Duct access panels.

B. Source quality-control reports.
PART 2 - PRODUCTS

2.1 CEILING DIFFUSERS

A. Perforated Diffuser:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Krueger.
 b. METALAIRE, Inc.
 c. Nailor Industries Inc.
 d. Price Industries.
 e. Titus.

2. Material: Insulated steel backpan, with steel face.
3. Finish: Baked enamel, white, unless noted otherwise.
4. Face Size: Refer to Air Device schedule and drawings.
5. Duct Inlet: Refer to Air Device schedule and drawings.
6. Face Style: Refer to Air Device schedule and drawings.
7. Mounting: Refer to Air Device schedule and drawings.
8. Pattern Controller: None.
9. Accessories: Refer to Air Device schedule and drawings

B. Louver Face Diffuser:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Krueger.
 b. METALAIRE, Inc.
 c. Nailor Industries Inc.
 d. Price Industries.
 e. Titus.

2. Devices shall be specifically designed for variable-air-volume flows.
4. Finish: Baked enamel, white, unless noted otherwise.
5. Face Size: Refer to Air Device schedule and drawings.
6. Mounting: Refer to Air Device schedule and drawings.
7. Pattern: Four-way, unless noted otherwise.
8. Accessories: Refer to Air Device schedule and drawings.

2.2 REGISTERS AND GRILLES

A. Adjustable Bar Register:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Krueger.
3. Finish: Baked enamel, white, unless noted otherwise.
8. Mounting Frame: Refer to Air Device schedule and drawings.
9. Mounting: Refer to Air Device schedule and drawings.
10. Damper Type: Adjustable opposed blade.
11. Accessories: Refer to Air Device schedule and drawings.

2.3 SOURCE QUALITY CONTROL

A. Verification of Performance: Rate diffusers, registers, and grilles according to ASHRAE 70, "Method of Testing for Rating the Performance of Air Outlets and Inlets."

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine areas where diffusers, registers, and grilles are to be installed for compliance with requirements for installation tolerances and other conditions affecting performance of equipment.

B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION

A. Install diffusers, registers, and grilles level and plumb.

B. Ceiling-Mounted Outlets and Inlets: Drawings indicate general arrangement of ducts, fittings, and accessories. Air outlet and inlet locations have been indicated to achieve design requirements for air volume, noise criteria, airflow pattern, throw, and pressure drop. Make final locations where indicated, as much as practical. For units installed in lay-in ceiling panels, locate units in the center of panel. Where architectural features or other items conflict with installation, notify Architect for a determination of final location.

C. Install diffusers, registers, and grilles with airtight connections to ducts and to allow service and maintenance of dampers, air extractors, and fire dampers.
3.3 ADJUSTING

A. After installation, adjust diffusers, registers, and grilles to air patterns indicated, or as directed, before starting air balancing.

END OF SECTION
SECTION 237313 MODULAR INDOOR CENTRAL-STATION AIR-HANDLING UNITS

PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes:
 1. Variable-air-volume, air-handling units (above 2800 cfm).
 2. Variable-air-volume, air-handling units (below 2800 cfm)

1.2 PERFORMANCE REQUIREMENTS

A. Structural Performance: Casing panels for above 2800 cfm shall be self-supporting and capable of withstanding 133 percent of internal static pressures indicated, without panel joints exceeding a deflection of L/200 where "L" is the unsupported span length within completed casings.

1.3 ACTION SUBMITTALS

A. Product Data: For each air-handling unit indicated.
 1. Unit dimensions and weight.
 2. Cabinet material, metal thickness, finishes, insulation, and accessories.
 3. Fans:
 a. Certified fan-performance curves with system operating conditions indicated.
 b. Certified fan-sound power ratings.
 c. Fan construction and accessories.
 d. Motor ratings, electrical characteristics, and motor accessories.
 4. Certified coil-performance ratings with system operating conditions indicated.
 5. Dampers, including housings, linkages, and operators.
 6. Filters with performance characteristics.

1.4 INFORMATIONAL SUBMITTALS

A. Coordination Drawings: Floor plans and other details, drawn to scale, on which the following items are shown and coordinated with each other, using input from installers of the items involved:
 1. Mechanical-room layout and relationships between components and adjacent structural and mechanical elements.
 2. Support location, type, and weight.
 3. Field measurements.

B. Source quality-control reports.
C. Field quality-control reports.

1.5 CLOSEOUT SUBMITTALS
A. Operation and Maintenance Data: For air-handling units to include in emergency, operation, and maintenance manuals.

1.6 QUALITY ASSURANCE
A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
B. NFPA Compliance: Comply with NFPA 90A for design, fabrication, and installation of air-handling units and components.
C. ARI Certification: Air-handling units and their components shall be factory tested according to ARI 430, "Central-Station Air-Handling Units," and shall be listed and labeled by ARI.
D. ASHRAE Compliance: Applicable requirements in ASHRAE 62.1, Section 5 - "Systems and Equipment" and Section 7 - "Construction and Startup."
E. ASHRAE/IESNA 90.1 Compliance: Applicable requirements in ASHRAE/IESNA 90.1, Section 6 - "Heating, Ventilating, and Air-Conditioning."
F. Comply with NFPA 70.

1.7 COORDINATION
A. Coordinate sizes and locations of concrete bases with actual equipment provided.

PART 2 - PRODUCTS

2.1 MANUFACTURERS
A. **Basis-of-Design Product:** Subject to compliance with requirements, provide product indicated on Drawings:
 1. York

2.2 UNIT CASINGS
A. General Fabrication Requirements for Casings:
 1. Forming: Form walls, roofs, and floors with at least two breaks at each joint.
 2. Casing Joints: Sheet metal screws or pop rivets.
 3. Sealing: Seal all joints with water-resistant sealant.
4. **Factory Finish for Galvanized-Steel Casings:** Apply manufacturer's standard primer immediately after cleaning and pretreating.

5. **Airstream Surfaces:** Surfaces in contact with the airstream shall comply with requirements in ASHRAE 62.1.

B. Inspection and Access Panels and Access Doors for 2800 cfm or above:

1. **Panel and Door Fabrication:** Formed and reinforced, double-wall and insulated panels of same materials and thicknesses as casing (2” thick foam insulation).

2. **Inspection and Access Panels:**

 a. **Fasteners:** Two or more camlock type for panel lift-out operation. Arrangement shall allow panels to be opened against air-pressure differential.

 b. **Gasket:** Neoprene, applied around entire perimeters of panel frames.

 c. **Size:** Large enough to allow inspection and maintenance of air-handling unit’s internal components.

3. **Access Doors:**

 a. **Hinges:** A minimum of two ball-bearing hinges or stainless-steel piano hinge and two wedge-lever-type latches, operable from inside and outside. Arrange doors to be opened against air-pressure differential.

 b. **Gasket:** Neoprene, applied around entire perimeters of panel frames.

 c. **Fabricate windows in fan section doors of double-glazed, wire-reinforced safety glass with an air space between panes and sealed with interior and exterior rubber seals.

4. **Locations and Applications:**

 a. **Fan Section:** Doors.

 b. **Access Section:** Doors.

 c. **Coil Section:** Inspection and access panel.

 d. **Damper Section:** Doors.

 e. **Filter Section:** Doors large enough to allow periodic removal and installation of filters.

 f. **Mixing Section:** Doors.

5. **Service Light:** 100-W vaporproof fixture with switched junction box located inside adjacent to door.

C. Condensate Drain Pans:

1. **Fabricated with two percent slope in at least two planes to collect condensate from cooling coils (including coil piping connections, coil headers, and return bends) and from humidifiers and to direct water toward drain connection.**

 a. **Length:** Extend drain pan downstream from leaving face.

 b. **Depth:** A minimum of 2 inches deep.

2. **Double-wall, stainless-steel sheet with space between walls filled with foam insulation and moisture-tight seal.**
3. Drain Connection: Located at lowest point of pan and sized to prevent overflow. Terminate with threaded nipple on both ends of pan.
4. Units with stacked coils shall have an intermediate drain pan to collect condensate from top coil.

D. Air-Handling-Unit Mounting Frame: Formed galvanized-steel channel or structural channel supports, designed for low deflection, welded with integral lifting lugs.

2.3 FAN, DRIVE, AND MOTOR SECTION

A. Fan and Drive Assemblies: Statically and dynamically balanced and designed for continuous operation at maximum-rated fan speed and motor horsepower.

1. Shafts: Designed for continuous operation at maximum-rated fan speed and motor horsepower, and with field-adjustable alignment.
 a. Turned, ground, and polished hot-rolled steel with keyway. Ship with a protective coating of lubricating oil.
 b. Designed to operate at no more than 70 percent of first critical speed at top of fan's speed range.

B. Motor:

1. Enclosure Type: Open drip proof or totally enclosed motor.
2. NEMA Premium (TM) efficient motors as defined in NEMA MG 1.
3. Motor Sizes: Minimum size as indicated. If not indicated, large enough so driven load will not require motor to operate in service factor range above 1.0.
5. Mount unit-mounted disconnect switches on exterior of unit.

2.4 COIL SECTION

A. General Requirements for Coil Section:

1. Comply with ARI 410.
2. Fabricate coil section to allow removal and replacement of coil for maintenance and to allow in-place access for service and maintenance of coil(s).
3. Coils shall not act as structural component of unit.

2.5 AIR FILTRATION SECTION

A. General Requirements for Air Filtration Section:

1. Comply with NFPA 90A.
2. Provide minimum arrestance according to ASHRAE 52.1, and a minimum efficiency reporting value (MERV) according to ASHRAE 52.2.
3. Provide filter holding frames arranged for flat or angular orientation, with access doors on both sides of unit. Filters shall be removable from one side or lifted out from access plenum.

B. Extended-Surface, Disposable Panel Filters:

1. Factory-fabricated, dry, extended-surface type.
2. Thickness: 2 inches.
4. Media: Fibrous material formed into deep-V-shaped pleats and held by self-supporting wire grid.
5. Mounting Frames: Welded, galvanized steel, with gaskets and fasteners, suitable for bolting together into built-up filter banks.

C. Filter Gage:

1. 3-1/2-inch-diameter, diaphragm-actuated dial in metal case.
2. Vent valves.
3. Black figures on white background.
4. Front recalibration adjustment.
5. 2 percent of full-scale accuracy.
6. Range: 0- to 1.0-inch wg

2.6 DAMPERS

A. General Requirements for Dampers: Leakage rate, according to AMCA 500, "Laboratory Methods for Testing Dampers for Rating," shall not exceed 2 percent of air quantity at 2000-fpm face velocity through damper and 4-inch wg pressure differential.

B. Outdoor- and Return-Air Dampers: Low-leakage, double-skin, airfoil-blade, aluminum dampers with compressible jamb seals and extruded-vinyl blade edge seals in opposed-blade arrangement with cadmium-plated steel operating rods rotating in stainless-steel sleeve bearings mounted in a single aluminum frame, and with operating rods connected with a common linkage. Leakage rate shall not exceed 5 cfm/sq. ft. at 1-inch wg and 9 cfm/sq. ft. at 4-inch wg. The outdoor air dampers shall be two independently operated dampers with one controlled by the minimum outside air and the other set for economizer mode, dampers shall be sized accordingly to the design airflow requirements.

C. Mixing Section: Multiple-blade, air-mixer assembly located immediately downstream of mixing section.

D. Combination Filter and Mixing Section:

1. Cabinet support members shall hold 2-inch- thick, pleated, flat, permanent or throwaway filters.
2. Multiple-blade, air-mixer assembly shall mix air to prevent stratification, located immediately downstream of mixing box.
2.7 SOURCE QUALITY CONTROL

A. Fan Sound-Power Level Ratings: Comply with AMCA 301, "Methods for Calculating Fan Sound Ratings from Laboratory Test Data." Test fans according to AMCA 300, "Reverberant Room Method for Sound Testing of Fans." Fans shall bear AMCA-certified sound ratings seal.

B. Fan Performance Rating: Factory test fan performance for airflow, pressure, power, air density, rotation speed, and efficiency. Rate performance according to AMCA 210, "Laboratory Methods of Testing Fans for Aerodynamic Performance Rating."

C. Water Coils: Factory tested to 300 psig according to ARI 410 and ASHRAE 33.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine areas and conditions, with Installer present, for compliance with requirements for installation tolerances and other conditions affecting performance of the Work.

B. Examine casing insulation materials and filter media before air-handling unit installation. Reject insulation materials and filter media that are wet, moisture damaged, or mold damaged.

C. Examine roughing-in for hydronic and condensate drainage piping systems and electrical services to verify actual locations of connections before installation.

D. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION

A. Equipment Mounting: Install air-handling units on concrete bases using elastomeric pads. Secure units to anchor bolts installed in concrete bases. Comply with requirements for concrete bases specified in Section 033000 "Cast-in-Place Concrete."

1. Minimum Deflection: 1/2 inch
2. Install stainless-steel plate to equally distribute weight over elastomeric pad.
3. Install dowel rods to connect concrete base to concrete floor. Unless otherwise indicated, install dowel rods on 18-inch centers around the full perimeter of concrete base.
4. Install epoxy-coated anchor bolts that extend through concrete base and anchor into structural concrete floor.
5. Place and secure anchorage devices. Use setting drawings, templates, diagrams, instructions, and directions furnished with items to be embedded.
6. Install anchor bolts to elevations required for proper attachment to supported equipment.

B. Arrange installation of units to provide access space around air-handling units for service and maintenance.

C. Do not operate fan system until filters (temporary or permanent) are in place. Replace temporary filters used during construction and testing, with new, clean filters.
D. Install filter-gage, static-pressure taps upstream and downstream of filters. Mount filter gages on outside of filter housing or filter plenum in accessible position. Provide filter gages on filter banks, installed with separate static-pressure taps upstream and downstream of filters.

3.3 CONNECTIONS

A. Comply with requirements for piping specified in other Sections. Drawings indicate general arrangement of piping, fittings, and specialties.

B. Install piping adjacent to air-handling unit to allow service and maintenance.

C. Hot-Water Piping: Comply with applicable requirements in Section 232113 "Hydronic Piping." Install shutoff valve and union or flange at each coil supply connection. Install PICCV valve and union or flange at each coil return connection.

D. Chilled-Water Piping: Comply with applicable requirements in Section 232113 "Hydronic Piping." Install shutoff valve and union or flange at each coil supply connection. Install PICCV valve and union or flange at each coil return connection.

E. Connect duct to air-handling units with flexible connections.

3.4 FIELD QUALITY CONTROL

A. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect, test, and adjust components, assemblies, and equipment installations, including connections.

B. Tests and Inspections:

1. Leak Test: After installation, fill water coils with water, and test coils and connections for leaks.
2. Charge refrigerant coils with refrigerant and test for leaks.
3. Fan Operational Test: After electrical circuitry has been energized, start units to confirm proper motor rotation and unit operation.
4. Test and adjust controls and safeties. Replace damaged and malfunctioning controls and equipment.

C. Air-handling unit or components will be considered defective if unit or components do not pass tests and inspections.

D. Prepare test and inspection reports.

3.5 STARTUP SERVICE

A. Engage a factory-authorized service representative to perform startup service.

1. Complete installation and startup checks according to manufacturer's written instructions.
2. Verify that shipping, blocking, and bracing are removed.
3. Verify that unit is secure on mountings and supporting devices and that connections to piping, ducts, and electrical systems are complete. Verify that proper thermal-overload protection is installed in motors, controllers, and switches.
4. Verify proper motor rotation direction, free fan wheel rotation, and smooth bearing operations. Reconnect fan drive system, align belts, and install belt guards.
5. Verify that bearings, pulleys, belts, and other moving parts are lubricated with factory-recommended lubricants.
6. Verify that outdoor- and return-air mixing dampers open and close, and maintain minimum outdoor-air setting.
7. Comb coil fins for parallel orientation.
8. Verify that proper thermal-overload protection is installed for electric coils.
10. Verify that manual and automatic volume control and fire and smoke dampers in connected duct systems are in fully open position.

B. Starting procedures for air-handling units include the following:
1. Energize motor; verify proper operation of motor, drive system, and fan wheel. Adjust fan to indicated rpm.
2. Measure and record motor electrical values for voltage and amperage.
3. Manually operate dampers from fully closed to fully open position and record fan performance.

3.6 ADJUSTING
A. Adjust damper linkages for proper damper operation.

3.7 CLEANING
A. After completing system installation and testing, adjusting, and balancing air-handling unit and air-distribution systems and after completing startup service, clean air-handling units internally to remove foreign material and construction dirt and dust. Clean fan wheels, cabinets, dampers, coils, and filter housings, and install new, clean filters.

3.8 DEMONSTRATION
A. Engage a factory-authorized service representative to train Owner's maintenance personnel to adjust, operate, and maintain air-handling units.

END OF SECTION
PART 1 - GENERAL

1.1 SUMMARY
A. Section includes split-system air-conditioning and heat-pump units consisting of separate evaporator-fan and compressor-condenser components.

1.2 ACTION SUBMITTALS
A. Product Data: For each type of product indicated. Include rated capacities, operating characteristics, and furnished specialties and accessories. Include performance data in terms of capacities, outlet velocities, static pressures, sound power characteristics, motor requirements, and electrical characteristics.
B. Shop Drawings: Include plans, elevations, sections, details, and attachments to other work.
 1. Detail equipment assemblies and indicate dimensions, weights, loads, required clearances, method of field assembly, components, and location and size of each field connection.
 2. Wiring Diagrams: For power, signal, and control wiring.

1.3 INFORMATIONAL SUBMITTALS
A. Field quality-control reports.
B. Warranty: Sample of special warranty.

1.4 CLOSEOUT SUBMITTALS
A. Operation and Maintenance Data: For split-system air-conditioning units to include in emergency, operation, and maintenance manuals.

1.5 QUALITY ASSURANCE
A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
B. ASHRAE Compliance:
 1. Fabricate and label refrigeration system to comply with ASHRAE 15, "Safety Standard for Refrigeration Systems."
C. ASHRAE/IESNA Compliance: Applicable requirements in ASHRAE/IESNA 90.1.
1.6 COORDINATION

A. Coordinate sizes and locations of concrete bases with actual equipment provided. Cast anchor-bolt inserts into bases.

B. Coordinate sizes and locations of wall penetrations with actual equipment provided.

1.7 WARRANTY

A. Special Warranty: Manufacturer's standard form in which manufacturer agrees to repair or replace components of split-system air-conditioning units that fail in materials or workmanship within specified warranty period.

1. Warranty Period:
 a. For Compressor: Six year(s) from date of Substantial Completion.
 b. For Parts: One year(s) from date of Substantial Completion.
 c. For Labor: One year(s) from date of Substantial Completion.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. Basis-of-Design Product: Subject to compliance with requirements, provide product indicated on Drawings or comparable product by one of the following:

1. Mitsubishi Electric & Electronics USA, Inc.; HVAC Advanced Products Division.
2. Daikin
3. LG Electronics
4. Samsung

2.2 INDOOR UNITS (5 TONS OR LESS)

A. The indoor unit shall be factory assembled and pre-wired with all necessary electronic and refrigerant controls. Both liquid and suction lines must be individually insulated between the outdoor and indoor units.

B. Unit Cabinet:

1. The indoor unit shall have a white, “flat screen” finish.
2. The drain and refrigerant piping shall be accessible from six (6) positions for flexible installation (right side, right back, and right bottom; and left side, left back, and left bottom.
3. The cabinet shall be supplied with a mounting plate to be installed onto a wall for securely mounting the cabinet.
4. The cabinet includes an “intelligent-eye” motion sensor capable of setting back the set point temperature for energy savings. This feature may be disengaged on the wireless remote controller.
C. Fan:
1. The evaporator fan shall be an assembly consisting of a direct-driven fan by a single motor.
2. The fan shall be statically and dynamically balanced and operate on a motor with permanent lubricated bearings.
3. An auto-swing louver for adjustable air flow (both vertically and horizontally) is standard via the wireless remote control furnished with each system.
4. The indoor fan shall offer a choice of five speeds, plus quiet and auto settings.

D. Filter:
1. The return air filter provided will be a mildew proof, removable and washable filter. Optional photo catalytic, air purifying filters are available.

E. Coil:
1. The evaporator coil shall be a nonferrous, aluminum fin on copper tube heat exchanger.
2. All tube joints shall be brazed with silver alloy or phosphor copper.
3. All coils will be factory pressure tested.
4. A condensate pan shall be provided under the coil with a drain connection.

F. Electrical:
1. The outdoor unit shall be powered with 208-230 volts, 1 phase, and 60 hertz power. The indoor unit shall receive 208-230 volt, 1 phase, 60 hertz power from the outdoor unit.
2. The allowable voltage range shall be 187 volts to 253 volts.

G. Control:
1. The unit shall have a backlit, wireless remote infra-red controller capable to operate the system. It shall have Cooling Operation, Heating Operation, Automatic Operation, Dry Operation and Fan Only Operation.
2. The infrared remote controller shall consist of an On/Off Power switch, Mode Selector, Silent Button (for outdoor unit), Fan Setting, Swing Louver, On/Off Timer Setting, Temperature Adjustment, °C or °F Temperature Display, “Intelligent Eye” sensor, Home Leave Operation and Powerful Operation.
3. On/Off switch powers the system on or off.
4. Mode selector shall operate the system in auto, cool, heat, fan or dry operation.
5. Silent operation shall lower the sound level of the outdoor unit by slowing the inverter driven fan speed.
6. Fan setting shall provide five fan speeds, plus quiet and auto settings.
7. Swing louver shall adjust the airflow (horizontal and vertical) blades.
8. On/Off timer is used for automatically switching the unit on or off.
9. Temperature adjustment allows for the increase or decrease of the desired temperature.
10. Intelligent eye provides an infrared sensor which detects movement and adjusts the temperature by 3.6°F up or down depending on operating mode.
11. Home leave operation allows you to record your favorite temperature and airflow setting and allows the system to set back to a user defined setting.
12. Powerful operation allows quick cool down or heating up in the desired space to achieve maximum desired temperature in the shortest allowable time period.
13. The infrared remote control shall perform Fault Diagnostic functions which may be system related, indoor unit or outdoor unit related depending on the fault code.

14. Temperature range on the remote control shall be 64°F to 90°F in cooling mode and 50°F to 86°F in heating mode.

15. The indoor unit microprocessor has the capability to receive and process commands via return air temperature and indoor coil temperature sensors enabled by commands from the remote control.

H. Sound:

1. Indoor unit sound levels shall not exceed: 40 dB(A)

2.3 OUTDOOR UNITS (5 TONS OR LESS)

A. Air-Cooled, Compressor-Condenser Components:

1. The outdoor unit shall be factory assembled and pre-wired with all necessary electronic and refrigerant controls. The refrigeration circuit of the condensing unit shall consist of scroll compressors, motors, fans, condenser coil, electronic expansion valves, solenoid valves, 4-way valve, distribution headers, capillaries, filters, shut off valves, oil separators, service ports and refrigerant regulator.

2. High/low pressure gas line, liquid and suction lines must be individually insulated between the outdoor and indoor units.

3. The sound pressure level shall be 63 dBA or less at 3 feet from the front of the unit.

4. The system shall automatically restart operation after a power failure and shall retain all settings, eliminating the need for reprogramming.

5. The unit shall incorporate an auto-charging feature and a refrigerant charge check function.

6. The following safety devices shall be included on the condensing unit; high pressure switch, control circuit fuses, crankcase heaters, fusible plug, high pressure switch, overload relay, inverter overload protector, thermal protectors for compressor and fan motors, over current protection for the inverter and anti-recycling timers.

7. Oil recovery cycle shall be automatic occurring 2 hours after start of operation and then every 8 hours of operation.

8. The outdoor unit shall be capable of heating operation at 0°F dry bulb ambient temperature.

9. The system shall continue to provide heat to the indoor units while in the defrost mode.

B. Unit Cabinet:

1. The outdoor unit shall be completely weatherproof and corrosion resistant. The unit shall be constructed from rust-proofed mild steel panels coated with a baked enamel finish.

C. Fan:

1. The condensing unit shall consist of one or more propeller type, direct-drive fans that have variable speed operation via a DC (digitally commutating) inverter.

2. The condensing unit fan shall have 0.32” of external static pressure available.

3. Nominal sound pressure levels shall be 63 dBA or less.
4. The fan motor shall have inherent thermal overload protection and permanently lubricated bearings.

D. Condenser Coil:

1. The condenser coil shall be manufactured from copper tubes expanded into aluminum fins to form a mechanical bond.
2. The heat exchanger coil shall be of a waffle louver fin and rifled bore tube design to ensure high efficiency performance.
3. The heat exchanger on the condensing units shall be manufactured from Hi-X seamless copper tube with N-shape internal grooves mechanically bonded on to aluminum fins to an e-Pass Design.
4. The fins shall be covered with an anti-corrosion acrylic resin and type E1, hydrophilic film.
5. The pipe plates shall be treated with powdered polyester resin for corrosion prevention. The thickness of the coating must be between 2.0 to 3.0 microns.

E. Compressor:

1. The scroll compressors shall be variable speed PAM inverter to follow the variations in total cooling and heating load as determined by the suction gas pressure as measured in the condensing unit. In addition, samplings of evaporator and condenser temperatures shall be made so that the high/low pressures detected are read every 20 seconds and calculated. With each reading, the compressor capacity (INV frequency or STD ON/OFF) shall be controlled to eliminate deviation from target value.
2. The inverter driven compressor in each condensing unit shall be of highly efficient reluctance DC (digitally commutating), hermetically sealed scroll type.
3. The capacity control range shall be from 100% to as low as 6%.
4. Each compressor shall be equipped with a crankcase heater, high pressure safety switch, and internal thermal overload protector.
5. Oil separators shall be standard with the equipment together with an intelligent oil management system.
6. The compressor shall be spring mounted to avoid the transmission of vibration.

F. Electrical:

1. The control voltage between the indoor and outdoor unit shall be 16VDC non-shielded, stranded 2 conductor cable.

2.4 ACCESSORIES

A. Thermostat: Wireless infrared functioning to remotely control compressor and evaporator fan, with the following features:

1. Compressor time delay.
2. 24-hour time control of system stop and start.
3. Liquid-crystal display indicating temperature, set-point temperature, time setting, operating mode, and fan speed.
4. Fan-speed selection including auto setting.
B. Automatic-reset timer to prevent rapid cycling of compressor.

C. Refrigerant Line Kits: Soft-annealed copper suction and liquid lines factory cleaned, dried, pressurized, and sealed; factory-insulated suction line with flared fittings at both ends.

D. Drain Hose: For condensate.

PART 3 - EXECUTION

3.1 INSTALLATION

A. Install units level and plumb.

B. Install evaporator-fan components using manufacturer's standard mounting devices securely fastened to building structure.

C. Install ground-mounted, compressor-condenser components on 5-inch- thick, reinforced concrete base that is 4 inches larger, on each side, than unit. Coordinate anchor installation with concrete base.

D. Install and connect precharged refrigerant tubing to component's quick-connect fittings. Install tubing to allow access to unit.

3.2 CONNECTIONS

A. Where piping is installed adjacent to unit, allow space for service and maintenance of unit.

3.3 FIELD QUALITY CONTROL

A. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect, test, and adjust components, assemblies, and equipment installations, including connections.

B. Perform tests and inspections.

1. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect components, assemblies, and equipment installations, including connections, and to assist in testing.

C. Tests and Inspections:

1. Leak Test: After installation, charge system and test for leaks. Repair leaks and retest until no leaks exist.

2. Operational Test: After electrical circuitry has been energized, start units to confirm proper motor rotation and unit operation.

3. Test and adjust controls and safeties. Replace damaged and malfunctioning controls and equipment.

D. Remove and replace malfunctioning units and retest as specified above.
E. Prepare test and inspection reports.

3.4 STARTUP SERVICE

A. Engage a factory-authorized service representative to perform startup service.
 1. Complete installation and startup checks according to manufacturer's written instructions.

3.5 DEMONSTRATION

A. Engage a factory-authorized service representative to train Owner's maintenance personnel to adjust, operate, and maintain units.

END OF SECTION
SECTION 260500

COMMON WORK RESULTS FOR ELECTRICAL

PART 1 - GENERAL

1.1 SUMMARY

A. Any changes or additional costs to other trades or to the project caused by a substitution, even if approved, shall be borne by the trade making the substitution.

B. Section Includes:
 1. Sleeves for raceways and cables.
 2. Sleeve seals.
 4. Common electrical installation requirements.

1.2 SUBMITTALS

A. Any equipment or material submitted which is not in accordance with the specification requirements shall be specifically noted in the submittal letter of transmittal including all points of variance. Submitted items shall be functionally equal to the specified items. If the submittals do not include points of variance for substitutions, the Contractor remains responsible to execute his work in accordance with the contract documents even if submittals for substitutes are approved.

B. The Architect's approval of submittals indicates general compliance with the design concept, but shall not be considered as permitting any departure from the contract documents. Nor shall it relieve the Contractor's responsibility for any errors in the submittal, such as in details, dimensions, materials, etc.

C. If requested, the Contractor shall provide samples of materials or equipment he proposes to furnish. Such samples shall remain the property of the Contractor and will be returned before contract closeout.

D. Contractor shall submit dimensioned shop drawings of all electrical and telephone room layouts, and any other locations where electrical equipment is grouped. Shop drawings shall show relationship of electrical equipment with the building structure and equipment of other trades. Shop drawings shall also be provided for the following systems:
 1. Telephone and data systems
 2. Fire alarm system
 3. Public address and sound systems
 4. Lightning protection system
 5. Lighting control systems
PART 2 - PRODUCTS

2.1 SLEEVES FOR RACEWAYS AND CABLES

A. Steel Pipe Sleeves: ASTM A 53/A 53M, Type E, Grade B, Schedule 40, galvanized steel, plain ends.

B. Cast-Iron Pipe Sleeves: Cast or fabricated "wall pipe," equivalent to ductile-iron pressure pipe, with plain ends and integral waterstop, unless otherwise indicated.

C. Sleeves for Rectangular Openings: Galvanized sheet steel.

 1. Minimum Metal Thickness:
 a. For sleeve cross-section rectangle perimeter less than 50 inches and no side more than 16 inches, thickness shall be 0.052 inch.
 b. For sleeve cross-section rectangle perimeter equal to, or more than, 50 inches and 1 or more sides equal to, or more than, 16 inches, thickness shall be 0.138 inch.

2.2 SLEEVE SEALS

A. Description: Modular sealing device, designed for field assembly, to fill annular space between sleeve and raceway or cable.

 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 a. Advance Products & Systems, Inc.
 b. Calpico, Inc.
 c. Metraflex Co.
 d. Pipeline Seal and Insulator, Inc.

 2. Basis-of-Design Product: Subject to compliance with requirements, provide product by one of the following:
 a. Advance Products & Systems, Inc.
 b. Calpico, Inc.
 c. Metraflex Co.
 d. Pipeline Seal and Insulator, Inc.

 3. Sealing Elements: EPDM interlocking links shaped to fit surface of cable or conduit. Include type and number required for material and size of raceway or cable.

 4. Pressure Plates: Plastic or Carbon Steel. Include two for each sealing element.

 5. Connecting Bolts and Nuts: Carbon steel with corrosion-resistant coating of length required to secure pressure plates to sealing elements. Include one for each sealing element.

2.3 GROUT

A. Nonmetallic, Shrinkage-Resistant Grout: ASTM C 1107, factory-packaged, nonmetallic aggregate grout, noncorrosive, nonstaining, mixed with water to consistency suitable for application and a 30-minute working time.
PART 3 - EXECUTION

3.1 COMMON REQUIREMENTS FOR ELECTRICAL INSTALLATION

A. Comply with NECA 1.

B. Measure indicated mounting heights to bottom of unit for suspended items and to center of unit for wall-mounting items.

C. Headroom Maintenance: If mounting heights or other location criteria are not indicated, arrange and install components and equipment to provide maximum possible headroom consistent with these requirements.

D. Equipment: Install to facilitate service, maintenance, and repair or replacement of components of both electrical equipment and other nearby installations. Connect in such a way as to facilitate future disconnecting with minimum interference with other items in the vicinity.

E. Right of Way: Give to piping systems installed at a required slope.

3.2 SLEEVE INSTALLATION FOR ELECTRICAL PENETRATIONS

A. Electrical penetrations occur when raceways, cables, wireways, cable trays, or busways penetrate concrete slabs, concrete or masonry walls, or fire-rated floor and wall assemblies.

B. Concrete Slabs and Walls: Install sleeves for penetrations unless core-drilled holes or formed openings are used. Install sleeves during erection of slabs and walls.

C. Use pipe sleeves unless penetration arrangement requires rectangular sleeved opening.

D. Fire-Rated Assemblies: Install sleeves for penetrations of fire-rated floor and wall assemblies unless openings compatible with firestop system used are fabricated during construction of floor or wall.

E. Cut sleeves to length for mounting flush with both surfaces of walls.

F. Extend sleeves installed in floors 2 inches above finished floor level.

G. Size pipe sleeves to provide 1/4-inch annular clear space between sleeve and raceway or cable, unless indicated otherwise.

H. Seal space outside of sleeves with grout for penetrations of concrete and masonry

1. Promptly pack grout solidly between sleeve and wall so no voids remain. Tool exposed surfaces smooth; protect grout while curing.

I. Interior Penetrations of Non-Fire-Rated Walls and Floors: Seal annular space between sleeve and raceway or cable, using joint sealant appropriate for size, depth, and location of joint. Comply with requirements in Division 07 Section "Joint Sealants."
J. Fire-Rated-Assembly Penetrations: Maintain indicated fire rating of walls, partitions, ceilings, and floors at raceway and cable penetrations. Install sleeves and seal raceway and cable penetration sleeves with firestop materials. Comply with requirements in Division 07 Section "Penetration Firestopping."

K. Roof-Penetration Sleeves: Seal penetration of individual raceways and cables with flexible boot-type flashing units applied in coordination with roofing work.

L. Aboveground, Exterior-Wall Penetrations: Seal penetrations using steel pipe sleeves and mechanical sleeve seals. Select sleeve size to allow for 1-inch annular clear space between pipe and sleeve for installing mechanical sleeve seals.

M. Underground, Exterior-Wall Penetrations: Install cast-iron pipe sleeves. Size sleeves to allow for 1-inch annular clear space between raceway or cable and sleeve for installing mechanical sleeve seals.

3.3 SLEEVE-SEAL INSTALLATION

A. Install to seal exterior wall penetrations.

B. Use type and number of sealing elements recommended by manufacturer for raceway or cable material and size. Position raceway or cable in center of sleeve. Assemble mechanical sleeve seals and install in annular space between raceway or cable and sleeve. Tighten bolts against pressure plates that cause sealing elements to expand and make watertight seal.

3.4 FIRESTOPPING

A. Apply firestopping to penetrations of fire-rated floor and wall assemblies for electrical installations to restore original fire-resistance rating of assembly. Firestopping materials and installation requirements are specified in Division 07 Section "Penetration Firestopping."

END OF SECTION
PART 1 - GENERAL

1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
A. Section Includes:
 1. Building wires and cables rated 2000 V and less.
 2. Wires and cables for PV systems rated 2000 V and less.
 3. Connectors, splices, and terminations rated 2000 V and less.
B. Related Requirements:
 1. Section 260513 "Medium-Voltage Cables" for single-conductor and multiconductor cables, cable splices, and terminations for electrical distribution systems with 2001 to 35,000 V.
 2. Section 260523 "Control-Voltage Electrical Power Cables" for control systems communications cables and Classes 1, 2, and 3 control cables.
 3. Section 271500 "Communications Horizontal Cabling" for cabling used for voice and data circuits.

1.3 DEFINITIONS
A. VFC: Variable-frequency controller.

1.4 ACTION SUBMITTALS
A. Product Data: For each type of product.
B. Product Schedule: Indicate type, use, location, and termination locations.

1.5 INFORMATIONAL SUBMITTALS
A. Qualification Data: For testing agency.
B. Field quality-control reports.

1.6 QUALITY ASSURANCE
A. Testing Agency Qualifications: Member company of NETA.
1. Testing Agency's Field Supervisor: Certified by NETA to supervise on-site testing.

PART 2 - PRODUCTS

2.1 CONDUCTORS AND CABLES

A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

B. Conductor and Cable Marking: Comply with wire and cable marking according to UL's "Wire and Cable Marking and Application Guide."

C. Comply with UL 1277, UL 1685, and NFPA 70 for Type TC-ER cable used in VFC circuits.

D. Conductor: Copper, complying with NEMA WC 70/ICEA S-95-658.
 1. Conductor Insulation: Comply with NEMA WC 70/ICEA S-95-658 for Type THW, Type THW-2 Type THHN/THWN-2 Type XHHW-2 Type UF Type USE and Type SO.

E. Cable: Comply with NEMA WC 70/ICEA S-95-658 for armored cable, Type AC metal-clad cable, Type MC mineral-insulated, metal-sheathed cable, Type MI nonmetallic-sheathed cable, Type NM Type SE Type SO and Type USE with ground wire.

2.2 CONNECTORS AND SPLICES

A. Description: Factory-fabricated connectors and splices of size, ampacity rating, material, type, and class for application and service indicated; listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

PART 3 - EXECUTION

3.1 CONDUCTOR MATERIAL APPLICATIONS

A. Feeders: Copper; solid for No. 10 AWG and smaller; stranded for No. 8 AWG and larger.

B. Feeders: Copper for feeders smaller than No. 4 AWG. Conductors shall be solid for No. 10 AWG and smaller; stranded for No. 8 AWG and larger. Aluminum is not allowed unless specifically stated on the plans.

C. Branch Circuits: Copper. Solid for No. 10 AWG and smaller; stranded for No. 8 AWG and larger.

D. Branch Circuits: Copper. Solid for No. 12 AWG and smaller; stranded for No. 10 AWG and larger.

E. VFC Output Circuits Cable: Extra-flexible stranded for all sizes.
3.2 CONDUCTOR INSULATION AND MULTICONDUCTOR CABLE APPLICATIONS AND WIRING METHODS

A. Service Entrance: Type XHHW-2, single conductors in raceway.

B. Exposed Feeders: Type THHN/THWN-2, single conductors in raceway.

C. Feeders Concealed in Ceilings, Walls, Partitions, and Crawlspace: Type THHN/THWN-2, single conductors in raceway.

D. Feeders Concealed in Concrete, below Slabs-on-Grade, and Underground: Type XHHW-2, single conductors in raceway.

E. Feeders Installed below Raised Flooring: Type THHN/THWN-2, single conductors in raceway.

F. Exposed Branch Circuits, Including in Crawlspace: Type THHN/THWN-2, single conductors in raceway.

G. Branch Circuits Concealed in Ceilings, Walls, and Partitions: Type THHN/THWN-2, single conductors in raceway.

H. Branch Circuits Concealed in Concrete, below Slabs-on-Grade, and Underground: Type XHHW-2, single conductors in raceway.

I. Cord Drops and Portable Appliance Connections: Type SO, hard service cord with stainless-steel, wire-mesh, strain relief device at terminations to suit application.

3.3 INSTALLATION OF CONDUCTORS AND CABLES

A. Conceal cables in finished walls, ceilings, and floors unless otherwise indicated.

B. Complete raceway installation between conductor and cable termination points according to Section 260533 "Raceways and Boxes for Electrical Systems" prior to pulling conductors and cables.

C. Use manufacturer-approved pulling compound or lubricant where necessary; compound used must not deteriorate conductor or insulation. Do not exceed manufacturer's recommended maximum pulling tensions and sidewall pressure values.

D. Use pulling means, including fish tape, cable, rope, and basket-weave wire/cable grips, that will not damage cables or raceway.

E. Install exposed cables parallel and perpendicular to surfaces of exposed structural members, and follow surface contours where possible.

F. Support cables according to Section 260529 "Hangers and Supports for Electrical Systems."

G. Complete cable tray systems installation according to Section 260536 "Cable Trays for Electrical Systems" prior to installing conductors and cables.
3.4 CONNECTIONS

A. Tighten electrical connectors and terminals according to manufacturer's published torque-tightening values. If manufacturer's torque values are not indicated, use those specified in UL 486A-486B.

B. Make splices, terminations, and taps that are compatible with conductor material and that possess equivalent or better mechanical strength and insulation ratings than unspliced conductors.
 1. Use oxide inhibitor in each splice, termination, and tap for aluminum conductors.

C. Wiring at Outlets: Install conductor at each outlet, with at least 6 inches of slack.

3.5 IDENTIFICATION

A. Identify and color-code conductors and cables according to Section 260553 "Identification for Electrical Systems."

B. Identify each spare conductor at each end with identity number and location of other end of conductor, and identify as spare conductor.

3.6 SLEEVE AND SLEEVE-SEAL INSTALLATION FOR ELECTRICAL PENETRATIONS

A. Install sleeves and sleeve seals at penetrations of exterior floor and wall assemblies. Comply with requirements in Section 260544 "Sleeves and Sleeve Seals for Electrical Raceways and Cabling."

3.7 FIRESTOPPING

A. Apply firestopping to electrical penetrations of fire-rated floor and wall assemblies to restore original fire-resistance rating of assembly according to Section 078413 "Penetration Firestopping."

3.8 FIELD QUALITY CONTROL

1. Perform each of the following visual and electrical tests:
 a. Inspect exposed sections of conductor and cable for physical damage and correct connection according to the single-line diagram.
 b. Test bolted connections for high resistance using one of the following:
 1) A low-resistance ohmmeter.
 2) Calibrated torque wrench.
 3) Thermographic survey.
 c. Inspect compression applied connectors for correct cable match and indentation.
 d. Inspect for correct identification.
 e. Inspect cable jacket and condition.
 f. Insulation-resistance test on each conductor with respect to ground and adjacent conductors. Apply a potential of 500-V dc for 300-V rated cable and 1000-V dc for 600-V rated cable for a one-minute duration.
g. Continuity test on each conductor and cable.
h. Uniform resistance of parallel conductors.

2. Consider the cost and benefit of infrared scanning of cable and conductor splices before retaining "Initial Infrared Scanning" Subparagraph below.

3. Initial Infrared Scanning: After Substantial Completion, but before Final Acceptance, perform an infrared scan of each splice in conductors No. 3 AWG and larger. Remove box and equipment covers so splices are accessible to portable scanner. Correct deficiencies determined during the scan.
 a. Instrument: Use an infrared scanning device designed to measure temperature or to detect significant deviations from normal values. Provide calibration record for device.
 b. Record of Infrared Scanning: Prepare a certified report that identifies switches checked and that describes scanning results. Include notation of deficiencies detected, remedial action taken, and observations after remedial action.

B. Cables will be considered defective if they do not pass tests and inspections.

C. Prepare test and inspection reports to record the following:
 1. Procedures used.
 2. Results that comply with requirements.
 3. Results that do not comply with requirements and corrective action taken to achieve compliance with requirements.

END OF SECTION
PART 1 - GENERAL

1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
A. Section includes grounding and bonding systems and equipment.
B. Section includes grounding and bonding systems and equipment, plus the following special applications:
 1. Underground distribution grounding.
 2. Ground bonding common with lightning protection system.
 3. Foundation steel electrodes.

1.3 ACTION SUBMITTALS
A. Product Data: For each type of product indicated.

1.4 INFORMATIONAL SUBMITTALS
A. As-Built Data: Plans showing dimensioned as-built locations of grounding features specified in "Field Quality Control" Article, including the following:
 1. Test wells.
 2. Ground rods.
 3. Ground rings.
 4. Grounding arrangements and connections for separately derived systems.
B. Qualification Data: For testing agency and testing agency's field supervisor.
C. Field quality-control reports.

1.5 CLOSEOUT SUBMITTALS
A. Operation and Maintenance Data: For grounding to include in emergency, operation, and maintenance manuals.
1.6 QUALITY ASSURANCE

A. Testing Agency Qualifications: Certified by NETA.

PART 2 - PRODUCTS

2.1 SYSTEM DESCRIPTION

A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

B. Comply with UL 467 for grounding and bonding materials and equipment.

2.2 CONDUCTORS

A. Insulated Conductors: Copper or tinned-copper wire or cable insulated for 600 V unless otherwise required by applicable Code or authorities having jurisdiction.

B. Bare Copper Conductors:
 4. Bonding Cable: 28 kcmil, 14 strands of No. 17 AWG conductor, 1/4 inch in diameter.
 5. Bonding Conductor: No. 4 or No. 6 AWG, stranded conductor.
 6. Bonding Jumper: Copper tape, braided conductors terminated with copper ferrules; 1-5/8 inches wide and 1/16 inch thick.
 7. Tinned Bonding Jumper: Tinned-copper tape, braided conductors terminated with copper ferrules; 1-5/8 inches wide and 1/16 inch thick.

C. Grounding Bus: Predrilled rectangular bars of annealed copper, 1/4 by 4 inches in cross section, with 9/32-inch holes spaced 1-1/8 inches apart. Stand-off insulators for mounting shall comply with UL 891 for use in switchboards, 600 V and shall be Lexan or PVC, impulse tested at 5000 V.

2.3 CONNECTORS

A. Listed and labeled by an NRTL acceptable to authorities having jurisdiction for applications in which used and for specific types, sizes, and combinations of conductors and other items connected.

B. Welded Connectors: Exothermic-welding kits of types recommended by kit manufacturer for materials being joined and installation conditions.

C. Bus-Bar Connectors: Mechanical type, cast silicon bronze, solderless compression-type wire terminals, and long-barrel, two-bolt connection to ground bus bar.

D. Bus-Bar Connectors: Compression type, copper or copper alloy, with two wire terminals.
E. Beam Clamps: Mechanical type, terminal, ground wire access from four directions, with dual, tin-plated or silicon bronze bolts.

F. Cable-to-Cable Connectors: Compression type, copper or copper alloy.

G. Cable Tray Ground Clamp: Mechanical type, zinc-plated malleable iron.

H. Conduit Hubs: Mechanical type, terminal with threaded hub.

I. Ground Rod Clamps: Mechanical type, copper or copper alloy, terminal with hex head bolt.

J. Ground Rod Clamps: Mechanical type, copper or copper alloy, terminal with hex head bolt.

K. Lay-in Lug Connector: Mechanical type, copper rated for direct burial terminal with set screw.

L. Service Post Connectors: Mechanical type, bronze alloy terminal, in short- and long-stud lengths, capable of single and double conductor connections.

M. Signal Reference Grid Clamp: Mechanical type, stamped-steel terminal with hex head screw.

N. Straps: Solid copper, cast-bronze clamp. Rated for 600 A.

O. Tower Ground Clamps: Mechanical type, copper or copper alloy, terminal one-piece clamp.

P. U-Bolt Clamps: Mechanical type, copper or copper alloy, terminal listed for direct burial.

Q. Water Pipe Clamps:
 1. Mechanical type, two pieces with zinc-plated bolts.
 b. Listed for direct burial.
 2. U-bolt type with malleable-iron clamp and copper ground connector rated for direct burial.

2.4 GROUNDING ELECTRODES

A. Ground Rods: Copper-clad steel; 3/4 inch by 10 feet.

B. Chemical-Enhanced Grounding Electrodes: Copper tube, straight or L-shaped, charged with nonhazardous electrolytic chemical salts.
 1. Termination: Factory-attached No. 4/0 AWG bare conductor at least 48 inches long.
 2. Backfill Material: Electrode manufacturer's recommended material.

C. Ground Plates: 1/4 inch thick, hot-dip galvanized.
PART 3 - EXECUTION

3.1 APPLICATIONS

A. Conductors: Install solid conductor for No. 8 AWG and smaller, and stranded conductors for No. 6 AWG and larger unless otherwise indicated.

B. Underground Grounding Conductors: Install bare tinned-copper conductor, No. 2/0 AWG minimum.
 1. Bury at least 24 inches below grade.
 2. Duct-Bank Grounding Conductor: Bury 12 inches above duct bank when indicated as part of duct-bank installation.

C. Isolated Grounding Conductors: Green-colored insulation with continuous yellow stripe. On feeders with isolated ground, identify grounding conductor where visible to normal inspection, with alternating bands of green and yellow tape, with at least three bands of green and two bands of yellow.

D. Grounding Bus: Install in electrical equipment rooms, in rooms housing service equipment, and elsewhere as indicated.
 1. Install bus horizontally, on insulated spacers 2 inches minimum from wall, 6 inches above finished floor unless otherwise indicated.
 2. Where indicated on both sides of doorways, route bus up to top of door frame, across top of doorway, and down; connect to horizontal bus.

E. Conductor Terminations and Connections:
 1. Pipe and Equipment Grounding Conductor Terminations: Bolted connectors.
 2. Underground Connections: Welded connectors except at test wells and as otherwise indicated.
 3. Connections to Ground Rods at Test Wells: Bolted connectors.

3.2 GROUNDING AT THE SERVICE

A. Equipment grounding conductors and grounding electrode conductors shall be connected to the ground bus. Install a main bonding jumper between the neutral and ground buses.

3.3 GROUNDING SEPARATELY DERIVED SYSTEMS

A. Generator: Install grounding electrode(s) at the generator location. The electrode shall be connected to the equipment grounding conductor and to the frame of the generator.

3.4 GROUNDING UNDERGROUND DISTRIBUTION SYSTEM COMPONENTS

A. Comply with IEEE C2 grounding requirements.
B. Grounding Manholes and Handholes: Install a driven ground rod through manhole or handhole floor, close to wall, and set rod depth so 4 inches will extend above finished floor. If necessary, install ground rod before manhole is placed and provide No. 1/0 AWG bare, tinned-copper conductor from ground rod into manhole through a waterproof sleeve in manhole wall. Protect ground rods passing through concrete floor with a double wrapping of pressure-sensitive insulating tape or heat-shrunk insulating sleeve from 2 inches above to 6 inches below concrete. Seal floor opening with waterproof, nonshrink grout.

C. Grounding Connections to Manhole Components: Bond exposed-metal parts such as inserts, cable racks, pulling irons, ladders, and cable shields within each manhole or handhole, to ground rod or grounding conductor. Make connections with No. 4 AWG minimum, stranded, hard-drawn copper bonding conductor. Train conductors level or plumb around corners and fasten to manhole walls. Connect to cable armor and cable shields according to written instructions by manufacturer of splicing and termination kits.

D. Pad-Mounted Transformers and Switches: Install two ground rods and ground ring around the pad. Ground pad-mounted equipment and noncurrent-carrying metal items associated with substations by connecting them to underground cable and grounding electrodes. Install tinned-copper conductor not less than No. 2 AWG for ground ring and for taps to equipment grounding terminals. Bury ground ring not less than 6 inches from the foundation.

3.5 EQUIPMENT GROUNDING

A. Install insulated equipment grounding conductors with all feeders and branch circuits.

B. Install insulated equipment grounding conductors with the following items, in addition to those required by NFPA 70:

1. Feeders and branch circuits.
2. Lighting circuits.
3. Receptacle circuits.
5. Three-phase motor and appliance branch circuits.
6. Flexible raceway runs.
7. Armored and metal-clad cable runs.
8. Busway Supply Circuits: Install insulated equipment grounding conductor from grounding bus in the switchgear, switchboard, or distribution panel to equipment grounding bar terminal on busway.

C. Air-Duct Equipment Circuits: Install insulated equipment grounding conductor to duct-mounted electrical devices operating at 120 V and more, including air cleaners, heaters, dampers, humidifiers, and other duct electrical equipment. Bond conductor to each unit and to air duct and connected metallic piping.

D. Water Heater, Heat-Tracing, and Antifrost Heating Cables: Install a separate insulated equipment grounding conductor to each electric water heater and heat-tracing cable. Bond conductor to heater units, piping, connected equipment, and components.
E. Isolated Grounding Receptacle Circuits: Install an insulated equipment grounding conductor connected to the receptacle grounding terminal. Isolate conductor from raceway and from panelboard grounding terminals. Terminate at equipment grounding conductor terminal of the applicable derived system or service unless otherwise indicated.

F. Isolated Equipment Enclosure Circuits: For designated equipment supplied by a branch circuit or feeder, isolate equipment enclosure from supply circuit raceway with a nonmetallic raceway fitting listed for the purpose. Install fitting where raceway enters enclosure, and install a separate insulated equipment grounding conductor. Isolate conductor from raceway and from panelboard grounding terminals. Terminate at equipment grounding conductor terminal of the applicable derived system or service unless otherwise indicated.

G. Poles Supporting Outdoor Lighting Fixtures: Install grounding electrode and a separate insulated equipment grounding conductor in addition to grounding conductor installed with branch-circuit conductors.

H. Metallic Fences: Comply with requirements of IEEE C2.
 1. Grounding Conductor: Bare copper, not less than No. 8 AWG.
 2. Gates: Shall be bonded to the grounding conductor with a flexible bonding jumper.
 3. Barbed Wire: Strands shall be bonded to the grounding conductor.

3.6 INSTALLATION

A. Grounding Conductors: Route along shortest and straightest paths possible unless otherwise indicated or required by Code. Avoid obstructing access or placing conductors where they may be subjected to strain, impact, or damage.

B. Ground Bonding Common with Lightning Protection System: Comply with NFPA 780 and UL 96 when interconnecting with lightning protection system. Bond electrical power system ground directly to lightning protection system grounding conductor at closest point to electrical service grounding electrode. Use bonding conductor sized same as system grounding electrode conductor, and install in conduit.
 1. Ground Ring: If lightning protection system is specified, install a grounding conductor, electrically connected to each building structure ground rod and to each steel column, extending around the perimeter of building.
 a. Install tinned-copper conductor not less than No. 2/0 AWG for ground ring and for taps to building steel.
 b. Bury ground ring not less than 24 inches from building's foundation.

C. Ground Rods: Drive rods until tops are 2 inches below finished floor or final grade unless otherwise indicated.
 1. Interconnect ground rods with grounding electrode conductor below grade and as otherwise indicated. Make connections without exposing steel or damaging coating if any.
 2. For grounding electrode system, install at least three rods spaced at least one-rod length from each other and located at least the same distance from other grounding electrodes, and connect to the service grounding electrode conductor.
D. Test Wells: Ground rod driven through drilled hole in bottom of handhole. Handholes are specified in Section 260543 "Underground Ducts and Raceways for Electrical Systems," and shall be at least 12 inches deep, with cover.

1. Install at least one test well for each service unless otherwise indicated. Install at the ground rod electrically closest to service entrance. Set top of test well flush with finished grade or floor.

E. Bonding Straps and Jumpers: Install in locations accessible for inspection and maintenance except where routed through short lengths of conduit.

1. Bonding to Structure: Bond straps directly to basic structure, taking care not to penetrate any adjacent parts.
2. Bonding to Equipment Mounted on Vibration Isolation Hangers and Supports: Install bonding so vibration is not transmitted to rigidly mounted equipment.
3. Use exothermic-welded connectors for outdoor locations; if a disconnect-type connection is required, use a bolted clamp.

F. Grounding and Bonding for Piping:

1. Metal Water Service Pipe: Install insulated copper grounding conductors, in conduit, from building's main service equipment, or grounding bus, to main metal water service entrances to building. Connect grounding conductors to main metal water service pipes; use a bolted clamp connector or bolt a lug-type connector to a pipe flange by using one of the lug bolts of the flange. Where a dielectric main water fitting is installed, connect grounding conductor on street side of fitting. Bond metal grounding conductor conduit or sleeve to conductor at each end.
2. Water Meter Piping: Use braided-type bonding jumpers to electrically bypass water meters. Connect to pipe with a bolted connector.
3. Bond each aboveground portion of gas piping system downstream from equipment shutoff valve.

G. Bonding Interior Metal Ducts: Bond metal air ducts to equipment grounding conductors of associated fans, blowers, electric heaters, and air cleaners. Install bonding jumper to bond across flexible duct connections to achieve continuity.

H. Grounding for Steel Building Structure: Install a driven ground rod at base of each corner column and at intermediate exterior columns at distances not more than 60 feet apart.

I. Concrete-Encased Grounding Electrode (Ufer Ground): Fabricate according to NFPA 70; use a minimum of 20 feet of bare copper conductor not smaller than required by section 250 of the NEC.

1. If concrete foundation is less than 20 feet long, coil excess conductor within base of foundation.
2. Bond grounding conductor to reinforcing steel in at least four locations and to anchor bolts. Extend grounding conductor below grade and connect to building's grounding grid or to grounding electrode external to concrete.

J. Concrete-Encased Grounding Electrode (Ufer Ground): Fabricate according to NFPA 70; using electrically conductive coated steel reinforcing bars or rods, at least 20 feet long. If reinforcing
is in multiple pieces, connect together by the usual steel tie wires or exothermic welding to create the required length.

3.7 FIELD QUALITY CONTROL

A. Testing Agency: Owner will engage a qualified testing agency to perform tests and inspections.

B. Testing Agency: Engage a qualified testing agency to perform tests and inspections.

C. Manufacturer's Field Service: Engage a factory-authorized service representative to test and inspect components, assemblies, and equipment installations, including connections.

D. Perform tests and inspections.

E. Tests and Inspections:
 1. After installing grounding system but before permanent electrical circuits have been energized, test for compliance with requirements.
 2. Inspect physical and mechanical condition. Verify tightness of accessible, bolted, electrical connections with a calibrated torque wrench according to manufacturer's written instructions.
 3. Test completed grounding system at each location where a maximum ground-resistance level is specified, at service disconnect enclosure grounding terminal, at ground test wells. Make tests at ground rods before any conductors are connected.
 a. Measure ground resistance no fewer than two full days after last trace of precipitation and without soil being moistened by any means other than natural drainage or seepage and without chemical treatment or other artificial means of reducing natural ground resistance.
 b. Perform tests by fall-of-potential method according to IEEE 81.
 4. Prepare dimensioned Drawings locating each test well, ground rod and ground-rod assembly, and other grounding electrodes. Identify each by letter in alphabetical order, and key to the record of tests and observations. Include the number of rods driven and their depth at each location, and include observations of weather and other phenomena that may affect test results. Describe measures taken to improve test results.

F. Grounding system will be considered defective if it does not pass tests and inspections.

G. Prepare test and inspection reports.

H. Report measured ground resistances that exceed the following values:
 1. Power and Lighting Equipment or System with Capacity of 500 kVA and Less: 10 ohms.
 2. Power and Lighting Equipment or System with Capacity of 500 to 1000 kVA: 5 ohms.
 3. Power and Lighting Equipment or System with Capacity More Than 1000 kVA: 3 ohms.
 4. Power Distribution Units or Panelboards Serving Electronic Equipment: 3 ohm(s).
I. Excessive Ground Resistance: If resistance to ground exceeds specified values, notify Architect promptly and include recommendations to reduce ground resistance.

END OF SECTION
SECTION 260529
HANGERS AND SUPPORTS FOR ELECTRICAL SYSTEMS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:
 1. Hangers and supports for electrical equipment and systems.
 2. Construction requirements for concrete bases.

B. Related Requirements:
 1. Section 260548.16 "Seismic Controls for Electrical Systems" for products and installation requirements necessary for compliance with seismic criteria.

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product.
 1. Include construction details, material descriptions, dimensions of individual components and profiles, and finishes for the following:
 a. Hangers.
 b. Steel slotted support systems.
 c. Nonmetallic support systems.
 d. Trapeze hangers.
 e. Clamps.
 f. Turnbuckles.
 g. Sockets.
 h. Eye nuts.
 i. Saddles.
 j. Brackets.
 2. Include rated capacities and furnished specialties and accessories.

B. Shop Drawings: For fabrication and installation details for electrical hangers and support systems.
 1. Trapeze hangers. Include product data for components.
 2. Steel slotted-channel systems.
 3. Nonmetallic slotted-channel systems.
4. Equipment supports.
5. Vibration Isolation Base Details: Detail fabrication, including anchorages and attachments to structure and to supported equipment. Include adjustable motor bases, rails, and frames for equipment mounting.

C. Delegated-Design Submittal: For hangers and supports for electrical systems.
 1. Include design calculations and details of trapeze hangers.
 2. Include design calculations for seismic restraints.

1.4 INFORMATIONAL SUBMITTALS

A. Coordination Drawings: Reflected ceiling plan(s) and other details, drawn to scale, on which the following items are shown and coordinated with each other, using input from installers of the items involved:
 1. Suspended ceiling components.
 2. Structural members to which hangers and supports will be attached.
 3. Size and location of initial access modules for acoustical tile.
 4. Items penetrating finished ceiling, including the following:
 a. Lighting fixtures.
 b. Air outlets and inlets.
 c. Speakers.
 d. Sprinklers.
 e. Access panels.
 f. Projectors.

B. Seismic Qualification Certificates: For hangers and supports for electrical equipment and systems, accessories, and components, from manufacturer.
 1. Basis for Certification: Indicate whether withstand certification is based on actual test of assembled components or on calculation.
 2. Dimensioned Outline Drawings of Equipment Unit: Identify center of gravity and locate and describe mounting and anchorage provisions.
 3. Detailed description of equipment anchorage devices on which the certification is based and their installation requirements.

C. Welding certificates.

1.5 QUALITY ASSURANCE

A. Welding Qualifications: Qualify procedures and personnel according to the following:
 1. AWS D1.1/D1.1M.
 2. AWS D1.2/D1.2M.
PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

A. Delegated Design: Engage a qualified professional engineer, as defined in Section 014000 "Quality Requirements," to design hanger and support system.

B. Seismic Performance: Hangers and supports shall withstand the effects of earthquake motions determined according to ASCE/SEI 7.
 1. The term "withstand" means "the supported equipment and systems will remain in place without separation of any parts when subjected to the seismic forces specified and the system will be fully operational after the seismic event."
 2. Component Importance Factor: 1.5.

C. Surface-Burning Characteristics: Comply with ASTM E 84; testing by a qualified testing agency. Identify products with appropriate markings of applicable testing agency.
 1. Flame Rating: Class 1.
 2. Self-extinguishing according to ASTM D 635.

2.2 SUPPORT, ANCHORAGE, AND ATTACHMENT COMPONENTS

A. Steel Slotted Support Systems: Comply with MFMA-4 factory-fabricated components for field assembly.
 1. Material: Plain steel.
 2. Metallic Coatings: Hot-dip galvanized after fabrication and applied according to MFMA-4.
 3. Nonmetallic Coatings: Manufacturer's standard PVC, polyurethane, or polyester coating applied according to MFMA-4.
 4. Painted Coatings: Manufacturer's standard painted coating applied according to MFMA-4.
 5. Protect finishes on exposed surfaces from damage by applying a strippable, temporary protective covering before shipping.
 6. Channel Dimensions: Selected for applicable load criteria.
 7. Nonmetallic Coatings: Manufacturer's standard PVC, polyurethane, or polyester coating applied according to MFMA-4.
 8. Painted Coatings: Manufacturer's standard painted coating applied according to MFMA-4.
 9. Protect finishes on exposed surfaces from damage by applying a strippable, temporary protective covering before shipping.
 10. Channel Dimensions: Selected for applicable load criteria.

B. Conduit and Cable Support Devices: Steel hangers, clamps, and associated fittings, designed for types and sizes of raceway or cable to be supported.

C. Support for Conductors in Vertical Conduit: Factory-fabricated assembly consisting of threaded body and insulating wedging plug or plugs for nonarmored electrical conductors or cables in riser conduits. Plugs shall have number, size, and shape of conductor gripping pieces as
required to suit individual conductors or cables supported. Body shall be made of malleable iron.

D. Structural Steel for Fabricated Supports and Restraints: ASTM A 36/A 36M steel plates, shapes, and bars; black and galvanized.

E. Mounting, Anchoring, and Attachment Components: Items for fastening electrical items or their supports to building surfaces include the following:

1. Powder-Actuated Fasteners: Threaded-steel stud, for use in hardened portland cement concrete, steel, or wood, with tension, shear, and pullout capacities appropriate for supported loads and building materials where used.

2. Mechanical-Expansion Anchors: Insert-wedge-type, zinc-coated steel, for use in hardened portland cement concrete, with tension, shear, and pullout capacities appropriate for supported loads and building materials where used.

3. Concrete Inserts: Steel or malleable-iron, slotted support system units are similar to MSS Type 18 units and comply with MFMA-4 or MSS SP-58.

4. Clamps for Attachment to Steel Structural Elements: MSS SP-58 units are suitable for attached structural element.

5. Through Bolts: Structural type, hex head, and high strength. Comply with ASTM A 325.

6. Toggle Bolts: All-steel springhead type.

2.3 FABRICATED METAL EQUIPMENT SUPPORT ASSEMBLIES

A. Description: Welded or bolted structural-steel shapes, shop or field fabricated to fit dimensions of supported equipment.

B. Materials: Comply with requirements in Section 055000 "Metal Fabrications" for steel shapes and plates.

PART 3 - EXECUTION

3.1 APPLICATION

A. Comply with NECA 1 and NECA 101 for application of hangers and supports for electrical equipment and systems unless requirements in this Section are stricter.

B. Comply with requirements for raceways and boxes specified in Section 260533 "Raceways and Boxes for Electrical Systems."

C. Maximum Support Spacing and Minimum Hanger Rod Size for Raceway: Space supports for EMTs, IMCs, and RMCs as required by NFPA 70. Minimum rod size shall be 1/4 inch in diameter.
D. Multiple Raceways or Cables: Install trapeze-type supports fabricated with steel slotted support system, sized so capacity can be increased by at least 25 percent in future without exceeding specified design load limits.

1. Secure raceways and cables to these supports with two-bolt conduit clamps.

E. Spring-steel clamps designed for supporting single conduits without bolts may be used for 1-1/2-inch and smaller raceways serving branch circuits and communication systems above suspended ceilings and for fastening raceways to trapeze supports.

3.2 SUPPORT INSTALLATION

A. Comply with NECA 1 and NECA 101 for installation requirements except as specified in this article.

B. Raceway Support Methods: In addition to methods described in NECA 1, EMTs, IMCs, and RMCs may be supported by openings through structure members, according to NFPA 70.

C. Strength of Support Assemblies: Where not indicated, select sizes of components so strength will be adequate to carry present and future static loads within specified loading limits. Minimum static design load used for strength determination shall be weight of supported components plus 200 lb.

D. Mounting and Anchorage of Surface-Mounted Equipment and Components: Anchor and fasten electrical items and their supports to building structural elements by the following methods unless otherwise indicated by code:

1. To Wood: Fasten with lag screws or through bolts.
2. To New Concrete: Bolt to concrete inserts.
3. To Masonry: Approved toggle-type bolts on hollow masonry units and expansion anchor fasteners on solid masonry units.
4. To Existing Concrete: Expansion anchor fasteners.
5. Instead of expansion anchors, powder-actuated driven threaded studs provided with lock washers and nuts may be used in existing standard-weight concrete 4 inches thick or greater. Do not use for anchorage to lightweight-aggregate concrete or for slabs less than 4 inches thick.
6. To Steel: Welded threaded studs complying with AWS D1.1/D1.1M, with lock washers and nuts.
7. To Light Steel: Sheet metal screws.
8. Items Mounted on Hollow Walls and Nonstructural Building Surfaces: Mount cabinets, panelboards, disconnect switches, control enclosures, pull and junction boxes, transformers, and other devices on slotted-channel racks attached to substrate by means that comply with seismic-restraint strength and anchorage requirements.

E. Drill holes for expansion anchors in concrete at locations and to depths that avoid the need for reinforcing bars.
3.3 INSTALLATION OF FABRICATED METAL SUPPORTS

A. Comply with installation requirements in Section 055000 "Metal Fabrications" for site-fabricated metal supports.

B. Cut, fit, and place miscellaneous metal supports accurately in location, alignment, and elevation to support and anchor electrical materials and equipment.

C. Field Welding: Comply with AWS D1.1/D1.1M.

3.4 CONCRETE BASES

A. Construct concrete bases of dimensions indicated but not less than 4 inches larger in both directions than supported unit, and so anchors will be a minimum of 10 bolt diameters from edge of the base.

B. Use 3000-psi, 28-day compressive-strength concrete.

C. Anchor equipment to concrete base as follows:
 1. Place and secure anchorage devices. Use supported equipment manufacturer's setting drawings, templates, diagrams, instructions, and directions furnished with items to be embedded.
 2. Install anchor bolts to elevations required for proper attachment to supported equipment.
 3. Install anchor bolts according to anchor-bolt manufacturer's written instructions.

3.5 PAINTING

A. Touchup: Clean field welds and abraded areas of shop paint. Paint exposed areas immediately after erecting hangers and supports. Use same materials as used for shop painting. Comply with SSPC-PA 1 requirements for touching up field-painted surfaces.

 1. Apply paint by brush or spray to provide minimum dry film thickness of 2.0 mils.

B. Touchup: Comply with requirements in Section 099123 "Interior Painting" for cleaning and touchup painting of field welds, bolted connections, and abraded areas of shop paint on miscellaneous metal.

C. Galvanized Surfaces: Clean welds, bolted connections, and abraded areas and apply galvanizing-repair paint to comply with ASTM A 780.

END OF SECTION
PART 1 - GENERAL

1.1 RELATED DOCUMENTS
 A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
 A. Section Includes:
 1. Metal conduits, tubing, and fittings.
 2. Nonmetal conduits, tubing, and fittings.
 3. Metal wireways and auxiliary gutters.
 4. Nonmetal wireways and auxiliary gutters.
 5. Surface raceways.
 7. Handholes and boxes for exterior underground cabling.
 8. Floorboxes

1.3 DEFINITIONS
 A. ARC: Aluminum rigid conduit.
 B. GRC: Galvanized rigid steel conduit.
 C. IMC: Intermediate metal conduit.

1.4 ACTION SUBMITTALS
 A. Product Data: For surface raceways, wireways and fittings, floor boxes, hinged-cover enclosures, and cabinets.
 B. Shop Drawings: For custom enclosures and cabinets. Include plans, elevations, sections, and attachment details.

1.5 INFORMATIONAL SUBMITTALS
 A. Coordination Drawings: Conduit routing plans, drawn to scale, on which the following items are shown and coordinated with each other, using input from installers of items involved:
 1. Structural members in paths of conduit groups with common supports.
 2. HVAC and plumbing items and architectural features in paths of conduit groups with common supports.
B. Qualification Data: For professional engineer.

C. Seismic Qualification Certificates: For enclosures, cabinets, and conduit racks and their mounting provisions, including those for internal components, from manufacturer.
 1. Basis for Certification: Indicate whether withstand certification is based on actual test of assembled components or on calculation.
 2. Dimensioned Outline Drawings of Equipment Unit: Identify center of gravity and locate and describe mounting and anchorage provisions.
 3. Detailed description of equipment anchorage devices on which the certification is based and their installation requirements.
 4. Detailed description of conduit support devices and interconnections on which the certification is based and their installation requirements.

D. Source quality-control reports.

PART 2 - PRODUCTS

2.1 METAL CONDUITS, TUBING, AND FITTINGS

A. Listing and Labeling: Metal conduits, tubing, and fittings shall be listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

B. GRC: Comply with ANSI C80.1 and UL 6.

C. ARC: Comply with ANSI C80.5 and UL 6A.

D. IMC: Comply with ANSI C80.6 and UL 1242.

E. PVC-Coated Steel Conduit: PVC-coated rigid steel conduit.
 1. Comply with NEMA RN 1.
 2. Coating Thickness: 0.040 inch, minimum.

F. EMT: Comply with ANSI C80.3 and UL 797.

G. FMC: Comply with UL 1; zinc-coated steel.

H. LFMC: Flexible steel conduit with PVC jacket and complying with UL 360.

I. Fittings for Metal Conduit: Comply with NEMA FB 1 and UL 514B.
 1. Conduit Fittings for Hazardous (Classified) Locations: Comply with UL 886 and NFPA 70.
 2. Fittings for EMT:
 a. Material: Steel.
 b. Type: compression.
 3. Expansion Fittings: PVC or steel to match conduit type, complying with UL 651, rated for environmental conditions where installed, and including flexible external bonding jumper.
 4. Coating for Fittings for PVC-Coated Conduit: Minimum thickness of 0.040 inch, with overlapping sleeves protecting threaded joints.
J. Joint Compound for IMC, GRC, or ARC: Approved, as defined in NFPA 70, by authorities having jurisdiction for use in conduit assemblies, and compounded for use to lubricate and protect threaded conduit joints from corrosion and to enhance their conductivity.

2.2 NONMETALLIC CONDUITS, TUBING, AND FITTINGS

A. Listing and Labeling: Nonmetallic conduits, tubing, and fittings shall be listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

B. ENT: Comply with NEMA TC 13 and UL 1653.

C. RNC: Type EPC-40-PVC, complying with NEMA TC 2 and UL 651 unless otherwise indicated.

D. LFNC: Comply with UL 1660.

E. Rigid HDPE: Comply with UL 651A.

F. Continuous HDPE: Comply with UL 651B.

G. Coilable HDPE: Preassembled with conductors or cables, and complying with ASTM D 3485.

H. RTRC: Comply with UL 1684A and NEMA TC 14.

I. Fittings for ENT and RNC: Comply with NEMA TC 3; match to conduit or tubing type and material.

J. Fittings for LFNC: Comply with UL 514B.

K. Solvents and Adhesives: As recommended by conduit manufacturer.

2.3 METAL WIREWAYS AND AUXILIARY GUTTERS

A. Description: Sheet metal, complying with UL 870 and NEMA 250, Type 1 unless otherwise indicated, and sized according to NFPA 70. Provide NEMA 3R for exterior locations. Metal wireways installed outdoors shall be listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

B. Fittings and Accessories: Include covers, couplings, offsets, elbows, expansion joints, adapters, hold-down straps, end caps, and other fittings to match and mate with wireways as required for complete system.

C. Wireway Covers: Screw-cover type unless otherwise indicated.

D. Finish: Manufacturer's standard enamel finish.
2.4 NONMETALLIC WIREWAYS AND AUXILIARY GUTTERS

A. Listing and Labeling: Nonmetallic wireways and auxiliary gutters shall be listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

B. Description: Fiberglass polyester, extruded and fabricated to required size and shape, without holes or knockouts. Cover shall be gasketed with oil-resistant gasket material and fastened with captive screws treated for corrosion resistance. Connections shall be flanged and have stainless-steel screws and oil-resistant gaskets.

C. Description: PVC, extruded and fabricated to required size and shape, and having snap-on cover, mechanically coupled connections, and plastic fasteners.

D. Fittings and Accessories: Couplings, offsets, elbows, expansion joints, adapters, hold-down straps, end caps, and other fittings shall match and mate with wireways as required for complete system.

E. Solvents and Adhesives: As recommended by conduit manufacturer.

2.5 SURFACE RACEWAYS

A. Listing and Labeling: Surface raceways and tele-power poles shall be listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

B. Surface Metal Raceways: Galvanized steel with snap-on covers complying with UL 5. Manufacturer's standard enamel finish in color selected by Architect.

C. Surface Nonmetallic Raceways: Two- or three-piece construction, complying with UL 5A, and manufactured of rigid PVC with texture and color selected by Architect from manufacturer's standard colors. Product shall comply with UL 94 V-0 requirements for self-extinguishing characteristics.

D. Verify color of surface raceways with architect unless color is specifically noted on drawings.

E. Where power receptacles and data/communications devices are located side by side, the surface raceway shall be Wiremold dual compartment V2400D Base and Blank Cover or approved equal.

F. Conduit shall not be used for surface raceways except in unfinished spaces, unless specifically noted otherwise on plans.

2.6 FLOORBOXES

A. Boxes in slab on-grade concrete floors:
 1. Floor boxes shall be multiservice steel boxes designed for use in concrete floor slabs.
 2. (FP) Floor Plug floor box for Power and Communications: Provide Wiremold RFB4E six-compartment multi-service recessed floor box including appropriate plates for four voice/data jacks and two duplex NEMA 5-20 receptacles.
Route a minimum of one ¾” conduit for power and two 1-1/4” conduits for data to each floorbox unless noted otherwise.

3. (AV) Power, Data and Audio/Visual Floorbox: Provide Wiremold RFB6 Series equivalent floorbox. Route a minimum of one ¾” conduit for power and three 1-1/4” conduits to each AV floorbox for communications cabling.

4. (FF) Furniture Feed Floorbox: Provide Wiremold floorbox with separate conduits for power and data. Conduit shall be a minimum of ¾” for power and two 1-1/4” for communications routed to accessible area. Conductors for modular furniture will be provided by others, and terminated in floor box by electrical contractor. Provide Furniture Feed Cover Assembly.

B. Floor boxes in all floors not on grade:
 1. Electrical contractor shall core-drill slab for poke-through floorboxes. All floorboxes shall maintain the fire rating of the floor.
 2. (FP) Power and Data Floorbox: Provide Wiremold 6ATC Fire Rated Poke-Through, or approved equivalent with inserts for communications and two duplex NEMA 5-20 receptacles.
 4. (FF) Furniture Feed Floorbox: Provide Wiremold 6ATCFF Fire Rated Poke-Through floorbox with separate conduits for power and data. Conduit shall be a minimum of one ¾” for power and two 1-1/4” empty conduits for communications routed to accessible area. Provide Furniture Feed Cover Assembly.

C. All floorboxes shall include all internal barriers, covers, device plates and other components necessary for a complete installation.

2.7 BOXES, ENCLOSURES, AND CABINETS

A. General Requirements for Boxes, Enclosures, and Cabinets: Boxes, enclosures, and cabinets installed in wet locations shall be listed for use in wet locations.

B. Sheet Metal Outlet and Device Boxes: Comply with NEMA OS 1 and UL 514A.

C. Cast-Metal Outlet and Device Boxes: Comply with NEMA FB 1, aluminum, Type FD, with gasketed cover.

D. Nonmetallic Outlet and Device Boxes: Comply with NEMA OS 2 and UL 514C.

E. Metal Floor Boxes:
 1. Listing and Labeling: Metal floor boxes shall be listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

F. Luminaire Outlet Boxes: Nonadjustable, designed for attachment of luminaire weighing 50 lb. Outlet boxes designed for attachment of luminaires weighing more than 50 lb shall be listed and marked for the maximum allowable weight.
G. Paddle Fan Outlet Boxes: Nonadjustable, designed for attachment of paddle fan weighing 70 lb.
 1. Listing and Labeling: Paddle fan outlet boxes shall be listed and labeled as defined in
 NFPA 70, by a qualified testing agency, and marked for intended location and application.

H. Small Sheet Metal Pull and Junction Boxes: NEMA OS 1.

I. Cast-Metal Access, Pull, and Junction Boxes: Comply with NEMA FB 1 and UL 1773,
 galvanized, cast iron with gasketed cover.

J. Box extensions used to accommodate new building finishes shall be of same material as
 recessed box.

K. Device Box Dimensions: 4 inches square by 2-1/8 inches deep.

L. Hinged-Cover Enclosures: Comply with UL 50 and NEMA 250, Type 1 or Type 3R as
 appropriate for the application with continuous-hinge cover with flush latch unless otherwise
 indicated.
 1. Metal Enclosures: Steel, finished inside and out with manufacturer's standard enamel.
 2. Interior Panels: Steel; all sides finished with manufacturer's standard enamel.

M. Cabinets:
 1. NEMA 250, galvanized-steel box with removable interior panel and removable front,
 finished inside and out with manufacturer's standard enamel.
 2. Hinged door in front cover with flush latch and concealed hinge.
 3. Key latch to match panelboards.
 4. Metal barriers to separate wiring of different systems and voltage.
 5. Accessory feet where required for freestanding equipment.
 6. Nonmetallic cabinets shall be listed and labeled as defined in NFPA 70, by a qualified
 testing agency, and marked for intended location and application.

2.8 HANDHOLES AND BOXES FOR EXTERIOR UNDERGROUND WIRING

A. General Requirements for Handholes and Boxes:
 1. Boxes and handholes for use in underground systems shall be designed and identified as
 defined in NFPA 70, for intended location and application.
 2. Boxes installed in wet areas shall be listed and labeled as defined in NFPA 70, by a
 qualified testing agency, and marked for intended location and application.

B. Polymer-Concrete Handholes and Boxes with Polymer-Concrete Cover: Molded of sand and
 aggregate, bound together with polymer resin, and reinforced with steel, fiberglass, or a
 combination of the two.
 1. Standard: Comply with SCTE 77.
 2. Configuration: Designed for flush burial with closed bottom unless otherwise indicated.
 3. Cover: Weatherproof, secured by tamper-resistant locking devices and having structural
 load rating consistent with enclosure and handhole location.
 4. Cover Finish: Nonskid finish shall have a minimum coefficient of friction of 0.50.
 5. Cover Legend: Molded lettering, "ELECTRIC."
 6. Conduit Entrance Provisions: Conduit-terminating fittings shall mate with entering ducts
 for secure, fixed installation in enclosure wall.

C. Fiberglass Handholes and Boxes: Molded of fiberglass-reinforced polyester resin, with frame and covers of polymer concrete.
1. Standard: Comply with SCTE 77.
2. Configuration: Designed for flush burial with integral closed bottom unless otherwise indicated.
3. Cover: Weatherproof, secured by tamper-resistant locking devices and having structural load rating consistent with enclosure and handhole location.
4. Cover Finish: Nonskid finish shall have a minimum coefficient of friction of 0.50.
5. Cover Legend: Molded lettering, "ELECTRIC."
6. Conduit Entrance Provisions: Conduit-terminating fittings shall mate with entering ducts for secure, fixed installation in enclosure wall.

2.9 SOURCE QUALITY CONTROL FOR UNDERGROUND ENCLOSURES

A. Handhole and Pull-Box Prototype Test: Test prototypes of handholes and boxes for compliance with SCTE 77. Strength tests shall be for specified tier ratings of products supplied.
1. Tests of materials shall be performed by an independent testing agency.
2. Strength tests of complete boxes and covers shall be by either an independent testing agency or manufacturer. A qualified registered professional engineer shall certify tests by manufacturer.
3. Testing machine pressure gages shall have current calibration certification complying with ISO 9000 and ISO 10012 and traceable to NIST standards.

PART 3 - EXECUTION

3.1 RACEWAY APPLICATION

A. Outdoors: Apply raceway products as specified below unless otherwise indicated:
1. Exposed Conduit: GRC.
2. Concealed Conduit, Aboveground: GRC.
3. Underground Conduit: RNC, Type EPC-40-PVC.
4. Connection to Vibrating Equipment (Including Transformers and Hydraulic, Pneumatic, Electric Solenoid, or Motor-Driven Equipment): LFMC.
5. Boxes and Enclosures, Aboveground: NEMA 250, Type 3R.

B. Indoors: Apply raceway products as specified below unless otherwise indicated:
1. Exposed, Not Subject to Physical Damage: EMT.
2. Exposed and Subject to Severe Physical Damage: GRC. Raceway locations include the following:
 a. Loading dock.
 b. Corridors used for traffic of mechanized carts, forklifts, and pallet-handling units.
 c. Mechanical rooms.
3. Concealed in Ceilings and Interior Walls and Partitions: EMT.
4. Connection to Vibrating Equipment (Including Transformers and Hydraulic, Pneumatic, Electric Solenoid, or Motor-Driven Equipment): FMC, except use LFMC in damp or wet locations.
5. Damp or Wet Locations: IMC.
6. Boxes and Enclosures: NEMA 250, Type 1, except use NEMA 250, Type 4 stainless steel in institutional and commercial kitchens and damp or wet locations.

C. Minimum Raceway Size: 3/4-inch trade size.

D. Raceway Fittings: Compatible with raceways and suitable for use and location.
1. Rigid and Intermediate Steel Conduit: Use threaded rigid steel conduit fittings unless otherwise indicated. Comply with NEMA FB 2.10.
2. PVC Externally Coated, Rigid Steel Conduits: Use only fittings listed for use with this type of conduit. Patch and seal all joints, nicks, and scrapes in PVC coating after installing conduits and fittings. Use sealant recommended by fitting manufacturer and apply in thickness and number of coats recommended by manufacturer.
4. Flexible Conduit: Use only fittings listed for use with flexible conduit. Comply with NEMA FB 2.20.

E. Install nonferrous conduit or tubing for circuits operating above 60 Hz. Where aluminum raceways are installed for such circuits and pass through concrete, install in nonmetallic sleeve.

F. Do not install aluminum conduits, boxes, or fittings in contact with concrete or earth.

G. Surface raceway shall only be used on existing walls where construction type prohibits installation of EMT or MC cable inside wall (concrete or brick walls, for example).

H. Do not install nonmetallic conduit where ambient temperature exceeds 120 deg F.

3.2 INSTALLATION

A. Comply with NECA 1 and NECA 101 for installation requirements except where requirements on Drawings or in this article are stricter. Comply with NECA 102 for aluminum conduits. Comply with NFPA 70 limitations for types of raceways allowed in specific occupancies and number of floors.

B. Keep raceways at least 6 inches away from parallel runs of flues and steam or hot-water pipes. Install horizontal raceway runs above water and steam piping.

C. Complete raceway installation before starting conductor installation.

D. Comply with requirements in Section 260529 "Hangers and Supports for Electrical Systems" for hangers and supports.

E. Arrange stub-ups so curved portions of bends are not visible above finished slab.

F. Install no more than the equivalent of three 90-degree bends in any conduit run except for control wiring conduits, for which fewer bends are allowed. Support within 12 inches of changes in direction.
G. Conceal conduit and EMT within finished walls, ceilings, and floors unless otherwise indicated. Install conduits parallel or perpendicular to building lines.

H. Support conduit within 12 inches of enclosures to which attached.

I. Raceways Embedded in Slabs:
 1. Run conduit larger than 1-inch trade size, parallel or at right angles to main reinforcement. Where at right angles to reinforcement, place conduit close to slab support. Secure raceways to reinforcement at maximum 10-foot intervals.
 2. Arrange raceways to cross building expansion joints at right angles with expansion fittings.
 3. Arrange raceways to keep a minimum of 2 inches of concrete cover in all directions.
 4. Do not embed threadless fittings in concrete unless specifically approved by Architect for each specific location.
 5. Change from ENT to RNC, Type EPC-40-PVC, before rising above floor.

J. Stub-ups to Above Recessed Ceilings:
 1. Use EMT, IMC, or RMC for raceways.
 2. Use a conduit bushing or insulated fitting to terminate stub-ups not terminated in hubs or in an enclosure.

K. Threaded Conduit Joints, Exposed to Wet, Damp, Corrosive, or Outdoor Conditions: Apply listed compound to threads of raceway and fittings before making up joints. Follow compound manufacturer's written instructions.

L. Coat field-cut threads on PVC-coated raceway with a corrosion-preventing conductive compound prior to assembly.

M. Raceway Terminations at Locations Subject to Moisture or Vibration: Use insulating bushings to protect conductors including conductors smaller than No. 4 AWG.

N. Terminate threaded conduits into threaded hubs or with locknuts on inside and outside of boxes or cabinets. Install bushings on conduits up to 1-1/4-inch trade size and insulated throat metal bushings on 1-1/2-inch trade size and larger conduits terminated with locknuts. Install insulated throat metal grounding bushings on service conduits.

O. Install raceways square to the enclosure and terminate at enclosures with locknuts. Install locknuts hand tight plus 1/4 turn more.

P. Do not rely on locknuts to penetrate nonconductive coatings on enclosures. Remove coatings in the locknut area prior to assembling conduit to enclosure to assure a continuous ground path.

Q. Cut conduit perpendicular to the length. For conduits 2-inch trade size and larger, use roll cutter or a guide to make cut straight and perpendicular to the length.

R. Install pull wires in empty raceways. Use polypropylene or monofilament plastic line with not less than 200-lb tensile strength. Leave at least 24 inches of slack at each end of pull wire. Cap underground raceways designated as spare above grade alongside raceways in use.

S. Install raceway sealing fittings at accessible locations according to NFPA 70 and fill them with listed sealing compound. For concealed raceways, install each fitting in a flush steel box with a
blank cover plate having a finish similar to that of adjacent plates or surfaces. Install raceway sealing fittings according to NFPA 70.

T. Install devices to seal raceway interiors at accessible locations. Locate seals so no fittings or boxes are between the seal and the following changes of environments. Seal the interior of all raceways at the following points:
1. Where conduits pass from warm to cold locations, such as boundaries of refrigerated spaces.
2. Where an underground service raceway enters a building or structure.
3. Where otherwise required by NFPA 70.

U. Comply with manufacturer's written instructions for solvent welding RNC and fittings.

V. Expansion-Joint Fittings:
1. Install in each run of aboveground RNC that is located where environmental temperature change may exceed 30 deg F and that has straight-run length that exceeds 25 feet. Install in each run of aboveground RMC and EMT conduit that is located where environmental temperature change may exceed 100 deg F and that has straight-run length that exceeds 100 feet.
2. Install type and quantity of fittings that accommodate temperature change listed for each of the following locations:
 a. Outdoor Locations Not Exposed to Direct Sunlight: 125 deg F temperature change.
 b. Outdoor Locations Exposed to Direct Sunlight: 155 deg F temperature change.
 c. Indoor Spaces Connected with Outdoors without Physical Separation: 125 deg F temperature change.
 d. Attics: 135 deg F temperature change.
3. Install fitting(s) that provide expansion and contraction for at least 0.00041 inch per foot of length of straight run per deg F of temperature change for PVC conduits. Install fitting(s) that provide expansion and contraction for at least 0.000078 inch per foot of length of straight run per deg F of temperature change for metal conduits.
4. Install expansion fittings at all locations where conduits cross building or structure expansion joints.
5. Install each expansion-joint fitting with position, mounting, and piston setting selected according to manufacturer's written instructions for conditions at specific location at time of installation. Install conduit supports to allow for expansion movement.

W. Flexible Conduit Connections: Comply with NEMA RV 3. Use a maximum of 72 inches of flexible conduit for recessed and semirecessed luminaires, equipment subject to vibration, noise transmission, or movement; and for transformers and motors.
1. Use LFMC in damp or wet locations subject to severe physical damage.
2. Use LFMC or LFNC in damp or wet locations not subject to severe physical damage.

X. Mount boxes at heights indicated on Drawings. If mounting heights of boxes are not individually indicated, give priority to ADA requirements. Install boxes with height measured to center of box unless otherwise indicated.

Y. Recessed Boxes in Masonry Walls: Saw-cut opening for box in center of cell of masonry block, and install box flush with surface of wall. Prepare block surfaces to provide a flat surface for a raintight connection between box and cover plate or supported equipment and box.
Z. Horizontally separate boxes mounted on opposite sides of walls so they are not in the same vertical channel.

AA. Locate boxes so that cover or plate will not span different building finishes.

BB. Support boxes of three gangs or more from more than one side by spanning two framing members or mounting on brackets specifically designed for the purpose.

CC. Fasten junction and pull boxes to or support from building structure. Do not support boxes by conduits.

DD. Set metal floor boxes level and flush with finished floor surface.

EE. Set nonmetallic floor boxes level. Trim after installation to fit flush with finished floor surface.

3.3 INSTALLATION OF UNDERGROUND CONDUIT

A. Direct-Buried Conduit:
1. Excavate trench bottom to provide firm and uniform support for conduit. Prepare trench bottom as specified in Section 312000 "Earth Moving" for pipe less than 6 inches in nominal diameter.
2. Install backfill as specified in Section 312000 "Earth Moving."
3. After installing conduit, backfill and compact. Start at tie-in point, and work toward end of conduit run, leaving conduit at end of run free to move with expansion and contraction as temperature changes during this process. Firmly hand tamp backfill around conduit to provide maximum supporting strength. After placing controlled backfill to within 12 inches of finished grade, make final conduit connection at end of run and complete backfilling with normal compaction as specified in Section 312000 "Earth Moving."
4. Install manufactured duct elbows for stub-ups at poles and equipment and at building entrances through floor unless otherwise indicated. Encase elbows for stub-up ducts throughout length of elbow.
5. Install manufactured rigid steel conduit elbows for stub-ups at poles and equipment and at building entrances through floor.
 a. Couple steel conduits to ducts with adapters designed for this purpose, and encase coupling with 3 inches of concrete for a minimum of 12 inches on each side of the coupling.
 b. For stub-ups at equipment mounted on outdoor concrete bases and where conduits penetrate building foundations, extend steel conduit horizontally a minimum of 60 inches from edge of foundation or equipment base. Install insulated grounding bushings on terminations at equipment.
6. Warning Planks: Bury warning planks approximately 12 inches above direct-buried conduits but a minimum of 6 inches below grade. Align planks along centerline of conduit.
7. Underground Warning Tape: Comply with requirements in Section 260553 "Identification for Electrical Systems."
3.4 INSTALLATION OF UNDERGROUND HANDHOLES AND BOXES

A. Install handholes and boxes level and plumb and with orientation and depth coordinated with connecting conduits to minimize bends and deflections required for proper entrances.

B. Unless otherwise indicated, support units on a level bed of crushed stone or gravel, graded from 1/2-inch sieve to No. 4 sieve and compacted to same density as adjacent undisturbed earth.

C. Elevation: In paved areas, set so cover surface will be flush with finished grade. Set covers of other enclosures 1 inch above finished grade.

D. Install handholes with bottom below frost line.

E. Install removable hardware, including pulling eyes, cable stanchions, cable arms, and insulators, as required for installation and support of cables and conductors and as indicated. Select arm lengths to be long enough to provide spare space for future cables but short enough to preserve adequate working clearances in enclosure.

F. Field-cut openings for conduits according to enclosure manufacturer's written instructions. Cut wall of enclosure with a tool designed for material to be cut. Size holes for terminating fittings to be used, and seal around penetrations after fittings are installed.

3.5 SLEEVE AND SLEEVE-SEAL INSTALLATION FOR ELECTRICAL PENETRATIONS

A. Install sleeves and sleeve seals at penetrations of exterior floor and wall assemblies. Comply with requirements in Section 260544 "Sleeves and Sleeve Seals for Electrical Raceways and Cabling."

3.6 FIRESTOPPING

A. Install firestopping at penetrations of fire-rated floor and wall assemblies. Comply with requirements in Section 078413 "Penetration Firestopping."

3.7 PROTECTION

A. Protect coatings, finishes, and cabinets from damage and deterioration.
 1. Repair damage to galvanized finishes with zinc-rich paint recommended by manufacturer.
 2. Repair damage to PVC coatings or paint finishes with matching touchup coating recommended by manufacturer.

END OF SECTION
SECTION 260544 SLEEVES AND SLEEVE SEALS FOR ELECTRICAL RACEWAYS AND CABLING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:
 1. Sleeves for raceway and cable penetration of non-fire-rated construction walls and floors.
 2. Sleeve-seal systems.
 5. Silicone sealants.

B. Related Requirements:
 1. Section 078413 "Penetration Firestopping" for penetration firestopping installed in fire-resistance-rated walls, horizontal assemblies, and smoke barriers, with and without penetrating items.

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product.

PART 2 - PRODUCTS

2.1 SLEEVES

A. Wall Sleeves:
 2. Cast-Irion Pipe Sleeves: Cast or fabricated "wall pipe," equivalent to ductile-iron pressure pipe, with plain ends and integral waterstop unless otherwise indicated.

B. Sleeves for Conduits Penetrating Non-Fire-Rated Gypsum Board Assemblies: Galvanized-steel sheet; 0.0239-inch minimum thickness; round tube closed with welded longitudinal joint, with tabs for screw-fastening the sleeve to the board.

C. PVC-Pipe Sleeves: ASTM D 1785, Schedule 40.

D. Molded-PVC Sleeves: With nailing flange for attaching to wooden forms.
E. Molded-PE or -PP Sleeves: Removable, tapered-cup shaped, and smooth outer surface with nailing flange for attaching to wooden forms.

F. Sleeves for Rectangular Openings:
 2. Minimum Metal Thickness:
 a. For sleeve cross-section rectangle perimeter less than 50 inches and with no side larger than 16 inches, thickness shall be 0.052 inch.
 b. For sleeve cross-section rectangle perimeter 50 inches or more and one or more sides larger than 16 inches, thickness shall be 0.138 inch.

2.2 SLEEVE-SEAL SYSTEMS

A. Description: Modular sealing device, designed for field assembly, to fill annular space between sleeve and raceway or cable.
 1. Sealing Elements: EPDM rubber interlocking links shaped to fit surface of pipe. Include type and number required for pipe material and size of pipe.
 2. Pressure Plates: Carbon steel.
 3. Connecting Bolts and Nuts: Carbon steel, with corrosion-resistant coating, of length required to secure pressure plates to sealing elements.

2.3 SLEEVE-SEAL FITTINGS

A. Description: Manufactured plastic, sleeve-type, waterstop assembly made for embedding in concrete slab or wall. Unit shall have plastic or rubber waterstop collar with center opening to match piping OD.

2.4 GROUT

A. Description: Nonshrink; recommended for interior and exterior sealing openings in non-fire-rated walls or floors.

C. Design Mix: 5000-psi, 28-day compressive strength.

D. Packaging: Premixed and factory packaged.

2.5 SILICONE SEALANTS

A. Silicone Sealants: Single-component, silicone-based, neutral-curing elastomeric sealants of grade indicated below.
 1. Grade: Pourable (self-leveling) formulation for openings in floors and other horizontal surfaces that are not fire rated.

B. Silicone Foams: Multicomponent, silicone-based liquid elastomers that, when mixed, expand and cure in place to produce a flexible, nonshrinking foam.
PART 3 - EXECUTION

3.1 SLEEVE INSTALLATION FOR NON-FIRE-RATED ELECTRICAL PENETRATIONS

A. Comply with NECA 1.

B. Comply with NEMA VE 2 for cable tray and cable penetrations.

C. Sleeves for Conduits Penetrating Above-Grade Non-Fire-Rated Concrete and Masonry-Unit Floors and Walls:
 1. Interior Penetrations of Non-Fire-Rated Walls and Floors:
 a. Seal annular space between sleeve and raceway or cable, using joint sealant appropriate for size, depth, and location of joint. Comply with requirements in Section 079200 "Joint Sealants."
 b. Seal space outside of sleeves with mortar or grout. Pack sealing material solidly between sleeve and wall so no voids remain. Tool exposed surfaces smooth; protect material while curing.
 2. Use pipe sleeves unless penetration arrangement requires rectangular sleeved opening.
 3. Size pipe sleeves to provide 1/4-inch annular clear space between sleeve and raceway or cable unless sleeve seal is to be installed.
 4. Install sleeves for wall penetrations unless core-drilled holes or formed openings are used. Install sleeves during erection of walls. Cut sleeves to length for mounting flush with both surfaces of walls. Deburr after cutting.

D. Sleeves for Conduits Penetrating Non-Fire-Rated Gypsum Board Assemblies:
 1. Use circular metal sleeves unless penetration arrangement requires rectangular sleeved opening.
 2. Seal space outside of sleeves with approved joint compound for gypsum board assemblies.

E. Roof-Penetration Sleeves: Seal penetration of individual raceways and cables with flexible boot-type flashing units applied in coordination with roofing work.

END OF SECTION
PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:

1. Identification for raceways.
2. Identification of power and control cables.
3. Identification for conductors.
5. Warning labels and signs.
6. Instruction signs.
7. Equipment identification labels, including arc-flash warning labels.
8. Miscellaneous identification products.

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product.

1. Include construction details, material descriptions, dimensions of individual components and profiles, and finishes for electrical identification products.

B. Samples: For each type of label and sign to illustrate composition, size, colors, lettering style, mounting provisions, and graphic features of identification products.

C. Identification Schedule: For each piece of electrical equipment and electrical system components to be an index of nomenclature for electrical equipment and system components used in identification signs and labels. Use same designations indicated on Drawings.

D. Delegated-Design Submittal: For arc-flash hazard study.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

A. Comply with ASME A13.1.

B. Comply with NFPA 70.

D. Comply with ANSI Z535.4 for safety signs and labels.

E. Adhesive-attached labeling materials, including label stocks, laminating adhesives, and inks used by label printers, shall comply with UL 969.

F. Thermal Movements: Allow for thermal movements from ambient and surface temperature changes.
 1. Temperature Change: 120 deg F, ambient; 180 deg F, material surfaces.

2.2 COLOR AND LEGEND REQUIREMENTS

A. Raceways and Cables Carrying Circuits at 600 V or Less:
 1. Black letters on an orange field.
 2. Legend: Indicate voltage.

B. Raceways and Cables Carrying Circuits at More Than 600 V:
 1. Black letters on an orange field.
 2. Legend: "DANGER - CONCEALED HIGH VOLTAGE WIRING."

2.3 LABELS

A. Self-Adhesive Labels:
 1. Preprinted, 3-mil-thick, polyester flexible label with acrylic pressure-sensitive adhesive.
 a. Self-Lamination: Clear; UV-, weather- and chemical-resistant; self-laminating, protective shield over the legend. Labels sized to fit the raceway diameter, such that the clear shield overlaps the entire printed legend.
 2. Polyester, thermal, transfer-printed, 3-mil-thick, multicolor, weather- and UV-resistant, pressure-sensitive adhesive labels, configured for display on front cover, door, or other access to equipment unless otherwise indicated.
 a. Nominal Size: 3.5-by-5-inch.
 3. Marker for Tags: Permanent, waterproof, black ink marker recommended by tag manufacturer.
 4. Marker for Tags: Machine-printed, permanent, waterproof, black ink recommended by printer manufacturer.

2.4 BANDS AND TUBES:

A. Snap-Around, Color-Coding Bands for Raceways and Cables: Slit, pretensioned, flexible, solid-colored acrylic sleeves, 2 inches long, with diameters sized to suit diameters of raceways or cables they identify, and that stay in place by gripping action.
B. Heat-Shrink Preprinted Tubes: Flame-retardant polyolefin tubes with machine-printed identification labels, sized to suit diameters of and shrunk to fit firmly around cables they identify. Full shrink recovery occurs at a maximum of 200 deg F. Comply with UL 224.

2.5 TAPES AND STENCILS:

A. Underground-Line Warning Tape
 1. Tape:
 a. Recommended by manufacturer for the method of installation and suitable to identify and locate underground electrical utility lines.
 b. Printing on tape shall be permanent and shall not be damaged by burial operations.
 c. Tape material and ink shall be chemically inert and not subject to degradation when exposed to acids, alkalis, and other destructive substances commonly found in soils.
 2. Color and Printing:
 b. Inscriptions for Red-Colored Tapes: "ELECTRIC LINE, HIGH VOLTAGE".
 c. Inscriptions for Orange-Colored Tapes: "TELEPHONE CABLE, CATV CABLE, COMMUNICATIONS CABLE, OPTICAL FIBER CABLE".

2.6 Tags

A. Metal Tags: Brass or aluminum, 2 by 2 by 0.05 inch, with stamped legend, punched for use with self-locking cable tie fastener.

B. Nonmetallic Preprinted Tags: Polyethylene tags, 0.015 inch thick, color-coded for phase and voltage level, with factory screened permanent designations; punched for use with self-locking cable tie fastener.

C. Write-On Tags:
 1. Polyester Tags: 0.010 inch thick, with corrosion-resistant grommet and cable tie for attachment to raceway, conductor, or cable.
 2. Marker for Tags: Permanent, waterproof, black ink marker recommended by tag manufacturer.
 3. Marker for Tags: Machine-printed, permanent, waterproof, black ink marker recommended by printer manufacturer.

2.7 Signs

A. Baked-Enamel Signs:
 1. Preprinted aluminum signs, punched or drilled for fasteners, with colors, legend, and size required for application.
 2. 1/4-inch grommets in corners for mounting.

B. Metal-Backed Butyrate Signs:
1. Weather-resistant, nonfading, preprinted, cellulose-acetate butyrate signs, with 0.0396-inch galvanized-steel backing and with colors, legend, and size required for application.
2. 1/4-inch grommets in corners for mounting.
3. Nominal Size: 10 by 14 inches.

C. Laminated Acrylic or Melamine Plastic Signs:
1. Engraved legend.
2. Thickness:
 a. For signs up to 20 sq. inches, minimum 1/16-inch-
 b. For signs larger than 20 sq. inches, 1/8 inch thick.
 c. Engraved legend with black letters on white face.
 d. Self-adhesive.
 e. Framed with mitered acrylic molding and arranged for attachment at applicable equipment.

2.8 CABLE TIES

A. General-Purpose Cable Ties: Fungus inert, self-extinguishing, one piece, self-locking, Type 6/6 nylon.
2. Tensile Strength at 73 deg F according to ASTM D 638: 12,000 psi.
3. Temperature Range: Minus 40 to plus 185 deg F.

B. UV-Stabilized Cable Ties: Fungus inert, designed for continuous exposure to exterior sunlight, self-extinguishing, one piece, self-locking, Type 6/6 nylon.
2. Tensile Strength at 73 deg F according to ASTM D 638: 12,000 psi.
3. Temperature Range: Minus 40 to plus 185 deg F.

C. Plenum-Rated Cable Ties: Self-extinguishing, UV stabilized, one piece, self-locking.
2. Tensile Strength at 73 deg F according to ASTM D 638: 7000 psi.
3. UL 94 Flame Rating: 94V-0.
4. Temperature Range: Minus 50 to plus 284 deg F.
5. Color: Black.
2.9 MISCELLANEOUS IDENTIFICATION PRODUCTS

A. Paint: Comply with requirements in painting Sections for paint materials and application requirements. Retain paint system applicable for surface material and location (exterior or interior).

B. Fasteners for Labels and Signs: Self-tapping, stainless-steel screws or stainless-steel machine screws with nuts and flat and lock washers.

PART 3 - EXECUTION

3.1 PREPARATION

A. Self-Adhesive Identification Products: Before applying electrical identification products, clean substrates of substances that could impair bond, using materials and methods recommended by manufacturer of identification product.

3.2 INSTALLATION

A. Verify and coordinate identification names, abbreviations, colors, and other features with requirements in other Sections requiring identification applications, Drawings, Shop Drawings, manufacturer's wiring diagrams, and operation and maintenance manual. Use consistent designations throughout Project.

B. Install identifying devices before installing acoustical ceilings and similar concealment.

C. Verify identity of each item before installing identification products.

D. Install identification materials and devices at locations for most convenient viewing without interference with operation and maintenance of equipment. Install access doors or panels to provide view of identifying devices.

E. Apply identification devices to surfaces that require finish after completing finish work.

F. Attach signs and plastic labels that are not self-adhesive type with mechanical fasteners appropriate to the location and substrate.

G. Attach plastic raceway and cable labels that are not self-adhesive type with clear vinyl tape, with adhesive appropriate to the location and substrate.

H. Cable Ties: For attaching tags. Use general-purpose type, except as listed below:

1. Outdoors: UV-stabilized nylon.
2. In Spaces Handling Environmental Air: Plenum rated.

I. Painted Identification: Comply with requirements in painting Sections for surface preparation and paint application.
J. Aluminum Wraparound Marker Labels and Metal Tags: Secure tight to surface of conductor or cable at a location with high visibility and accessibility.

K. System Identification Color-Coding Bands for Raceways and Cables: Each color-coding band shall completely encircle cable or conduit. Place adjacent bands of two-color markings in contact, side by side. Locate bands at changes in direction, at penetrations of walls and floors, at 50-foot maximum intervals in straight runs, and at 25-foot maximum intervals in congested areas.

L. During backfilling of trenches, install continuous underground-line warning tape directly above cable or raceway at 6 to 8 inches below finished grade. Use multiple tapes where width of multiple lines installed in a common trench exceeds 16 inches overall.

3.3 IDENTIFICATION SCHEDULE

A. Concealed Raceways, Duct Banks, More Than 600 V, within Buildings: Tape and stencil 4-inch-wide black stripes on 10-inch centers over orange background that extends full length of raceway or duct and is 12 inches wide. Stencil legend "DANGER CONCEALED HIGH VOLTAGE WIRING" with 3-inch-high black letters on 20-inch centers. Stop stripes at legends. Apply stripes to the following finished surfaces:

1. Floor surface directly above conduits running beneath and within 12 inches of a floor that is in contact with earth or is framed above unexcavated space.
2. Wall surfaces directly external to raceways concealed within wall.
3. Accessible surfaces of concrete envelope around raceways in vertical shafts, exposed in the building, or concealed above suspended ceilings.

B. Power-Circuit Conductor Identification, 600 V or Less: For conductors in vaults, pull and junction boxes, manholes, and handholes, use color-coding conductor tape to identify the phase.

1. Color-Coding for Phase- Identification, 600 V or Less: Use colors listed below for ungrounded service feeder and branch-circuit conductors.

 a. Color shall be factory applied or field applied for sizes larger than No. 8 AWG if authorities having jurisdiction permit.

 b. In existing buildings, contractor shall match color existing color codes for each phase.

 c. Colors for 208/120-V Circuits:

 1) Phase A: Black.
 2) Phase B: Red.
 3) Phase C: Blue.

 d. Colors for 480/277-V Circuits:

 1) Phase A: Brown.
 2) Phase B: Orange.
 3) Phase C: Yellow.
e. Field-Applied, Color-Coding Conductor Tape: Apply in half-lapped turns for a minimum distance of 6 inches from terminal points and in boxes where splices or taps are made. Apply last two turns of tape with no tension to prevent possible unwinding. Locate bands to avoid obscuring factory cable markings.

C. Power-Circuit Conductor Identification, More Than 600 V: For conductors in vaults, pull and junction boxes, manholes, and handholes, use nonmetallic preprinted tags colored and marked to indicate phase, and a separate tag with the circuit designation.

D. Install instructional sign, including the color code for grounded and ungrounded conductors using adhesive-film-type labels.

 1. Identify conductors, cables, and terminals in enclosures and at junctions, terminals, and pull points. Identify by system and circuit designation.
 2. Use system of marker-tape designations that is uniform and consistent with system used by manufacturer for factory-installed connections.
 3. Coordinate identification with Project Drawings, manufacturer's wiring diagrams, and operation and maintenance manual.

F. Locations of Underground Lines: Identify with underground-line warning tape for power, lighting, communication, and control wiring and optical-fiber cable.
 1. Limit use of underground-line warning tape to direct-buried cables.
 2. Install underground-line warning tape for direct-buried cables and cables in raceways.

G. Workspace Indication: Install floor marking tape to show working clearances in the direction of access to live parts. Workspace shall comply with NFPA 70 and 29 CFR 1926.403 unless otherwise indicated. Do not install at flush-mounted panelboards and similar equipment in finished spaces.

H. Warning Labels for Indoor Cabinets, Boxes, and Enclosures for Power and Lighting: Self-adhesive warning labels.
 2. Identify system voltage with black letters on an orange background.
 3. Apply to exterior of door, cover, or other access.
 4. For equipment with multiple power or control sources, apply to door or cover of equipment, including, but not limited to, the following:
 a. Power-transfer switches.
 b. Controls with external control power connections.

I. Arc Flash Warning Labeling: Self-adhesive thermal transfer vinyl labels.
 2. Comply with Section 260574 "Overcurrent Protective Device Arc-Flash Study" requirements for arc-flash warning labels.
J. Operating Instruction Signs: Install instruction signs to facilitate proper operation and maintenance of electrical systems and items to which they connect. Install instruction signs with approved legend where instructions are needed for system or equipment operation.

K. Equipment Identification Labels: On each unit of equipment, install unique designation label that is consistent with wiring diagrams, schedules, and operation and maintenance manual. Apply labels to disconnect switches and protection equipment, central or master units, control panels, control stations, terminal cabinets, and racks of each system. Systems include power, lighting, control, communication, signal, monitoring, and alarm unless equipment is provided with its own identification.

1. Labeling Instructions:
 a. Indoor Equipment: Self-adhesive, engraved, laminated acrylic or melamine plastic label. Unless otherwise indicated, provide a single line of text with 1/2-inch-high letters on 1-1/2-inch-high label; where two lines of text are required, use labels 2 inches high.
 b. Outdoor Equipment: Engraved, laminated acrylic or melamine label.
 c. Elevated Components: Increase sizes of labels and letters to those appropriate for viewing from the floor.
 d. Unless labels are provided with self-adhesive means of attachment, fasten them with appropriate mechanical fasteners that do not change the NEMA or NRTL rating of the enclosure.

2. Equipment To Be Labeled:
 a. Panelboards: Typewritten directory of circuits in the location provided by panelboard manufacturer. Panelboard identification shall be in the form of a self-adhesive, engraved, laminated acrylic or melamine label.
 b. Enclosures and electrical cabinets.
 c. Access doors and panels for concealed electrical items.
 d. Switchgear.
 e. Switchboards.
 f. Transformers: Label that includes tag designation shown on Drawings for the transformer, feeder, and panelboards or equipment supplied by the secondary.
 g. Substations.
 h. Emergency system boxes and enclosures.
 i. Motor-control centers.
 j. Enclosed switches.
 k. Enclosed circuit breakers.
 l. Enclosed controllers.
 m. Variable-speed controllers.
 n. Power-transfer equipment.
 o. Contactors.
 q. Battery-inverter units.
 r. Battery racks.
 s. Monitoring and control equipment.
 t. UPS equipment.
END OF SECTION
PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:
 1. Straight-blade convenience, hospital-grade, isolated-ground, and tamper-resistant receptacles.
 2. USB charger devices.
 3. GFCI receptacles.
 4. SPD receptacles.
 5. Hazardous (classified) location receptacles.
 6. Twist-locking receptacles.
 7. Pendant cord-connector devices.
 8. Cord and plug sets.
 10. Decorator-style convenience.
 11. Wall switch sensor light switches with dual technology sensors.
 12. Wall switch sensor light switches with passive infrared sensors.
 13. Wall switch sensor light switches with ultrasonic sensors.
 15. Residential devices.
 16. Wall-box dimmers.
 17. Wall plates.
 18. Floor service outlets.
 19. Poke-through assemblies.
 20. Prefabricated multioutlet assemblies.

1.3 DEFINITIONS

A. Abbreviations of Manufacturers' Names:
 1. Cooper: Cooper Wiring Devices; Division of Cooper Industries, Inc.

B. BAS: Building automation system.
C. EMI: Electromagnetic interference.

D. GFCI: Ground-fault circuit interrupter.

E. Pigtails: Short lead used to connect a device to a branch-circuit conductor.

F. RFI: Radio-frequency interference.

G. SPD: Surge protective device.

H. UTP: Unshielded twisted pair.

1.4 ACTION SUBMITTALS

A. Product Data: For each type of product.

B. Shop Drawings: List of legends and description of materials and process used for premarking wall plates.

C. Samples: Only when requested by architect.

1.5 INFORMATIONAL SUBMITTALS

A. Field quality-control reports.

1.6 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For wiring devices to include in all manufacturers’ packing-label warnings and instruction manuals that include labeling conditions.

PART 2 - PRODUCTS

2.1 GENERAL WIRING-DEVICE REQUIREMENTS

A. Wiring Devices, Components, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

B. Comply with NFPA 70.

C. Devices that are manufactured for use with modular plug-in connectors may be substituted under the following conditions:

1. Connectors shall comply with UL 2459 and shall be made with stranding building wire.

2. Devices shall comply with the requirements in this Section.

D. Devices for Owner-Furnished Equipment:
1. Receptacles: Match plug configurations.
2. Cord and Plug Sets: Match equipment requirements.

E. Source Limitations: Obtain each type of wiring device and associated wall plate from single source from single manufacturer.

2.2 STRAIGHT-BLADE RECEPTACLES

A. Duplex Convenience Receptacles: 125 V, 20 A; comply with NEMA WD 1, NEMA WD 6 Configuration 5-20R, UL 498, and FS W-C-596.

B. Hospital-Grade, Duplex Convenience Receptacles: 125 V, 20 A; comply with NEMA WD 1, NEMA WD 6 Configuration 5-20R, UL 498 Supplement sd, and FS W-C-596.

C. Isolated-Ground, Duplex Convenience Receptacles: 125 V, 20 A; comply with NEMA WD 1, NEMA WD 6 Configuration 5-20R, UL 498, and FS W-C-596.
 1. Description: Straight blade; equipment grounding contacts shall be connected only to the green grounding screw terminal of the device and with inherent electrical isolation from mounting strap. Isolation shall be integral to receptacle construction and not dependent on removable parts.

D. Tamper-Resistant Convenience Receptacles: 125 V, 20 A; comply with NEMA WD 1, NEMA WD 6 Configuration 5-20R, UL 498, and FS W-C-596.
 1. Description: Labeled and complying with NFPA 70, "Health Care Facilities" Article, "Pediatric Locations" Section.

2.3 USB CHARGER DEVICES

A. Tamper-Resistant, USB Charger Receptacles: 125 V, 20 A; comply with NEMA WD 1, NEMA WD 6 Configuration 5-20R, UL 498, UL 1310, and FS W-C-596.
 2. USB Receptacles: Dual, Type A, minimum 3-amp output.
 3. Line Voltage Receptacles: Dual, two pole, three wire, and self-grounding.

B. Hospital-Grade, USB Charger Receptacles: 125 V, 20 A; comply with NEMA WD 1, NEMA WD 6 Configuration 5-20R, UL 498 Supplement sd, UL 1310, and FS W-C-596.
 1. Description: Labeled and complying with NFPA 70, "Health Care Facilities" Article, "Pediatric Locations" Section.
 2. USB Receptacles: Dual, Type A, minimum 3-amp output.
 3. Line Voltage Receptacles: Dual, two pole, three wire, and self-grounding.

2.4 GFCI RECEPTACLES

A. General Description:
1. 125 V, 20 A, straight blade, feed-through type.
2. Comply with NEMA WD 1, NEMA WD 6 Configuration 5-20R, UL 498, UL 943 Class A, and FS W-C-596.
3. Include indicator light that shows when the GFCI has malfunctioned and no longer provides proper GFCI protection.

B. Duplex GFCI Convenience Receptacles:

C. Tamper-Resistant, Duplex GFCI Convenience Receptacles:

D. Hospital-Grade, Duplex GFCI Convenience Receptacles: Comply with UL 498 Supplement sd.

2.5 TOGGLE SWITCHES

A. Comply with NEMA WD 1, UL 20, and FS W-S-896.

B. Switches, 120/277 V, 20 A:
 1. Description: Single pole or double pole and three-way or four way switches as indicated on plans.

C. Key-Operated Switches: 120/277 V, 20 A.
 1. Description: Single pole, with factory-supplied key in lieu of switch handle.

D. Single-Pole, Double-Throw, Momentary-Contact, Center-off Switches: 120/277 V, 20 A; for use with mechanically held lighting contactors.

2.6 WALL SWITCH SENSOR LIGHT SWITCH, DUAL TECHNOLOGY

A. Description: Switchbox-mounted, combination lighting-control sensor and conventional switch lighting-control unit using dual technology.
 1. Rated 960 W at 120-V ac for tungsten lighting, 10 A at 120-V ac or 10 A at 277-V ac for fluorescent or LED lighting, and 1/4 hp at 120-V ac.
 2. Integral relay for connection to BAS.
 3. Adjustable time delay up to 30 minutes.
 4. Able to be locked to either Automatic-On or Manual-On mode.
 6. Comply with NEMA WD 1, UL 20, and FS W-S-896.

2.7 WALL SWITCH SENSOR LIGHT SWITCH, PASSIVE INFRARED

A. Description: Switchbox-mounted, combination, lighting-control sensor and conventional switch lighting-control unit using passive infrared technology.
 1. Rated 960 W at 120-V ac for tungsten lighting, 10 A at 120-V ac or 10 A at 277-V ac for fluorescent or LED lighting, and 1/4 hp at 120-V ac.
 2. Integral relay for connection to BAS.
 3. Adjustable time delay of 30 minutes.
 1. Able to be locked to either Automatic-On or Manual-On mode.
3. Comply with NEMA WD 1, UL 20, and FS W-S-896.

2.8 WALL SWITCH SENSOR LIGHT SWITCH, ULTRASONIC

A. Description: Switchbox-mounted, combination, lighting-control sensor and conventional switch lighting-control unit using ultrasonic technology.
1. Rated 960 W at 120-V ac for tungsten lighting, 10 A at 120-V ac or 10 A at 277-V ac for fluorescent or LED lighting, and 1/4 hp at 120-V ac.
2. Integral relay for connection to BAS.
3. Adjustable time delay up to 30 minutes.
1. Able to be locked to either Automatic-On or Manual-On mode.
3. Comply with NEMA WD 1, UL 20, and FS W-S-896.

2.9 DIGITAL TIMER LIGHT SWITCH

A. Description: Switchbox-mounted, combination digital timer and conventional switch lighting-control unit, with backlit digital display, with selectable time interval in 10-minute increments.
1. Rated 960 W at 120-V ac for tungsten lighting, 10 A at 120-V ac or 10 A at 277-V ac for fluorescent or LED lighting, and 1/4 hp at 120-V ac.
2. Integral relay for connection to BAS.

2.10 WALL-BOX DIMMERS

A. In all locations, contractor or lighting supplier shall verify compatibility of dimmer control with fixtures to be supplied.

B. Dimmer Switches: Modular, full-wave, solid-state units with integral, quiet on-off switches, with audible frequency and EMI/RFI suppression filters.

C. Control: Continuously adjustable with single-pole or three-way switching. Comply with UL 1472.

D. Incandescent Lamp Dimmers: 120 V; control shall follow square-law dimming curve. On-off switch positions shall bypass dimmer module.
1. 600 W; dimmers shall require no derating when ganged with other devices.

E. LED Lamp Dimmer Switches: Modular; compatible with LED lamps; trim potentiometer to adjust low-end dimming; capable of consistent dimming with low end not greater than 20 percent of full brightness.

2.11 WALL PLATES

A. Single and combination types shall match corresponding wiring devices.
1. Plate-Securing Screws: Metal with head color to match plate finish.
2. Material for Finished Spaces: Coordinate with architect for color and material. Where plastic is required, plates shall be unbreakable nylon.

B. Wet-Location, Weatherproof Cover Plates: NEMA 250, complying with Type 3R, weather-resistant thermoplastic with lockable cover.

2.12 FLOOR SERVICE FITTINGS

A. Type: Modular, flush-type, dual-service units suitable for wiring method used.

B. Compartments: Barrier separates power from voice and data communication cabling.

C. Service Plate: Round, with satin finish, verify color with architect.

D. Power Receptacle: NEMA WD 6 Configuration 5-20R, gray finish, unless otherwise indicated.

E. Voice and Data Communication Outlet: Blank cover with bushed cable opening.

2.13 POKE-THROUGH ASSEMBLIES

A. Description:

1. Factory-fabricated and -wired assembly of below-floor junction box with multichanneled, through-floor raceway/firestop unit and detachable matching floor service-outlet assembly.

2. Comply with UL 514 scrub water exclusion requirements.

3. Service-Outlet Assembly: Flush type with four simplex receptacles and space for four RJ-45 jacks complying with requirements in Section 271500 "Communications Horizontal Cabling."

4. Size: Selected to fit nominal 6-inch cored holes in floor and matched to floor thickness.

5. Fire Rating: Unit is listed and labeled for fire rating of floor-ceiling assembly.

6. Wiring Raceways and Compartments: For a minimum of four No. 12 AWG conductors and a minimum of four, four-pair cables that comply with requirements in Section 271500 "Communications Horizontal Cabling."

2.14 PREFABRICATED MULTIOUTLET ASSEMBLIES

A. Description:

1. Two-piece surface metal raceway, with factory-wired multioutlet harness.

2. Components shall be products from single manufacturer designed for use as a complete, matching assembly of raceways and receptacles.

B. Raceway Material: Metal, with manufacturer's standard finish.

C. Multioutlet Harness:

1. Receptacles: 15-A, 125-V, NEMA WD 6 Configuration 5-15R receptacles complying with NEMA WD 1, UL 498, and FS W-C-596.
2. Receptacle Spacing: 6 inches.
3. Wiring: No. 12 AWG solid, Type THHN copper, two circuit, connecting alternating receptacles.

2.15 FINISHES

A. Device Color:
 1. Wiring Devices Connected to Normal Power System: As selected by Architect unless otherwise indicated or required by NFPA 70 or device listing.

B. Wall Plate Color: For plastic covers, match device color.

PART 3 - EXECUTION

3.1 INSTALLATION

A. Comply with NECA 1, including mounting heights listed in that standard, unless otherwise indicated.

B. Coordination with Other Trades:
 1. Protect installed devices and their boxes. Do not place wall finish materials over device boxes and do not cut holes for boxes with routers that are guided by riding against outside of boxes.
 2. Keep outlet boxes free of plaster, drywall joint compound, mortar, cement, concrete, dust, paint, and other material that may contaminate the raceway system, conductors, and cables.
 3. Install device boxes in brick or block walls so that the cover plate does not cross a joint unless the joint is troweled flush with the face of the wall.
 4. Install wiring devices after all wall preparation, including painting, is complete.

C. Conductors:
 1. Do not strip insulation from conductors until right before they are spliced or terminated on devices.
 2. Strip insulation evenly around the conductor using tools designed for the purpose. Avoid scoring or nicking of solid wire or cutting strands from stranded wire.
 3. The length of free conductors at outlets for devices shall meet provisions of NFPA 70, Article 300, without pigtailes.
 4. Existing Conductors:
 a. Cut back and pigtail, or replace all damaged conductors.
 b. Straighten conductors that remain and remove corrosion and foreign matter.
 c. Pigtailing existing conductors is permitted, provided the outlet box is large enough.

D. Device Installation:
1. Replace devices that have been in temporary use during construction and that were installed before building finishing operations were complete.
2. Keep each wiring device in its package or otherwise protected until it is time to connect conductors.
3. Do not remove surface protection, such as plastic film and smudge covers, until the last possible moment.
4. Connect devices to branch circuits using pigtails that are not less than 6 inches in length.
5. When there is a choice, use side wiring with binding-head screw terminals. Wrap solid conductor tightly clockwise, two-thirds to three-fourths of the way around terminal screw.
6. Use a torque screwdriver when a torque is recommended or required by manufacturer.
7. When conductors larger than No. 12 AWG are installed on 15- or 20-A circuits, splice No. 12 AWG pigtails for device connections.
8. Tighten unused terminal screws on the device.
9. When mounting into metal boxes, remove the fiber or plastic washers used to hold device-mounting screws in yokes, allowing metal-to-metal contact.

E. Receptacle Orientation:
1. Install ground pin of vertically mounted receptacles up.
2. Install hospital-grade receptacles in patient-care areas with the ground pin or neutral blade at the top.

F. Device Plates: Do not use oversized or extra-deep plates. Repair wall finishes and remount outlet boxes when standard device plates do not fit flush or do not cover rough wall opening.

G. Dimmers:
1. Install dimmers within terms of their listing.
2. Verify that dimmers used for fan-speed control are listed for that application.
3. Install unshared neutral conductors on line and load side of dimmers according to manufacturers’ device listing conditions in the written instructions.

H. Arrangement of Devices: Unless otherwise indicated, mount flush, with long dimension vertical and with grounding terminal of receptacles on top. Group adjacent switches under single, multigang wall plates.

I. Adjust locations of floor service outlets and service poles to suit arrangement of partitions and furnishings.

J. When installing occupancy sensors, consideration shall be given to the location of the sensor, potential obstructions and occupant locations.
1. Sensor locations shown on plans primarily indicate functional intent for the lighting control in each space. The contractor and manufacturer’s representative shall adjust locations as needed for the manufacturer and model of sensors provided to ensure proper detection of occupants in each space.
2. Sensors shall not be located behind doors, columns, furniture or other obstructions that would reduce the sensor’s ability to sense motion. The contractor will be responsible for ensuring adequate operation of the sensors provided. The Architect’s interpretation of adequate sensor operation will be final.
3.2 GFCI RECEPTACLES
 A. Install non-feed-through-type GFCI receptacles where protection of downstream receptacles is not required.

3.3 IDENTIFICATION
 A. Comply with Section 260553 "Identification for Electrical Systems."
 B. Identify each receptacle with panelboard identification and circuit number. Use hot, stamped, or engraved machine printing with black-filled lettering on face of plate, and durable wire markers or tags inside outlet boxes.

3.4 FIELD QUALITY CONTROL
 A. Test Instruments: Use instruments that comply with UL 1436.
 B. Test Instrument for Convenience Receptacles: Digital wiring analyzer with digital readout or illuminated digital-display indicators of measurement.
 C. Perform the following tests and inspections:
 1. In healthcare facilities, prepare reports that comply with recommendations in NFPA 99.
 2. Test Instruments: Use instruments that comply with UL 1436.
 3. Test Instrument for Convenience Receptacles: Digital wiring analyzer with digital readout or illuminated digital-display indicators of measurement.
 D. Tests for Convenience Receptacles:
 1. Line Voltage: Acceptable range is 105 to 132 V.
 2. Percent Voltage Drop under 15-A Load: A value of 6 percent or higher is unacceptable.
 3. Ground Impedance: Values of up to 2 ohms are acceptable.
 4. GFCI Trip: Test for tripping values specified in UL 1436 and UL 943.
 5. Using the test plug, verify that the device and its outlet box are securely mounted.
 6. Tests shall be diagnostic, indicating damaged conductors, high resistance at the circuit breaker, poor connections, inadequate fault current path, defective devices, or similar problems. Correct circuit conditions, remove malfunctioning units and replace with new ones, and retest as specified above.
 E. Test straight-blade hospital-grade convenience outlets for the retention force of the grounding blade according to NFPA 99. Retention force shall be not less than 4 oz.
 F. Wiring device will be considered defective if it does not pass tests and inspections.
 G. Prepare test and inspection reports.

END OF SECTION
PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:

1. Cartridge fuses rated 600 V ac and less for use in the following:
 a. Control circuits.
 b. Motor-control centers.
 c. Panelboards.
 d. Switchboards.
 e. Enclosed controllers.
 f. Enclosed switches.

2. Spare-fuse cabinets.

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product. Include construction details, material descriptions, dimensions of individual components and profiles, and finishes for spare-fuse cabinets. Include the following for each fuse type indicated:

1. Ambient Temperature Adjustment Information: If ratings of fuses have been adjusted to accommodate ambient temperatures, provide list of fuses with adjusted ratings.
 a. For each fuse having adjusted ratings, include location of fuse, original fuse rating, local ambient temperature, and adjusted fuse rating.
 b. Provide manufacturer's technical data on which ambient temperature adjustment calculations are based.

2. Dimensions and manufacturer's technical data on features, performance, electrical characteristics, and ratings.

4. Coordination charts and tables and related data.
1.4 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For fuses to include in emergency, operation, and maintenance manuals. In addition include the following:

1. Ambient temperature adjustment information.
2. Current-limitation curves for fuses with current-limiting characteristics.
3. Time-current coordination curves (average melt) and current-limitation curves (instantaneous peak let-through current) for each type and rating of fuse used on the Project.
4. Coordination charts and tables and related data.

1.5 FIELD CONDITIONS

A. Where ambient temperature to which fuses are directly exposed is less than 40 deg F or more than 100 deg F, apply manufacturer's ambient temperature adjustment factors to fuse ratings.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. Source Limitations: Obtain fuses, for use within a specific product or circuit, from single source from single manufacturer.

2.2 CARTRIDGE FUSES

A. Characteristics: NEMA FU 1, current-limiting, nonrenewable cartridge fuses with voltage ratings consistent with circuit voltages.

B. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

C. Comply with NEMA FU 1 for cartridge fuses.

D. Comply with NFPA 70.

E. Coordinate fuse ratings with utilization equipment nameplate limitations of maximum fuse size and with system short-circuit current levels.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine fuses before installation. Reject fuses that are moisture damaged or physically damaged.
B. Examine holders to receive fuses for compliance with installation tolerances and other conditions affecting performance, such as rejection features.

C. Examine utilization equipment nameplates and installation instructions. Install fuses of sizes and with characteristics appropriate for each piece of equipment.

D. Evaluate ambient temperatures to determine if fuse rating adjustment factors must be applied to fuse ratings.

E. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 FUSE APPLICATIONS

A. Cartridge Fuses:
 1. Service Entrance: Class T, fast acting.

3.3 INSTALLATION

A. Install fuses in fusible devices. Arrange fuses so rating information is readable without removing fuse.

3.4 IDENTIFICATION

A. Install labels complying with requirements for identification specified in Section 260553 "Identification for Electrical Systems" and indicating fuse replacement information inside of door of each fused switch and adjacent to each fuse block, socket, and holder.

END OF SECTION
PART 1 - GENERAL

1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and other Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
A. Section Includes:
 1. Fusible switches.
 2. Nonfusible switches.
 3. Receptacle switches.
 4. Shunt trip switches.
 5. Molded-case circuit breakers (MCCBs).
 7. Enclosures.

1.3 DEFINITIONS
A. NC: Normally closed.
B. NO: Normally open.
C. SPDT: Single pole, double throw.

1.4 ACTION SUBMITTALS
A. Product Data: For each type of enclosed switch, circuit breaker, accessory, and component indicated. Include nameplate ratings, dimensioned elevations, sections, weights, and manufacturers' technical data on features, performance, electrical characteristics, ratings, accessories, and finishes.
 1. Enclosure types and details for types other than NEMA 250, Type 1.
 2. Current and voltage ratings.
 3. Short-circuit current ratings (interrupting and withstand, as appropriate).
 4. Include evidence of a nationally recognized testing laboratory (NRTL) listing for series rating of installed devices.
 5. Detail features, characteristics, ratings, and factory settings of individual overcurrent protective devices, accessories, and auxiliary components.

B. Shop Drawings: For enclosed switches and circuit breakers.
1. Include plans, elevations, sections, details, and attachments to other work.
2. Include wiring diagrams for power, signal, and control wiring.

1.5 INFORMATIONAL SUBMITTALS

A. Qualification Data: For qualified testing agency.

B. Seismic Qualification Certificates: For enclosed switches and circuit breakers, accessories, and components, from manufacturer.
 1. Basis for Certification: Indicate whether withstand certification is based on actual test of assembled components or on calculation.
 2. Dimensioned Outline Drawings of Equipment Unit: Identify center of gravity and locate and describe mounting and anchorage provisions.
 3. Detailed description of equipment anchorage devices on which the certification is based and their installation requirements.

C. Field quality-control reports.

1.6 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For enclosed switches and circuit breakers to include in emergency, operation, and maintenance manuals.
 1. In addition to items specified in Section 017823 "Operation and Maintenance Data," include the following:
 a. Manufacturer's written instructions for testing and adjusting enclosed switches and circuit breakers.

1.7 QUALITY ASSURANCE

A. Testing Agency Qualifications: Accredited by NETA.
 1. Testing Agency's Field Supervisor: Currently certified by NETA to supervise on-site testing.

1.8 FIELD CONDITIONS

A. Environmental Limitations: Rate equipment for continuous operation under the following conditions unless otherwise indicated:
 1. Ambient Temperature: Not less than minus 22 deg F and not exceeding 104 deg F.
 2. Altitude: Not exceeding 6600 feet.
1.9 WARRANTY

A. Manufacturer's Warranty: Manufacturer and Installer agree to repair or replace components that fail in materials or workmanship within specified warranty period.

1. Warranty Period: One year(s) from date of Substantial Completion.

PART 2 - PRODUCTS

2.1 GENERAL REQUIREMENTS

A. Source Limitations: Obtain enclosed switches and circuit breakers, overcurrent protective devices, components, and accessories, within same product category, from single manufacturer.

B. Product Selection for Restricted Space: Drawings indicate maximum dimensions for enclosed switches and circuit breakers, including clearances between enclosures, and adjacent surfaces and other items. Comply with indicated maximum dimensions.

C. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by an NRTL, and marked for intended location and application.

D. Comply with NFPA 70.

2.2 FUSIBLE SWITCHES

A. Type HD, Heavy Duty:

1. Single throw.
2. Three pole.
3. 240 or 600-V AC as required by the load.
4. Lockable handle with capability to accept three padlocks, and interlocked with cover in closed position.

B. Accessories:

1. Equipment Ground Kit: Internally mounted and labeled for copper and aluminum ground conductors.
2. Neutral Kit: Internally mounted; insulated, capable of being grounded and bonded; labeled for copper and aluminum neutral conductors.
3. Isolated Ground Kit: Internally mounted; insulated, labeled for copper and aluminum neutral conductors.
4. Class R Fuse Kit: Provides rejection of other fuse types when Class R fuses are specified.
5. Lugs: Mechanical type, suitable for number, size, and conductor material.

2.3 NONFUSIBLE SWITCHES

A. Square D
B. Cutler Hammer

C. Siemens

D. General Electric

E. Type HD, Heavy Duty, Three Pole, Single Throw, 1200 A and Smaller: UL 98 and NEMA KS 1, horsepower rated, lockable handle with capability to accept three padlocks, and interlocked with cover in closed position.

F. Accessories:
 1. Equipment Ground Kit: Internally mounted and labeled for copper and aluminum ground conductors.
 2. Neutral Kit: Internally mounted; insulated, capable of being grounded and bonded; labeled for copper and aluminum neutral conductors.
 3. Class R Fuse Kit: Provides rejection of other fuse types when Class R fuses are specified.
 4. Lugs: Mechanical type, suitable for number, size, and conductor material.
 5. Service-Rated Switches: Labeled for use as service equipment.

2.4 MOLDED-CASE CIRCUIT BREAKERS

A. Circuit breakers shall be constructed using glass-reinforced insulating material. Current carrying components shall be completely isolated from the handle and the accessory mounting area.

B. Circuit breakers shall have a toggle operating mechanism with common tripping of all poles, which provides quick-make, quick-break contact action. The circuit-breaker handle shall be over center, be trip free, and reside in a tripped position between on and off to provide local trip indication. Circuit-breaker escutcheon shall be clearly marked on and off in addition to providing international I/O markings. Equip circuit breaker with a push-to-trip button, located on the face of the circuit breaker to mechanically operate the circuit-breaker tripping mechanism for maintenance and testing purposes.

C. The maximum ampere rating and UL, IEC, or other certification standards with applicable voltage systems and corresponding interrupting ratings shall be clearly marked on face of circuit breaker. Circuit breakers shall be 100 percent rated or series rated as indicated on the Drawings. Circuit breaker/circuit breaker combinations for series connected interrupting ratings shall be listed by UL as recognized component combinations. Any series rated combination used shall be marked on the end-use equipment along with the statement "Caution - Series Rated System. _____ Amps Available. Identical Replacement Component Required."

D. MCCBs shall be equipped with a device for locking in the isolated position.

E. Standards: Comply with UL 489 and NEMA AB 3, with interrupting capacity to comply with available fault currents.

H. Electronic Trip Circuit Breakers: Field-replaceable rating plug, rms sensing, with the following field-adjustable settings:
 1. Instantaneous trip.
 2. Long- and short-time pickup levels.
 3. Long- and short-time time adjustments.
 4. Ground-fault pickup level, time delay, and I-squared t response.

I. Current-Limiting Circuit Breakers: Frame sizes 400 A and smaller, and let-through ratings less than NEMA FU 1, RK-5.

J. Integrally Fused Circuit Breakers: Thermal-magnetic trip element with integral limiter-style fuse listed for use with circuit breaker and trip activation on fuse opening or on opening of fuse compartment door.

L. Ground-Fault Equipment-Protection (GFEP) Circuit Breakers: With Class B ground-fault protection (30-mA trip).

M. Features and Accessories:
 1. Standard frame sizes, trip ratings, and number of poles.
 2. Lugs: Mechanical type, suitable for number, size, trip ratings, and conductor material.
 3. Application Listing: Appropriate for application; Type SWD for switching fluorescent lighting loads; Type HID for feeding fluorescent and high-intensity discharge lighting circuits.

2.5 MOLDED-CASE SWITCHES

A. Description: MCCB with fixed, high-set instantaneous trip only, and short-circuit withstand rating equal to equivalent breaker frame size interrupting rating.

B. Features and Accessories:
 1. Standard frame sizes and number of poles.
 2. Lugs:
 a. Mechanical type, suitable for number, size, trip ratings, and conductor material.
 b. Lugs shall be suitable for 194 deg F (90 deg C) rated wire.

2.6 ENCLOSURES

A. Enclosed Switches and Circuit Breakers: UL 489, NEMA KS 1, NEMA 250, and UL 50, to comply with environmental conditions at installed location.
B. Enclosure Finish: The enclosure shall be finished with gray baked enamel paint, electrodeposited on cleaned, phosphatized steel (NEMA 250 Type 1).

C. Conduit Entry: NEMA 250 Types 4, 4X, and 12 enclosures shall contain no knockouts. NEMA 250 Types 7 and 9 enclosures shall be provided with threaded conduit openings in both endwalls.

D. Operating Mechanism: The circuit-breaker operating handle shall be externally operable with the operating mechanism being an integral part of the box, not the cover. The cover interlock mechanism shall have an externally operated override. The override shall not permanently disable the interlock mechanism, which shall return to the locked position once the override is released. The tool used to override the cover interlock mechanism shall not be required to enter the enclosure in order to override the interlock.

E. Enclosures designated as NEMA 250 Type 4, 4X stainless steel, 12, or 12K shall have a dual cover interlock mechanism to prevent unintentional opening of the enclosure cover when the circuit breaker is ON and to prevent turning the circuit breaker ON when the enclosure cover is open.

F. NEMA 250 Type 7/9 enclosures shall be furnished with a breather and drain kit to allow their use in outdoor and wet location applications.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine elements and surfaces to receive enclosed switches and circuit breakers for compliance with installation tolerances and other conditions affecting performance of the Work.

B. Proceed with installation only after unsatisfactory conditions have been corrected.

1. Commencement of work shall indicate Installer's acceptance of the areas and conditions as satisfactory.

3.2 PREPARATION

A. Interruption of Existing Electric Service: Do not interrupt electric service to facilities occupied by Owner or others unless permitted under the following conditions and then only after arranging to provide temporary electric service according to requirements indicated:

1. Notify Architect no fewer than 14 days in advance of proposed interruption of electric service.
2. Indicate method of providing temporary electric service.
3. Do not proceed with interruption of electric service without Architect's and Owner's written permission.
4. Comply with NFPA 70E.
3.3 ENCLOSURE ENVIRONMENTAL RATING APPLICATIONS

A. Enclosed Switches and Circuit Breakers: Provide enclosures at installed locations with the following environmental ratings.

1. Indoor, Dry and Clean Locations: NEMA 250, Type 1.
2. Outdoor Locations: NEMA 250, Type 3R.
4. Other Wet or Damp, Indoor Locations: NEMA 250, Type 4.
5. Indoor Locations Subject to Dust, Falling Dirt, and Dripping Noncorrosive Liquids: NEMA 250, Type 12.

3.4 INSTALLATION

A. Coordinate layout and installation of switches, circuit breakers, and components with equipment served and adjacent surfaces. Maintain required workspace clearances and required clearances for equipment access doors and panels.

B. Install individual wall-mounted switches and circuit breakers with tops at uniform height unless otherwise indicated.

C. Comply with mounting and anchoring requirements specified in Section 260548.16 "Seismic Controls for Electrical Systems."

D. Temporary Lifting Provisions: Remove temporary lifting of eyes, channels, and brackets and temporary blocking of moving parts from enclosures and components.

E. Install fuses in fusible devices.

F. Comply with NFPA 70 and NECA 1.

3.5 IDENTIFICATION

A. Comply with requirements in Section 260553 "Identification for Electrical Systems."

1. Identify field-installed conductors, interconnecting wiring, and components; provide warning signs.
2. Label each enclosure with engraved metal or laminated-plastic nameplate.

3.6 FIELD QUALITY CONTROL

A. Tests and Inspections for Switches:

1. Visual and Mechanical Inspection:
 a. Inspect physical and mechanical condition.
 b. Inspect anchorage, alignment, grounding, and clearances.
 c. Verify that the unit is clean.
 d. Verify blade alignment, blade penetration, travel stops, and mechanical operation.
e. Verify that fuse sizes and types match the Specifications and Drawings.
f. Verify that each fuse has adequate mechanical support and contact integrity.
g. Inspect bolted electrical connections for high resistance using one of the two following methods:
 1) Use a low-resistance ohmmeter.
 a) Compare bolted connection resistance values to values of similar connections. Investigate values that deviate from those of similar bolted connections by more than 50 percent of the lowest value.
 2) Verify tightness of accessible bolted electrical connections by calibrated torque-wrench method in accordance with manufacturer's published data or NETA ATS Table 100.12.
 a) Bolt-torque levels shall be in accordance with manufacturer's published data. In the absence of manufacturer's published data, use NETA ATS Table 100.12.

h. Verify that operation and sequencing of interlocking systems is as described in the Specifications and shown on the Drawings.
i. Verify correct phase barrier installation.
j. Verify lubrication of moving current-carrying parts and moving and sliding surfaces.

2. Electrical Tests:
 a. Perform resistance measurements through bolted connections with a low-resistance ohmmeter. Compare bolted connection resistance values to values of similar connections. Investigate values that deviate from adjacent poles or similar switches by more than 50 percent of the lowest value.
 b. Measure contact resistance across each switchblade fuseholder. Drop values shall not exceed the high level of the manufacturer's published data. If manufacturer's published data are not available, investigate values that deviate from adjacent poles or similar switches by more than 50 percent of the lowest value.
 c. Perform insulation-resistance tests for one minute on each pole, phase-to-phase and phase-to-ground with switch closed, and across each open pole. Apply voltage in accordance with manufacturer's published data. In the absence of manufacturer's published data, use Table 100.1 from the NETA ATS. Investigate values of insulation resistance less than those published in Table 100.1 or as recommended in manufacturer's published data.

B. Tests and Inspections for Molded Case Circuit Breakers:
 1. Visual and Mechanical Inspection:
 a. Verify that equipment nameplate data are as described in the Specifications and shown on the Drawings.
 b. Inspect physical and mechanical condition.
 c. Inspect anchorage, alignment, grounding, and clearances.
 d. Verify that the unit is clean.
e. Operate the circuit breaker to ensure smooth operation.

f. Inspect bolted electrical connections for high resistance using one of the two following methods:

1) Use a low-resistance ohmmeter.

 a) Compare bolted connection resistance values to values of similar connections. Investigate values that deviate from those of similar bolted connections by more than 50 percent of the lowest value.

2) Verify tightness of accessible bolted electrical connections by calibrated torque-wrench method in accordance with manufacturer's published data or NETA ATS Table 100.12.

 a) Bolt-torque levels shall be in accordance with manufacturer's published data. In the absence of manufacturer's published data, use NETA ATS Table 100.12.

g. Inspect operating mechanism, contacts, and chutes in unsealed units.

2. Electrical Tests:

a. Perform resistance measurements through bolted connections with a low-resistance ohmmeter. Compare bolted connection resistance values to values of similar connections. Investigate values that deviate from adjacent poles or similar switches by more than 50 percent of the lowest value.

b. Perform insulation-resistance tests for one minute on each pole, phase-to-phase and phase-to-ground with circuit breaker closed, and across each open pole. Apply voltage in accordance with manufacturer's published data. In the absence of manufacturer's published data, use Table 100.1 from the NETA ATS. Investigate values of insulation resistance less than those published in Table 100.1 or as recommended in manufacturer's published data.

c. Perform a contact/pole resistance test. Drop values shall not exceed the high level of the manufacturer's published data. If manufacturer's published data are not available, investigate values that deviate from adjacent poles or similar switches by more than 50 percent of the lowest value.

d. Perform insulation resistance tests on all control wiring with respect to ground. Applied potential shall be 500-V dc for 300-V rated cable and 1000-V dc for 600-V rated cable. Test duration shall be one minute. For units with solid state components, follow manufacturer's recommendation. Insulation resistance values shall be no less than two megohms.

3. Correct malfunctioning units on-site, where possible, and retest to demonstrate compliance; otherwise, replace with new units and retest.

4. Test and adjust controls, remote monitoring, and safeties. Replace damaged and malfunctioning controls and equipment.

C. Enclosed switches and circuit breakers will be considered defective if they do not pass tests and inspections.
3.7 ADJUSTING

A. Adjust moving parts and operable components to function smoothly, and lubricate as recommended by manufacturer.

END OF SECTION
PART 1 - PART 1 - GENERAL

1.1 RELATED DOCUMENTS
 A. Drawings and general provisions of the Contract, including General and Supplementary
 Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
 A. Section Includes:
 1. Interior solid-state luminaires that use LED technology.
 2. Lighting fixture supports.

1.3 DEFINITIONS
 A. CCT: Correlated color temperature.
 B. CRI: Color Rendering Index.
 C. Fixture: See "Luminaire."
 D. IP: International Protection or Ingress Protection Rating.
 E. LED: Light-emitting diode.
 F. Lumen: Measured output of lamp and luminaire, or both.
 G. Luminaire: Complete lighting unit, including lamp, reflector, and housing.

1.4 ACTION SUBMITTALS
 A. Product Data: For each type of product.
 1. Arrange in order of luminaire designation.
 2. Include data on features, accessories, and finishes.
 3. Include physical description and dimensions of luminaires.
 4. Include emergency lighting units, including batteries and chargers.
 5. Include life, output (lumens, CCT, and CRI), and energy efficiency data.
 a. Manufacturers’ Certified Data: Photometric data certified by manufacturer's
 laboratory with a current accreditation under the National Voluntary Laboratory
 Accreditation Program for Energy Efficient Lighting Products.
B. Shop Drawings: For nonstandard or custom luminaires.
 1. Include diagrams for control and signal wiring of relay panel systems or network/distributed type control systems if used on this project.

C. Samples: Only when requested by the architect or engineer.

1.5 INFORMATIONAL SUBMITTALS

A. Coordination Drawings: Reflected ceiling plan(s) and other details, drawn to scale, on which the following items are shown and coordinated with each other, using input from installers of the items involved:

 1. Lighting luminaires.
 2. Suspended ceiling components.
 3. Partitions and millwork that penetrate the ceiling or extend to within 12 inches of the plane of the luminaires.
 4. Structural members to which luminaires will be attached.
 5. Initial access modules for acoustical tile, including size and locations.
 6. Items penetrating finished ceiling, including the following:
 a. Other luminaires.
 b. Air outlets and inlets.
 c. Speakers.
 d. Sprinklers.
 e. Access panels.
 f. Ceiling-mounted projectors.
 7. Moldings.

B. Qualification Data: For testing laboratory providing photometric data for luminaires.

C. Detailed description of equipment anchorage devices on which the certification is based and their installation requirements.

D. Product Certificates: For each type of luminaire.

E. Product Test Reports: For each luminaire, for tests performed by manufacturer and witnessed by a qualified testing agency.

F. Sample warranty.

1.6 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For luminaires and lighting systems to include in operation and maintenance manuals.

 1. Provide a list of all lamp types used on Project; use ANSI and manufacturers' codes.
1.7 QUALITY ASSURANCE

A. Luminaire Photometric Data Testing Laboratory Qualifications: Luminaire manufacturer's laboratory that is accredited under the NVLAP for Energy Efficient Lighting Products.

B. Luminaire Photometric Data Testing Laboratory Qualifications: Provided by an independent agency, with the experience and capability to conduct the testing indicated, that is an NRTL as defined by OSHA in 29 CFR 1910.7, accredited under the NVLAP for Energy Efficient Lighting Products, and complying with the applicable IES testing standards.

C. Provide luminaires from a single manufacturer for each luminaire type.

D. Each luminaire type shall be binned within a three-step MacAdam Ellipse to ensure color consistency among luminaires.

E. Mockups: For interior lighting luminaires in room or module mockups, complete with power and control connections.
 1. Obtain Architect's approval of luminaires in mockups before starting installations.
 2. Maintain mockups during construction in an undisturbed condition as a standard for judging the completed Work.
 3. Approval of mockups does not constitute approval of deviations from the Contract Documents contained in mockups unless Architect specifically approves such deviations in writing.
 4. Subject to compliance with requirements, approved mockups may become part of the completed Work if undisturbed at time of Substantial Completion.

1.8 DELIVERY, STORAGE, AND HANDLING

A. Protect finishes of exposed surfaces by applying a strippable, temporary protective covering before shipping.

1.9 WARRANTY

A. Warranty: Manufacturer and Installer agree to repair or replace components of luminaires that fail in materials or workmanship within specified warranty period.

B. Warranty Period: Five year(s) from date of Substantial Completion.

PART 2 - PRODUCTS

2.1 LUMINAIRE REQUIREMENTS

A. For all fixtures with screw-in sockets (incandescent sockets, etc.), contractor shall provide and install a compatible LED lamp. Manufacturer shall label fixture with a maximum wattage equal to that of the specified lamp unless noted otherwise.
B. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

C. NRTL Compliance: Luminaire for hazardous locations shall be listed and labeled for indicated class and division of hazard by an NRTL.

D. FM Global Compliance: Luminaire for hazardous locations shall be listed and labeled for indicated class and division of hazard by FM Global.

E. Recessed Fixtures: Comply with NEMA LE 4.

F. CRI of minimum 80.

G. Lamps dimmable from 100 percent to 0 percent of maximum light output where dimming is shown on plans or in schedule. Contractor is responsible for providing compatible dimming control for all fixture types provided.

H. Internal driver.

2.2 MATERIALS

A. Metal Parts:
 1. Free of burrs and sharp corners and edges.
 2. Sheet metal components shall be steel unless otherwise indicated.
 3. Form and support to prevent warping and sagging.

B. Doors, Frames, and Other Internal Access: Smooth operating, free of light leakage under operating conditions, and designed to permit relamping without use of tools. Designed to prevent doors, frames, lenses, diffusers, and other components from falling accidentally during relamping and when secured in operating position.

C. Diffusers and Globes:
 1. Acrylic Diffusers: One hundred percent virgin acrylic plastic, with high resistance to yellowing and other changes due to aging, exposure to heat, and UV radiation.
 2. Glass: Annealed crystal glass unless otherwise indicated.
 3. Lens Thickness: At least 0.125 inch minimum unless otherwise indicated.

D. Factory-Applied Labels: Comply with UL 1598. Include recommended lamps. Locate labels where they will be readily visible to service personnel, but not seen from normal viewing angles when lamps are in place.
 1. Label shall include the following lamp characteristics:
 a. "USE ONLY" and include specific lamp type.
 b. Lamp diameter, shape, size, wattage, and coating.
 c. CCT and CRI for all luminaires.
2.3 METAL FINISHES
 A. Variations in finishes are unacceptable in the same piece. Variations in finishes of adjoining components are acceptable if they are within the range of approved Samples and if they can be and are assembled or installed to minimize contrast.

2.4 LUMINAIRE FIXTURE SUPPORT COMPONENTS
 A. Comply with requirements in Section 260529 "Hangers and Supports for Electrical Systems" for channel and angle iron supports and nonmetallic channel and angle supports.
 B. Single-Stem Hangers: 1/2-inch steel tubing with swivel ball fittings and ceiling canopy. Finish same as luminaire.
 D. Rod Hangers: 3/16-inch minimum diameter, cadmium-plated, threaded steel rod.
 E. Hook Hangers: Integrated assembly matched to luminaire, line voltage, and equipment with threaded attachment, cord, and locking-type plug.

PART 3 - EXECUTION

3.1 EXAMINATION
 A. Examine substrates, areas, and conditions, with Installer present, for compliance with requirements for installation tolerances and other conditions affecting performance of the Work.
 B. Examine roughing-in for luminaire to verify actual locations of luminaire and electrical connections before fixture installation. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 TEMPORARY LIGHTING
 A. If approved by the Architect, use selected permanent luminaires for temporary lighting. When construction is sufficiently complete, clean luminaires used for temporary lighting and install new lamps.

3.3 INSTALLATION
 A. Comply with NECA 1.
 B. Install luminaires level, plumb, and square with ceilings and walls unless otherwise indicated.
 C. Install lamps in each luminaire.
 D. Supports:
1. Sized and rated for luminaire weight.
2. Able to maintain luminaire position after cleaning and relamping.
3. Provide support for luminaire without causing deflection of ceiling or wall.
4. Luminaire mounting devices shall be capable of supporting a horizontal force of 100 percent of luminaire weight and vertical force of 400 percent of luminaire weight.

E. Flush-Mounted Luminaire Support:
 1. Secured to outlet box.
 2. Attached to ceiling structural members at four points equally spaced around circumference of luminaire.
 3. Trim ring flush with finished surface.

F. Suspended Luminaire Support:
 1. Pendants and Rods: Where longer than 48 inches, brace to limit swinging.
 3. Do not use ceiling grid as support for pendant luminaires. Connect support wires or rods to building structure.

G. Ceiling-Grid-Mounted Luminaires:
 1. Secure to any required outlet box.
 2. Secure luminaire to the luminaire opening using approved fasteners in a minimum of four locations, spaced near corners of luminaire.
 3. Use approved devices and support components to connect luminaire to ceiling grid and building structure in a minimum of four locations, spaced near corners of luminaire.

H. Comply with requirements in Section 260519 "Low-Voltage Electrical Power Conductors and Cables" for wiring connections.

3.4 IDENTIFICATION

A. Identify system components, wiring, cabling, and terminals. Comply with requirements for identification specified in Section 260553 "Identification for Electrical Systems."

3.5 FIELD QUALITY CONTROL

A. Perform the following tests and inspections:
 1. Operational Test: After installing luminaires, switches, and accessories, and after electrical circuitry has been energized, test units to confirm proper operation.
 2. Test for Emergency Lighting: Interrupt power supply to demonstrate proper operation. Verify transfer from normal power to battery power and retransfer to normal.

B. Luminaire will be considered defective if it does not pass operation tests and inspections.

C. Prepare test and inspection reports.
3.6 STARTUP SERVICE

A. Contractor shall test operation of all fixtures and controls. Contractor shall program and adjust all components to provide a fully functional system in accordance with owner’s requirements.

3.7 ADJUSTING

A. Contractor shall adjust all fixtures in accordance with manufacturer’s recommendations, and as project specific requirements dictate.

END OF SECTION
PART 1 - GENERAL

1.1 RELATED DOCUMENTS
 A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
 A. Section Includes:
 1. Exterior solid-state luminaires that are designed for and exclusively use LED lamp technology.
 2. Luminaire supports.
 3. Luminaire-mounted photoelectric relays.

1.3 DEFINITIONS
 A. CCT: Correlated color temperature.
 B. CRI: Color rendering index.
 C. Fixture: See "Luminaire."
 D. IP: International Protection or Ingress Protection Rating.
 E. Lumen: Measured output of lamp and luminaire, or both.
 F. Luminaire: Complete lighting unit, including lamp, reflector, and housing.

1.4 ACTION SUBMITTALS
 A. Product Data: For each type of luminaire.
 1. Arrange in order of luminaire designation.
 2. Include data on features, accessories, and finishes.
 3. Include physical description and dimensions of luminaire.
 4. Lamps, include life, output (lumens, CCT, and CRI), and energy-efficiency data.
 a. Manufacturer's Certified Data: Photometric data certified by manufacturer's laboratory with a current accreditation under the NVLAP for Energy Efficient Lighting Products.
b. Testing Agency Certified Data: For indicated luminaires, photometric data certified by a qualified independent testing agency. Photometric data for remaining luminaires shall be certified by manufacturer.

5. Wiring diagrams for power, control, and signal wiring.
6. Photoelectric relays.
7. Means of attaching luminaires to supports and indication that the attachment is suitable for components involved.

B. Shop Drawings: For nonstandard or custom luminaires.

1. Include plans, elevations, sections, and mounting and attachment details.
2. Include details of luminaire assemblies. Indicate dimensions, weights, loads, required clearances, method of field assembly, components, and location and size of each field connection.
3. Include diagrams for power, signal, and control wiring.

C. Product Schedule: For luminaires and lamps. Use same designations indicated on Drawings.

1.5 INFORMATIONAL SUBMITTALS

A. Coordination Drawings: Plans, drawn to scale, on which the following items are shown and coordinated with each other, using input from installers of the items involved:

1. Luminaires.
2. Structural members to which luminaires will be attached.
3. Underground utilities and structures.
4. Existing underground utilities and structures.
5. Above-grade utilities and structures.
6. Existing above-grade utilities and structures.
7. Building features.
8. Vertical and horizontal information.

B. Qualification Data: For testing laboratory providing photometric data for luminaires.

C. Product Certificates: For each type of the following:

1. Luminaire.
2. Photoelectric relay.

D. Product Test Reports: For each luminaire, for tests performed by a qualified testing agency.

E. Source quality-control reports.

F. Sample warranty.

1.6 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For luminaires to include in operation and maintenance manuals.
1. Provide a list of all lamp types used on Project. Use ANSI and manufacturers' codes.
2. Provide a list of all photoelectric relay types used on Project; use manufacturers' codes.

1.7 QUALITY ASSURANCE
A. Luminaire Photometric Data Testing Laboratory Qualifications: Luminaire manufacturers' laboratory that is accredited under the NVLAP for Energy Efficient Lighting Products.
B. Luminaire Photometric Data Testing Laboratory Qualifications: Provided by an independent agency, with the experience and capability to conduct the testing indicated, that is an NRTL as defined by OSHA in 29 CFR 1910.7, accredited under the NVLAP for Energy Efficient Lighting Products and complying with applicable IES testing standards.
C. Provide luminaires from a single manufacturer for each luminaire type.
D. Each luminaire type shall be binned within a three-step MacAdam Ellipse to ensure color consistency among luminaires.
E. Installer Qualifications: An authorized representative who is trained and approved by manufacturer.

1.8 DELIVERY, STORAGE, AND HANDLING
A. Protect finishes of exposed surfaces by applying a strippable, temporary protective covering prior to shipping.

1.9 FIELD CONDITIONS
A. Verify existing and proposed utility structures prior to the start of work associated with luminaire installation.

1.10 WARRANTY
A. Warranty: Manufacturer and Installer agree to repair or replace components of luminaires that fail in materials or workmanship within specified warranty period.
 1. Failures include, but are not limited to, the following:
 a. Structural failures, including luminaire support components.
 b. Faulty operation of luminaires and accessories.
 c. Deterioration of metals, metal finishes, and other materials beyond normal weathering.
 2. Warranty Period: 5 year(s) from date of Substantial Completion.
PART 2 - PRODUCTS

2.1 LUMINAIRE REQUIREMENTS

A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

B. NRTL Compliance: Luminaires shall be listed and labeled for indicated class and division of hazard by an NRTL.

C. FM Global Compliance: Luminaires for hazardous locations shall be listed and labeled for indicated class and division of hazard by FM Global.

D. UL Compliance: Comply with UL 1598 and listed for wet location.

E. CRI of minimum 70 unless noted otherwise.

2.2 MATERIALS

A. Metal Parts: Free of burrs and sharp corners and edges.

B. Doors, Frames, and Other Internal Access: Smooth operating, free of light leakage under operating conditions, and designed to permit relamping without use of tools. Designed to prevent doors, frames, lenses, diffusers, and other components from falling accidentally during relamping and when secured in operating position. Doors shall be removable for cleaning or replacing lenses.

C. Diffusers and Globes:

1. Acrylic Diffusers: 100 percent virgin acrylic plastic, with high resistance to yellowing and other changes due to aging, exposure to heat, and UV radiation.

2. Glass: Annealed crystal glass unless otherwise indicated.

3. Lens Thickness: At least 0.125 inch minimum unless otherwise indicated.

D. Lens and Refractor Gaskets: Use heat- and aging-resistant resilient gaskets to seal and cushion lenses and refractors in luminaire doors.

E. Reflecting surfaces shall have minimum reflectance as follows unless otherwise indicated:

1. White Surfaces: 85 percent.

2. Specular Surfaces: 83 percent.

3. Diffusing Specular Surfaces: 75 percent.

F. Housings:

1. Rigidly formed, weather- and light-tight enclosure that will not warp, sag, or deform in use.

2. Provide filter/breather for enclosed luminaires.
G. Factory-Applied Labels: Comply with UL 1598. Include recommended lamps. Labels shall be located where they will be readily visible to service personnel, but not seen from normal viewing angles when lamps are in place.

1. Label shall include the following lamp characteristics:
 a. "USE ONLY" and include specific lamp type.
 b. Lamp diameter, shape, size, wattage and coating.
 c. CCT and CRI for all luminaires.

2.3 FINISHES

A. Variations in Finishes: Noticeable variations in same piece are unacceptable. Variations in appearance of adjoining components are acceptable if they are within the range of approved Samples and are assembled or installed to minimize contrast.

B. Luminaire Finish: Manufacturer's standard paint applied to factory-assembled and -tested luminaire before shipping. Where indicated, match finish process and color of pole or support materials.

C. Factory-Applied Finish for Aluminum Luminaires: Comply with NAAMM's "Metal Finishes Manual for Architectural and Metal Products" for recommendations for applying and designating finishes.

 1. Finish designations prefixed by AA comply with the system established by the Aluminum Association for designating aluminum finishes.
 2. Natural Satin Finish: Provide fine, directional, medium satin polish (AA-M32); buff complying with AA-M20 requirements; and seal aluminum surfaces with clear, hard-coat wax.
 3. Class I, Clear-Anodic Finish: AA-M32C22A41 (Mechanical Finish: Medium satin; Chemical Finish: Etched, medium matte; Anodic Coating: Architectural Class I, clear coating 0.018 mm or thicker) complying with AAMA 611.
 4. Class I, Color-Anodic Finish: AA-M32C22A42/A44 (Mechanical Finish: Medium satin; Chemical Finish: Etched, medium matte; Anodic Coating: Architectural Class I, integrally colored or electrolytically deposited color coating 0.018 mm or thicker), complying with AAMA 611.

D. Factory-Applied Finish for Steel Luminaires: Comply with NAAMM's "Metal Finishes Manual for Architectural and Metal Products" for recommendations for applying and designating finishes.

 1. Surface Preparation: Clean surfaces to comply with SSPC-SP 1, to remove dirt, oil, grease, and other contaminants that could impair paint bond. Grind welds and polish surfaces to a smooth, even finish. Remove mill scale and rust, if present, from uncoated steel, complying with SSPC-SP 5/NACE No. 1 or SSPC-SP 8.
 2. Exterior Surfaces: Manufacturer's standard finish consisting of one or more coats of primer and two finish coats of high-gloss, high-build polyurethane enamel.
PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine substrates, areas, and conditions, with Installer present, for compliance with requirements for installation tolerances and other conditions affecting performance of the Work.

B. Examine roughing-in for luminaire electrical conduit to verify actual locations of conduit connections before luminaire installation.

C. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 TEMPORARY LIGHTING

A. If approved by the Architect, use selected permanent luminaires for temporary lighting. When construction is substantially complete, clean luminaires used for temporary lighting.

3.3 GENERAL INSTALLATION REQUIREMENTS

A. Comply with NECA 1.

B. Use fastening methods and materials selected to resist seismic forces defined for the application and approved by manufacturer.

C. Install lamps in each luminaire.

D. Fasten luminaire to structural support.

E. Supports:
 1. Sized and rated for luminaire weight.
 2. Able to maintain luminaire position after cleaning and relamping.
 3. Support luminaires without causing deflection of finished surface.
 4. Luminaire-mounting devices shall be capable of supporting a horizontal force of 100 percent of luminaire weight and a vertical force of 400 percent of luminaire weight.

G. Coordinate layout and installation of luminaires with other construction.

H. Adjust luminaires that require field adjustment or aiming. Include adjustment of photoelectric device to prevent false operation of relay by artificial light sources, favoring a north orientation.

3.4 BOLLARD LUMINAIRE INSTALLATION:

A. Align units for optimum directional alignment of light distribution.
3.5 INSTALLATION OF INDIVIDUAL GROUND-MOUNTED LUMINAIRES

A. Aim as indicated on Drawings.

B. Install on concrete base with top 4 inches above finished grade except where installed on sidewalks. Cast conduit into base, and finish by troweling and rubbing smooth. Concrete materials, installation, and finishing are specified in Section 033000 "Cast-in-Place Concrete."

3.6 CORROSION PREVENTION

A. Aluminum: Do not use in contact with earth or concrete. When in direct contact with a dissimilar metal, protect aluminum by insulating fittings or treatment.

B. Steel Conduits: Comply with Section 260533 "Raceways and Boxes for Electrical Systems." In concrete foundations, wrap conduit with 0.010-inch-thick, pipe-wrapping plastic tape applied with a 50 percent overlap.

3.7 FIELD QUALITY CONTROL

A. Inspect each installed luminaire for damage. Replace damaged luminaires and components.

B. Perform the following tests and inspections:
 1. Operational Test: After installing luminaires, switches, and accessories, and after electrical circuitry has been energized, test units to confirm proper operation.
 2. Verify operation of photoelectric controls.
 3. Operational Test: After installing luminaires, switches, and accessories, and after electrical circuitry has been energized, test units to confirm proper operation.

C. Luminaire will be considered defective if it does not pass tests and inspections.

D. Prepare a written report of tests, inspections, observations, and verifications indicating and interpreting results. If adjustments are made to lighting system, retest to demonstrate compliance with standards.

3.8 DEMONSTRATION

A. Train Owner's maintenance personnel to adjust, operate, and maintain luminaires and photocell relays and other lighting controls.

3.9 ADJUSTING

A. Contractor shall aim and adjust all fixtures. Where fixture is to be aimed to illuminate a specific object or surface, contractor shall seek guidance from architect to ensure proper aiming is achieved.
SECTION 270500

COMMON WORK RESULTS FOR COMMUNICATIONS

PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes:

1. Communications equipment coordination and installation.
2. Sleeves for pathways and cables.
3. Sleeve seals.
5. Common communications installation requirements.

1.2 DEFINITIONS

A. EPDM: Ethylene-propylene-diene terpolymer rubber.
B. NBR: Acrylonitrile-butadiene rubber.

1.3 SUBMITTALS

A. Product Data: For sleeve seals.

1.4 COORDINATION

A. Coordinate arrangement, mounting, and support of communications equipment:

1. To allow maximum possible headroom unless specific mounting heights that reduce headroom are indicated.
2. To provide for ease of disconnecting the equipment with minimum interference to other installations.
3. To allow right of way for piping and conduit installed at required slope.
4. So connecting pathways, cables, wireways, cable trays, and busways will be clear of obstructions and of the working and access space of other equipment.

B. Coordinate installation of required supporting devices and set sleeves in cast-in-place concrete, masonry walls, and other structural components as they are constructed.

C. Coordinate location of access panels and doors for communications items that are behind finished surfaces or otherwise concealed.
PART 2 - PRODUCTS

2.1 SLEEVES FOR PATHWAYS AND CABLES
A. Steel Pipe Sleeves: Hilti CP 653 Speed Sleeve.

2.2 SLEEVE SEALS
A. Description: Modular sealing device, designed for field assembly, to fill annular space between sleeve and pathway or cable.
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Hilti USA
 b. STI, Inc.
 2. Sealing Elements: EPDM or NBR interlocking links shaped to fit surface of cable or conduit. Include type and number required for material and size of pathway or cable.
 3. Pressure Plates: Stainless steel. Include two for each sealing element.
 4. Connecting Bolts and Nuts: Stainless steel of length required to secure pressure plates to sealing elements. Include one for each sealing element.

2.3 GROUT
A. Nonmetallic, Shrinkage-Resistant Grout: ASTM C1107, factory-packaged, nonmetallic aggregate grout, noncorrosive, nonstaining, mixed with water to consistency suitable for application and a 30-minute working time.

PART 3 - EXECUTION

3.1 COMMON REQUIREMENTS FOR COMMUNICATIONS INSTALLATION
A. Comply with NECA 1.
B. Measure indicated mounting heights to bottom of unit for suspended items and to center of unit for wall-mounting items.
C. Headroom Maintenance: If mounting heights or other location criteria are not indicated, arrange and install components and equipment to provide maximum possible headroom consistent with these requirements.
D. Equipment: Install to facilitate service, maintenance, and repair or replacement of components of both communications equipment and other nearby installations. Connect in such a way as to facilitate future disconnecting with minimum interference with other items in the vicinity.
E. Right of Way: Give to piping systems installed at a required slope.
3.2 SLEEVE INSTALLATION FOR COMMUNICATIONS PENETRATIONS

A. Communications penetrations occur when pathways, cables, wireways, or cable trays penetrate concrete slabs, concrete or masonry walls, or fire-rated floor and wall assemblies.

B. Concrete Slabs and Walls: Install sleeves during erection of slabs and walls.

C. Use pipe sleeves unless penetration arrangement requires rectangular sleeved opening.

D. Fire-Rated Assemblies: Install sleeves for penetrations of fire-rated floor and wall assemblies unless openings compatible with firestop system used are fabricated during construction of floor or wall.

E. Cut sleeves to length for mounting flush with both surfaces of walls.

F. Extend sleeves installed in floors 4 inches above finished floor level.

G. Size pipe sleeves to provide 1/4-inch annular clear space between sleeve and pathway or cable, unless indicated otherwise.

H. Seal space outside of sleeves with grout for penetrations of concrete and masonry
 1. Promptly pack grout solidly between sleeve and wall so no voids remain. Tool exposed surfaces smooth; protect grout while curing.

I. Interior Penetrations of Non-Fire-Rated Walls and Floors: Seal annular space between sleeve and pathway or cable, using joint sealant appropriate for size, depth, and location of joint.

J. Fire-Rated-Assembly Penetrations: Maintain indicated fire rating of walls, partitions, ceilings, and floors at pathway and cable penetrations. Install sleeves and seal pathway and cable penetration sleeves with firestop materials.

K. Roof-Penetration Sleeves: Seal penetration of individual pathways and cables with flexible boot-type flashing units applied in coordination with roofing work.

L. Aboveground, Exterior-Wall Penetrations: Seal penetrations using steel pipe sleeves and mechanical sleeve seals. Select sleeve size to allow for 1-inch annular clear space between pipe and sleeve for installing mechanical sleeve seals.

M. Underground, Exterior-Wall Penetrations: Install cast-iron pipe sleeves. Size sleeves to allow for 1-inch annular clear space between pathway or cable and sleeve for installing mechanical sleeve seals.

3.3 SLEEVE-SEAL INSTALLATION

A. Install to seal exterior wall penetrations.

B. Use type and number of sealing elements recommended by manufacturer for pathway or cable material and size. Position pathway or cable in center of sleeve. Assemble mechanical sleeve seals and install in annular space between pathway or cable and sleeve. Tighten bolts against pressure plates that cause sealing elements to expand and make watertight seal.
3.4 FIRESTOPPING

A. Apply firestopping to penetrations of fire-rated floor and wall assemblies for communications installations to restore original fire-resistance rating of assembly.

END OF SECTION
PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes:

1. Metal conduits and fittings.
2. Nonmetallic conduits and fittings.
3. Optical-fiber-cable pathways and fittings.
4. Metal wireways and auxiliary gutters.
5. Surface pathways.
7. Handholes and boxes for exterior underground cabling.

B. Related Requirements:

1. Section 260543 "Underground Ducts and Raceways for Electrical Systems" for exterior ductbanks, manholes, and underground utility construction.
2. Section 260533 "Raceways and Boxes for Electrical Systems" for conduits, wireways, surface raceways, boxes, enclosures, cabinets, handholes, and faceplate adapters serving electrical systems.

1.2 DEFINITIONS

A. ARC: Aluminum rigid conduit.

B. GRC: Galvanized rigid steel conduit.

C. IMC: Intermediate metal conduit.

1.3 ACTION SUBMITTALS

A. Product Data: For surface pathways, wireways and fittings, floor boxes, hinged-cover enclosures, and cabinets.

B. LEED Submittals:

1. Product Data for Credit IEQ 4.1: For solvent cements and adhesive primers, documentation including printed statement of VOC content.
2. Laboratory Test Reports for Credit IEQ 4: For solvent cements and adhesive primers, documentation indicating that products comply with the testing and product requirements of the California Department of Health Services' "Standard Practice for the Testing of
Volatile Organic Emissions from Various Sources Using Small-Scale Environmental Chambers."

C. Shop Drawings: For custom enclosures and cabinets. Include plans, elevations, sections, and attachment details.

1.4 INFORMATIONAL SUBMITTALS

A. Coordination Drawings: Pathway routing plans, drawn to scale, on which the following items are shown and coordinated with each other, using input from installers of items involved:
 1. Structural members in paths of pathway groups with common supports.
 2. HVAC and plumbing items and architectural features in paths of conduit groups with common supports.

B. Qualification Data: For professional engineer.

C. Seismic Qualification Certificates: For pathway racks, enclosures, cabinets, equipment racks and their mounting provisions, including those for internal components, from manufacturer.
 1. Basis for Certification: Indicate whether withstand certification is based on actual test of assembled components or on calculation.
 2. Dimensioned Outline Drawings of Equipment Unit: Identify center of gravity and locate and describe mounting and anchorage provisions.
 3. Detailed description of equipment anchorage devices on which certification is based and their installation requirements.
 4. Detailed description of conduit support devices and interconnections on which certification is based and their installation requirements.

D. Source quality-control reports.

PART 2 - PRODUCTS

2.1 METAL CONDUITS AND FITTINGS

A. General Requirements for Metal Conduits and Fittings:
 1. Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
 2. Comply with TIA-569-B.

B. GRC: Comply with ANSI C80.1 and UL 6.

C. ARC: Comply with ANSI C80.5 and UL 6A.

D. IMC: Comply with ANSI C80.6 and UL 1242.

E. PVC-Coated Steel Conduit: PVC-coated rigid steel conduit.
1. Comply with NEMA RN 1.
2. Coating Thickness: 0.040 inch, minimum.

F. EMT: Comply with ANSI C80.3 and UL 797.

G. Fittings for Metal Conduit: Comply with NEMA FB 1 and UL 514B.
 1. Conduit Fittings for Hazardous (Classified) Locations: Comply with UL 886 and NFPA 70.
 2. Fittings for EMT:
 a. Material: Steel.
 b. Type: Setscrew or compression.
 3. Expansion Fittings: PVC or steel to match conduit type, complying with UL-467, rated for environmental conditions where installed, and including flexible external bonding jumper.
 4. Coating for Fittings for PVC-Coated Conduit: Minimum thickness of 0.040 inch, with overlapping sleeves protecting threaded joints.

H. Joint Compound for IMC, GRC, or ARC: Approved, as defined in NFPA 70, by authorities having jurisdiction for use in conduit assemblies, and compounded for use to lubricate and protect threaded conduit joints from corrosion and to enhance their conductivity.

2.2 NONMETALLIC CONDUITS AND FITTINGS

A. General Requirements for Nonmetallic Conduits and Fittings:
 1. Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
 2. Comply with TIA-569-B.

B. RNC: Type EPC-40-PVC, complying with NEMA TC 2 and UL 651 unless otherwise indicated.

C. Rigid HDPE: Comply with UL 651A.

D. Continuous HDPE: Comply with UL 651B.

E. RTRC: Comply with UL 1684A and NEMA TC 14.

F. Fittings for RNC: Comply with NEMA TC 3; match to conduit or tubing type and material.

G. Solvent cements and adhesive primers shall have a VOC content of 510 and 550 g/L or less, respectively, when calculated according to 40 CFR 59, Subpart D (EPA Method 24).

H. Solvent cements and adhesive primers shall comply with the testing and product requirements of the California Department of Health Services' "Standard Practice for the Testing of Volatile Organic Emissions from Various Sources Using Small-Scale Environmental Chambers."
2.3 OPTICAL-FIBER-CABLE PATHWAYS AND FITTINGS

A. Description: Comply with UL 2024; flexible-type pathway, approved for plenum installation unless otherwise indicated.
 1. Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
 2. Comply with TIA-569-B.

2.4 METAL WIREWAYS AND AUXILIARY GUTTERS

A. Description: Sheet metal, complying with UL 870 and NEMA 250, Type 1, Type 3R, Type 4, or Type 12 unless otherwise indicated, and sized according to NFPA 70.
 1. Metal wireways installed outdoors shall be listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
 2. Comply with TIA-569-B.

B. Fittings and Accessories: Include covers, couplings, offsets, elbows, expansion joints, adapters, hold-down straps, end caps, and other fittings to match and mate with wireways as required for complete system.

C. Wireway Covers: Hinged type or Screw-cover type unless otherwise indicated.

D. Finish: Manufacturer's standard enamel finish.

2.5 SURFACE PATHWAYS

A. General Requirements for Surface Pathways:
 1. Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
 2. Comply with TIA-569-B.

B. Surface Metal Pathways: Galvanized steel with snap-on covers complying with UL 5. Manufacturer's standard enamel finish in color selected by Architect.

C. Surface Nonmetallic Pathways: Two- or three-piece construction, complying with UL 5A, and manufactured of rigid PVC with texture and color selected by Architect from manufacturer's standard or custom colors. Product shall comply with UL-94 V-0 requirements for self-extinguishing characteristics.

2.6 BOXES, ENCLOSURES, AND CABINETS

A. General Requirements for Boxes, Enclosures, and Cabinets:
 1. Comply with TIA-569-B.
 2. Boxes, enclosures and cabinets installed in wet locations shall be listed for use in wet locations.
B. Sheet-Metal Outlet and Device Boxes: Comply with NEMA OS 1 and UL 514A.

C. Cast-Metal Outlet and Device Boxes: Comply with NEMA FB 1, ferrous alloy or aluminum, Type FD, with gasketed cover.

D. Box extensions used to accommodate new building finishes shall be of same material as recessed box.

E. Metal Floor Boxes:
 1. Material: Cast metal or sheet metal.
 2. Type: Fully adjustable.
 3. Shape: Rectangular.
 4. Listing and Labeling: Metal floor boxes shall be listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

F. Small Sheet Metal Pull and Junction Boxes: NEMA OS 1.

G. Cast-Metal Access, Pull, and Junction Boxes: Comply with NEMA FB 1 and UL 1773, cast aluminum or galvanized, cast iron with gasketed cover.

H. Device Box Dimensions: 4 inches square by 2-1/8 inches deep or 4 inches by 2-1/8 inches by 2-1/8 inches deep.

I. Gangable boxes are allowed.

J. Hinged-Cover Enclosures: Comply with UL 50 and NEMA 250, Type 1, Type 3R, Type 4, or Type 12 with continuous-hinge cover with flush latch unless otherwise indicated.
 1. Metal Enclosures: Steel, finished inside and out with manufacturer's standard enamel.
 2. Nonmetallic Enclosures:
 b. Finished inside with radio-frequency-resistant paint.
 3. Interior Panels: Steel; all sides finished with manufacturer's standard enamel.

K. Cabinets:
 1. NEMA 250, Type 1, Type 3R, or Type 12, galvanized-steel box with removable interior panel and removable front, finished inside and out with manufacturer's standard enamel.
 2. Hinged door in front cover with flush latch and concealed hinge.
 3. Key latch to match panelboards.
 4. Metal barriers to separate wiring of different systems and voltage.
 5. Accessory feet where required for freestanding equipment.
 6. Nonmetallic cabinets shall be listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
2.7 HANDHOLES AND BOXES FOR EXTERIOR UNDERGROUND CABLING

A. General Requirements for Handholes and Boxes:

1. Boxes and handholes for use in underground systems shall be designed and identified as defined in NFPA 70, for intended location and application.
2. Boxes installed in wet areas shall be listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
3. Comply with TIA-569-B.

B. Polymer-Concrete Handholes and Boxes with Polymer-Concrete Cover: Molded of sand and aggregate, bound together with polymer resin, and reinforced with steel, fiberglass, or a combination of the two.

1. Standard: Comply with SCTE 77.
2. Configuration: Designed for flush burial with closed bottom unless otherwise indicated.
3. Cover: Weatherproof, secured by tamper-resistant locking devices and having structural load rating consistent with enclosure and handhole location.
4. Cover Finish: Nonskid finish shall have a minimum coefficient of friction of 0.50.
5. Cover Legend: Molded lettering, "COMMUNICATIONS."
6. Conduit Entrance Provisions: Conduit-terminating fittings shall mate with entering ducts for secure, fixed installation in enclosure wall.

2.8 SOURCE QUALITY CONTROL FOR UNDERGROUND ENCLOSURES

A. Handhole and Pull-Box Prototype Test: Test prototypes of handholes and boxes for compliance with SCTE 77. Strength tests shall be for specified tier ratings of products supplied.

1. Tests of materials shall be performed by an independent testing agency.
2. Strength tests of complete boxes and covers shall be by either an independent testing agency or manufacturer. A qualified registered professional engineer shall certify tests by manufacturer.
3. Testing machine pressure gages shall have current calibration certification complying with ISO 9000 and ISO 10012, and traceable to NIST standards.

PART 3 - EXECUTION

3.1 PATHWAY APPLICATION

A. Outdoors: Apply pathway products as specified below unless otherwise indicated:

1. Exposed Conduit: GRC.
2. Concealed Conduit, Aboveground: EMT.
3. Underground Conduit: RNC, direct buried or concrete encased.

B. Indoors: Apply pathway products as specified below unless otherwise indicated:
1. Exposed, Not Subject to Physical Damage: EMT.
2. Exposed, Not Subject to Severe Physical Damage: EMT.
3. Exposed and Subject to Severe Physical Damage: GRC. Pathway locations include the following:
 a. Loading dock.
 b. Corridors used for traffic of mechanized carts, forklifts, and pallet-handling units.
 c. Mechanical rooms.
 d. Gymnasiums
5. Damp or Wet Locations: GRC.
6. Pathways for Optical-Fiber or Communications Cable in Spaces Used for Environmental Air: Plenum-type, optical-fiber-cable pathway, Plenum-type, communications-cable pathway or EMT with innerduct.
7. Pathways for Optical-Fiber or Communications-Cable Risers in Vertical Shafts: EMT with innerduct.
8. Pathways for Concealed General-Purpose Distribution of Optical-Fiber or Communications Cable: Plenum-type, optical-fiber-cable pathway, Plenum-type, communications-cable pathway or EMT with innerduct.
9. Boxes and Enclosures: NEMA 250 Type 1, except use NEMA 250 Type 4 stainless steel in institutional and commercial kitchens and damp or wet locations.
C. Minimum Pathway Size: 3/4-inch trade size. Minimum size for optical-fiber cables is 1 inch.
D. Pathway Fittings: Compatible with pathways and suitable for use and location.
 1. Rigid and Intermediate Steel Conduit: Use threaded rigid steel conduit fittings unless otherwise indicated. Comply with NEMA FB 2.10.
 2. PVC Externally Coated, Rigid Steel Conduits: Use only fittings listed for use with this type of conduit. Patch and seal all joints, nicks, and scrapes in PVC coating after installing conduits and fittings. Use sealant recommended by fitting manufacturer and apply in thickness and number of coats recommended by manufacturer.
 3. EMT: Use compression, steel or cast-metal fittings. Comply with NEMA FB 2.10.
E. Do not install aluminum conduits, boxes, or fittings in contact with concrete or earth.
F. Install surface pathways only where indicated on Drawings.
G. Do not install nonmetallic conduit where ambient temperature exceeds 120 deg F.
3.2 INSTALLATION
A. Comply with NECA 1, NECA 101, and TIA-569-B for installation requirements except where requirements on Drawings or in this article are stricter. Comply with NECA 102 for aluminum pathways. Comply with NFPA 70 limitations for types of pathways allowed in specific occupancies and number of floors.
B. Keep pathways at least 6 inches away from parallel runs of flues and steam or hot-water pipes. Install horizontal pathway runs above water and steam piping.
C. Complete pathway installation before starting conductor installation.

D. Comply with requirements in Section 260529 "Hangers and Supports for Electrical Systems" for hangers and supports.

E. Arrange stub-ups so curved portions of bends are not visible above finished slab.

F. Install no more than the equivalent of two 90-degree bends in any pathway run. Support within 12 inches of changes in direction. Utilize long radius ells for all optical-fiber cables.

G. Conceal conduit and EMT within finished walls, ceilings, and floors unless otherwise indicated. Install conduits parallel or perpendicular to building lines.

H. Support conduit within 12 inches of enclosures to which attached.

I. Pathways Embedded in Slabs:
 1. Run conduit larger than 1-inch trade size, parallel or at right angles to main reinforcement. Where at right angles to reinforcement, place conduit close to slab support. Secure pathways to reinforcement at maximum 10-foot intervals.
 2. Arrange pathways to cross building expansion joints at right angles with expansion fittings.
 3. Arrange pathways to keep a minimum of 2 inches of concrete cover in all directions.
 4. Do not embed threadless fittings in concrete unless specifically approved by Architect for each specific location.

J. Stub-ups to Above Recessed Ceilings:
 1. Use EMT, IMC, or RMC for pathways.
 2. Use a conduit bushing or insulated fitting to terminate stub-ups not terminated in hubs or in an enclosure.

K. Threaded Conduit Joints, Exposed to Wet, Damp, Corrosive, or Outdoor Conditions: Apply listed compound to threads of pathway and fittings before making up joints. Follow compound manufacturer's written instructions.

L. Coat field-cut threads on PVC-coated pathway with a corrosion-preventing conductive compound prior to assembly.

M. Terminate threaded conduits into threaded hubs or with locknuts on inside and outside of boxes or cabinets. Install insulated bushings on conduits terminated with locknuts.

N. Install pathways square to the enclosure and terminate at enclosures with locknuts. Install locknuts hand tight plus 1/4 turn more.

O. Do not rely on locknuts to penetrate nonconductive coatings on enclosures. Remove coatings in the locknut area prior to assembling conduit to enclosure to assure a continuous ground path.

P. Cut conduit perpendicular to the length. For conduits of 2-inch trade size and larger, use roll cutter or a guide to ensure cut is straight and perpendicular to the length.
Q. Install pull wires in empty pathways. Use polypropylene or monofilament plastic line with not less than 200-lb tensile strength. Leave at least 12 inches of slack at each end of pull wire. Cap underground pathways designated as spare above grade alongside pathways in use.

R. Surface Pathways:

1. Install surface pathway for surface telecommunications outlet boxes only where indicated on Drawings.
2. Install surface pathway with a minimum 2-inch radius control at bend points.
3. Secure surface pathway with screws or other anchor-type devices at intervals not exceeding 48 inches and with no less than two supports per straight pathway section. Support surface pathway according to manufacturer's written instructions. Tape and glue are not acceptable support methods.

S. Pathways for Optical-Fiber and Communications Cable: Install pathways, metal and nonmetallic, rigid and flexible, as follows:

1. 3/4-Inch Trade Size and Smaller: Install pathways in maximum lengths of 50 feet.
2. 1-Inch Trade Size and Larger: Install pathways in maximum lengths of 75 feet.
3. Install with a maximum of two 90-degree bends or equivalent for each length of pathway unless Drawings show stricter requirements. Separate lengths with pull or junction boxes or terminations at distribution frames or cabinets where necessary to comply with these requirements.

T. Install pathway sealing fittings at accessible locations according to NFPA 70 and fill them with listed sealing compound. For concealed pathways, install each fitting in a flush steel box with a blank cover plate having a finish similar to that of adjacent plates or surfaces. Install pathway sealing fittings according to NFPA 70.

U. Install devices to seal pathway interiors at accessible locations. Locate seals so no fittings or boxes are between the seal and the following changes of environments. Seal the interior of all pathways at the following points:

1. Where conduits pass from warm to cold locations, such as boundaries of refrigerated spaces.
2. Where an underground service pathway enters a building or structure.
3. Where otherwise required by NFPA 70.

V. Comply with manufacturer's written instructions for solvent welding PVC conduit and fittings.

W. Expansion-Joint Fittings:

1. Install in each run of aboveground RNC that is located where environmental temperature change may exceed 30 deg F, and that has straight-run length that exceeds 25 feet. Install in each run of aboveground RMC and EMT conduit that is located where environmental temperature change may exceed 100 deg F and that has straight-run length that exceeds 100 feet.
2. Install type and quantity of fittings that accommodate temperature change listed for each of the following locations:
a. Outdoor Locations Not Exposed to Direct Sunlight: 125 deg F temperature change.

b. Outdoor Locations Exposed to Direct Sunlight: 155 deg F temperature change.

c. Indoor Spaces Connected with Outdoors without Physical Separation: 125 deg F temperature change.

d. Attics: 135 deg F temperature change.

3. Install fitting(s) that provide expansion and contraction for at least 0.00041 inch per foot of length of straight run per deg F of temperature change for PVC conduits. Install fitting(s) that provide expansion and contraction for at least 0.000078 inch per foot of length of straight run per deg F of temperature change for metal conduits.

4. Install expansion fittings at all locations where conduits cross building or structure expansion joints.

5. Install each expansion-joint fitting with position, mounting, and piston setting selected according to manufacturer's written instructions for conditions at specific location at time of installation. Install conduit supports to allow for expansion movement.

X. Mount boxes at heights indicated on Drawings. If mounting heights of boxes are not individually indicated, give priority to ADA requirements. Install boxes with height measured to center of box unless otherwise indicated.

Y. Recessed Boxes in Masonry Walls: Saw-cut opening for box in center of cell of masonry block, and install box flush with surface of wall. Prepare block surface to provide a flat surface for a raintight connection between box and cover plate or supported equipment and box.

Z. Horizontally separate boxes mounted on opposite sides of walls so they are not in the same vertical channel.

AA. Support boxes of three gangs or more from more than one side by spanning two framing members or mounting on brackets specifically designed for the purpose.

BB. Fasten junction and pull boxes to or support from building structure. Do not support boxes by conduits.

CC. Set metal floor boxes level and flush with finished floor surface.

DD. Set nonmetallic floor boxes level. Trim after installation to fit flush with finished floor surface.

3.3 INSTALLATION OF UNDERGROUND CONDUIT

A. Direct-Buried Conduit:

1. Excavate trench bottom to provide firm and uniform support for conduit. Prepare trench bottom as specified in Section 312000 "Earth Moving" for pipe less than 6 inches in nominal diameter.

2. Install backfill as specified in Section 312000 "Earth Moving."

3. After installing conduit, backfill and compact. Start at tie-in point, and work toward end of conduit run, leaving conduit at end of run free to move with expansion and contraction as temperature changes during this process. Firmly hand tamp backfill around conduit to provide maximum supporting strength. After placing controlled backfill to within 12
inches of finished grade, make final conduit connection at end of run and complete backfilling with normal compaction as specified in Section 312000 "Earth Moving."

4. Install manufactured duct elbows for stub-ups at poles and equipment and at building entrances through floor unless otherwise indicated. Encase elbows for stub-up ducts throughout length of elbow.

5. Install manufactured rigid steel conduit elbows for stub-ups at poles and equipment and at building entrances through floor.
 a. Couple steel conduits to ducts with adapters designed for this purpose, and encase coupling with 3 inches of concrete for a minimum of 12 inches on each side of the coupling.
 b. For stub-ups at equipment mounted on outdoor concrete bases and where conduits penetrate building foundations, extend steel conduit horizontally a minimum of 60 inches from edge of foundation or equipment base. Install insulated grounding bushings on terminations at equipment.

6. Warning Planks: Bury warning planks approximately 12 inches above direct-buried conduits, but a minimum of 6 inches below grade. Align planks along centerline of conduit.

7. Underground Warning Tape: Comply with requirements in Section 260553 "Identification for Electrical Systems."

3.4 INSTALLATION OF UNDERGROUND HANDHOLES AND BOXES

A. Install handholes and boxes level and plumb and with orientation and depth coordinated with connecting conduits to minimize bends and deflections required for proper entrances.

B. Unless otherwise indicated, support units on a level bed of crushed stone or gravel, graded from 1/2-inch sieve to No. 4 sieve and compacted to same density as adjacent undisturbed earth.

C. Elevation: In paved areas, set so cover surface will be flush with finished grade. Set covers of other enclosures 1 inch above finished grade.

D. Install handholes with bottom below frost line.

E. Install removable hardware, including pulling eyes, cable stanchions, cable arms, and insulators, as required for installation and support of cables and conductors and as indicated. Select arm lengths to be long enough to provide spare space for future cables, but short enough to preserve adequate working clearances in enclosure.

F. Field cut openings for conduits according to enclosure manufacturer's written instructions. Cut wall of enclosure with a tool designed for material to be cut. Size holes for terminating fittings to be used, and seal around penetrations after fittings are installed.
3.5 SLEEVE AND SLEEVE-SEAL INSTALLATION FOR COMMUNICATIONS PENETRATIONS

A. Install sleeves and sleeve seals at penetrations of exterior floor and wall assemblies. Comply with requirements in Section 270544 "Sleeves and Sleeve Seals for Communications Pathways and Cabling."

3.6 FIRESTOPPING

A. Install firestopping at penetrations of fire-rated floor and wall assemblies. Comply with requirements in Section 078413 "Penetration Firestopping."

3.7 PROTECTION

A. Protect coatings, finishes, and cabinets from damage or deterioration.

1. Repair damage to galvanized finishes with zinc-rich paint recommended by manufacturer.
2. Repair damage to PVC coatings or paint finishes with matching touchup coating recommended by manufacturer.

END OF SECTION
PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes:
 1. Sleeves for pathway and cable penetration of non-fire-rated construction walls and floors.
 2. Sleeve-seal systems.
 5. Silicone sealants.

B. Related Requirements:
 1. Section 078413 "Penetration Firestopping" for penetration firestopping installed in fire-resistance-rated walls, horizontal assemblies, and smoke barriers, with and without penetrating items.

1.2 ACTION SUBMITTALS

A. Product Data: For each type of product.

B. LEED Submittals:
 1. Product Data for Credit EQ 4.1: For sealants, documentation including printed statement of VOC content.
 2. Laboratory Test Reports for Credit EQ 4: For sealants, documentation indicating that products comply with the testing and product requirements of the California Department of Health Services' "Standard Practice for the Testing of Volatile Organic Emissions from Various Sources Using Small-Scale Environmental Chambers."

PART 2 - PRODUCTS

2.1 SLEEVES

A. Manufacture:
1. Hilti Speed Sleeves CP653
2. STI EZ Path

B. Wall Sleeves:

2. Cast-Iron Pipe Sleeves: Cast or fabricated "wall pipe," equivalent to ductile-iron pressure pipe, with plain ends and integral waterstop unless otherwise indicated.

C. Sleeves for Conduits Penetrating Non-Fire-Rated Gypsum Board Assemblies: Galvanized-steel sheet; 0.0239-inch minimum thickness; round tube closed with welded longitudinal joint, with tabs for screw-fastening the sleeve to the board.

D. Sleeves for Rectangular Openings:

2. Minimum Metal Thickness:
 a. For sleeve cross-section rectangle perimeter less than 50 inches and with no side larger than 16 inches, thickness shall be 0.052 inch.
 b. For sleeve cross-section rectangle perimeter 50 inches or more and one or more sides larger than 16 inches, thickness shall be 0.138 inch.

2.2 SLEEVE-SEAL SYSTEMS

A. Description: Modular sealing device, designed for field assembly, to fill annular space between sleeve and pathway or cable.

1. Sealing Elements: EPDM rubber interlocking links shaped to fit surface of pipe. Include type and number required for pipe material and size of pipe.
2. Pressure Plates: Carbon steel, Stainless steel.
3. Connecting Bolts and Nuts: Carbon steel, with corrosion-resistant coating, Stainless steel of length required to secure pressure plates to sealing elements.

2.3 SLEEVE-SEAL FITTINGS

A. Description: Manufactured plastic, sleeve-type, waterstop assembly made for embedding in concrete slab or wall. Unit shall have plastic or rubber waterstop collar with center opening to match piping OD.

2.4 GROUT

A. Description: Nonshrink; recommended for interior and exterior sealing openings in non-fire-rated walls or floors.

C. Design Mix: 5000-psi 28-day compressive strength.

D. Packaging: Premixed and factory packaged.

2.5 SILICONE SEALANTS

A. Silicone Sealants: Single-component, silicone-based, neutral-curing elastomeric sealants of grade indicated below.

1. Grade: Pourable (self-leveling) formulation for openings in floors and other horizontal surfaces that are not fire rated.
2. Sealant shall have VOC content of 250g or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
3. Sealant shall comply with the testing and product requirements of the California Department of Health Services' "Standard Practice for the Testing of Volatile Organic Emissions from Various Sources Using Small-Scale Environmental Chambers."

B. Silicone Foams: Multicomponent, silicone-based liquid elastomers that, when mixed, expand and cure in place to produce a flexible, nonshrinking foam.

PART 3 - EXECUTION

3.1 SLEEVE INSTALLATION FOR NON-FIRE-RATED ELECTRICAL PENETRATIONS

A. Comply with NECA 1.

B. Comply with NEMA VE 2 for cable tray and cable penetrations.

C. Sleeves for Conduits Penetrating Above-Grade Non-Fire-Rated Concrete and Masonry-Unit Floors and Walls:

1. Interior Penetrations of Non-Fire-Rated Walls and Floors:
 a. Seal annular space between sleeve and pathway or cable, using joint sealant appropriate for size, depth, and location of joint. Comply with requirements in Section 079200 "Joint Sealants."
 b. Seal space outside of sleeves with mortar or grout. Pack sealing material solidly between sleeve and wall so no voids remain. Tool exposed surfaces smooth; protect material while curing.

2. Use pipe sleeves unless penetration arrangement requires rectangular sleeved opening.
3. Size pipe sleeves to provide 1/4-inch annular clear space between sleeve and pathway or cable unless sleeve seal is to be installed.
4. Install sleeves for wall penetrations unless core-drilled holes or formed openings are used. Install sleeves during erection of walls. Cut sleeves to length for mounting flush with both surfaces of walls. Deburr after cutting.

5. Install sleeves for floor penetrations. Extend sleeves installed in floors 2 inches above finished floor level. Install sleeves during erection of floors.

D. Sleeves for Conduits Penetrating Non-Fire-Rated Gypsum Board Assemblies:

1. Use circular metal sleeves unless penetration arrangement requires rectangular sleeved opening.
2. Seal space outside of sleeves with approved joint compound for gypsum board assemblies.

E. Roof-Penetration Sleeves: Seal penetration of individual pathways and cables with flexible boot-type flashing units applied in coordination with roofing work.

F. Aboveground, Exterior-Wall Penetrations: Seal penetrations using steel, pipe sleeves and mechanical sleeve seals. Select sleeve size to allow for 1-inch annular clear space between pipe and sleeve for installing mechanical sleeve seals.

G. Underground, Exterior-Wall and Floor Penetrations: Install cast-iron pipe sleeves. Size sleeves to allow for 1-inch annular clear space between pathway or cable and sleeve for installing sleeve-seal system.

3.2 SLEEVE-SEAL-SYSTEM INSTALLATION

A. Install sleeve-seal systems in sleeves in exterior concrete walls and slabs-on-grade at pathway entries into building.

B. Install type and number of sealing elements recommended by manufacturer for pathway or cable material and size. Position pathway or cable in center of sleeve. Assemble mechanical sleeve seals and install in annular space between pathway or cable and sleeve. Tighten bolts against pressure plates that cause sealing elements to expand and make watertight seal.

3.3 SLEEVE-SEAL-FITTING INSTALLATION

A. Install sleeve-seal fittings in new walls and slabs as they are constructed.

B. Assemble fitting components of length to be flush with both surfaces of concrete slabs and walls. Position waterstop flange to be centered in concrete slab or wall.

C. Secure nailing flanges to concrete forms.

D. Using grout, seal the space around outside of sleeve-seal fittings.
END OF SECTION
PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes:
 1. Telecommunications mounting elements.
 2. Backboards.
 3. Telecommunications equipment racks and cabinets.

B. Related Requirements:
 1. Section 27 05 36 "Cable Trays for Communications Systems" for cable trays and accessories.
 2. Section 27 13 00 "Communications Backbone Cabling" for voice and data cabling associated with system panels and devices.
 3. Section 27 15 00 "Communications Horizontal Cabling" for voice and data cabling associated with system panels and devices.
 4. Section 28 05 13 "Conductors and Cables for Electronic Safety and Security" for voice and data cabling associated with system panels and devices.

1.2 DEFINITIONS

B. LAN: Local area network.

C. RCDD: Registered Communications Distribution Designer.

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product.
 1. Include construction details, material descriptions, dimensions of individual components and profiles, and finishes for equipment racks and cabinets.
 2. Include rated capacities, operating characteristics, electrical characteristics, and furnished specialties and accessories.

B. Shop Drawings: For communications equipment room fittings. Include plans, elevations, sections, details, and attachments to other work.
 1. Detail equipment assemblies and indicate dimensions, weights, loads, required clearances, method of field assembly, components, and location and size of each field connection.
 2. Equipment Racks and Cabinets: Include workspace requirements and access for cable connections.
3. Grounding: Indicate location of grounding bus bar and its mounting detail showing standoff insulators and wall mounting brackets.

1.4 INFORMATIONAL SUBMITTALS

A. Qualification Data: For Installer, qualified layout technician, installation supervisor, and field inspector.

B. Seismic Qualification Certificates: For equipment frames from manufacturer.
 1. Basis for Certification: Indicate whether withstand certification is based on actual test of assembled components or on calculation.
 2. Dimensioned Outline Drawings of Equipment Unit: Identify center of gravity and locate and describe mounting and anchorage provisions. Base certification on the maximum number of components capable of being mounted in each rack type. Identify components on which certification is based.
 3. Detailed description of equipment anchorage devices on which the certification is based and their installation requirements.

1.5 QUALITY ASSURANCE

A. Installer Qualifications: Cabling Installer must have personnel certified by BICSI on staff.
 1.
 2. Installation Supervision: Installation shall be under the direct supervision of Registered Technician, who shall be present at all times when Work of this Section is performed at Project site.
 3. Field Inspector: Currently registered by BICSI as RCDD to perform the on-site inspection.
 4.

1.6 PRICING

A. The contractor shall prepare and present to owner or their representative pricing which shall include the list of equipment and labor in tabular form including; part numbers, item description, unit pricing, number of units, extended pricing and totals.

PART 2 - PRODUCTS

2.1 BACKBOARDS

A. Backboards: Plywood, fire-retardant treated, ¾” around the perimeter of the room. Plywood to be AC grade or better, void-free. Install at least 18” above finished floor and 8’ high. The A grade surface is exposed. The plywood should be void-free and painted on all sides and within cutout areas with at least two coats of fire-retardant light-colored paint. Do not paint over the fire-retardant stamp. Comply with requirements for plywood backing panels specified in Section 06 10 53 "Miscellaneous Carpentry."
2.2 EQUIPMENT FRAMES

A. General Frame Requirements:
1. Distribution Frames: Freestanding and wall-mounting, modular-steel units designed for telecommunications terminal support and coordinated with dimensions of units to be supported.
3. Finish: Manufacturer's standard, baked-polyester powder coat.

B. Floor-Mounted Racks: Modular-type, steel construction.
1. Vertical and horizontal cable management channels, top and bottom cable troughs, grounding lug, and a power strip.
2. Baked-polyester powder coat finish.

C. Cable Management for Equipment Frames:
1. Metal, with integral wire retaining fingers.
2. Baked-polyester powder coat finish.
3. Vertical cable management panels shall have front and rear channels, with covers.
4. Provide horizontal crossover cable manager at the top of each relay rack, with a minimum height of two rack units each.

2.3 POWER STRIPS

A. Power Strips: Comply with UL 1363.
1. Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
2. Rack mounting.
3. LED indicator lights for power and protection status.
4. LED indicator lights for reverse polarity and open outlet ground.
5. Circuit Breaker and Thermal Fusing: When protection is lost, circuit opens and cannot be reset.
6. Circuit Breaker and Thermal Fusing: Unit continues to supply power if protection is lost.
7. Close-coupled, direct plug-in line cord.
8. Rocker-type on-off switch, illuminated when in on position.
10. Protection modes shall be line to neutral, line to ground, and neutral to ground. UL 1449 clamping voltage for all three modes shall be not more than 330 V.

2.4 GROUNDING

A. Comply with requirements in Section 27 05 26 "Grounding and Bonding for Communications Systems" for grounding conductors and connectors.

B. Telecommunications Main Bus Bar:
1. Connectors: Mechanical type, cast silicon bronze, solderless -type wire terminals, and long-barrel, two-bolt connection to ground bus bar.
2. Ground Bus Bar: Copper, minimum 1/4 inch thick by 4 inches wide with 9/32-inch holes spaced 1-1/8 inches apart.
3. Stand-Off Insulators: Comply with UL 891 for use in switchboards, 600 V. Lexan or PVC, impulse tested at 5000 V.

C. Comply with J-STD-607-A.

2.5 LABELING

A. Comply with TIA/EIA-606-A and UL 969 for a system of labeling materials, including label stocks, laminating adhesives, and inks used by label printers.

B. Shall meet the legibility, defacement, exposure and adhesion requirements of UL 969.

C. Shall be preprinted or computer printed type. Hand written labels are not acceptable.

D. Where insert type labels are used provide clear plastic cover over label.

E. Outside plant labels shall be totally waterproof even when submerged.

F. Approved Manufacturer:
 1. Panduit
 2. Brady Corporation
 3. Equivalent

G. Equipment Room Copper, Fiber, and Coax Backbone Cable Labels
 1. Panduit Part#LS7-75NL-1 or Brady#WML-1231-292

H. Equipment Room Copper, Fiber, and Coax Horizontal Cable Labels
 1. Panduit Part#LS7-75NL-1 or Brady#WML-317-292

I. Work Area Copper, Fiber, and Coax Riser Cable Labels
 1. Panduit Part#LS7-75NL-1 or Brady #WML-317-292

J. Patch Panel Labels
 1. Panduit Part #LS7-38-1 or Brady #CL-111-619

PART 3 - EXECUTION

3.1 ENTRANCE FACILITIES

A. Contact telecommunications service provider and arrange for installation of demarcation point, protected entrance terminals, and a housing when so directed by service provider.

B. Comply with requirements in Section 27 05 28 "Pathways for Communications Systems" for materials and installation requirements for underground and buried pathways.
3.2 INSTALLATION

A. Comply with NECA 1.

B. Comply with BICSI TDMM for layout and installation of communications equipment rooms.

C. Bundle, lace, and train conductors and cables to terminal points without exceeding manufacturer's limitations on bending radii. Install lacing bars and distribution spools.

D. Coordinate layout and installation of communications equipment with Owner's telecommunications and LAN equipment and service suppliers. Coordinate service entrance arrangement with local exchange carrier.
 1. Meet jointly with telecommunications and LAN equipment suppliers, local exchange carrier representatives, and Owner to exchange information and agree on details of equipment arrangements and installation interfaces.
 2. Record agreements reached in meetings and distribute them to other participants.
 3. Adjust arrangements and locations of distribution frames, cross-connects, and patch panels in equipment rooms to accommodate and optimize arrangement and space requirements of telephone switch and LAN equipment.
 4. Adjust arrangements and locations of equipment with distribution frames, cross-connects, and patch panels of cabling systems of other communications, electronic safety and security, and related systems that share space in the equipment room.

E. Coordinate location of power raceways and receptacles with locations of communications equipment requiring electrical power to operate.

3.3 SLEEVE AND SLEEVE SEAL INSTALLATION FOR ELECTRICAL PENETRATIONS

A. Install sleeves and sleeve seals at penetrations of exterior floor and wall assemblies. Comply with requirements in Section 27 05 44 "Sleeves and Sleeve Seals for Communications Pathways and Cabling”. Provide Hilti Speed Sleeves for all penetrations.

3.4 FIRESTOPPING

A. Comply with requirements in Section 07 84 13 "Firestopping."

B. Comply with TIA-569-B, Annex A, "Firestopping."

C. Comply with BICSI TDMM, "Firestopping Systems" Article.

3.5 GROUNDING

A. Install grounding according to BICSI TDMM, "Grounding, Bonding, and Electrical Protection" Chapter.

B. Comply with J-STD-607-A.
C. Locate grounding bus bar to minimize the length of bonding conductors. Fasten to wall allowing at least 2-inch clearance behind the grounding bus bar. Connect grounding bus bar with a minimum No. 4 AWG grounding electrode conductor from grounding bus bar to suitable electrical building ground.

D. Bond metallic equipment to the grounding bus bar, using not smaller than No. 6 AWG equipment grounding conductor.
 1. Bond the shield of shielded cable to the grounding bus bar in communications rooms and spaces.

3.6 IDENTIFICATION

A. Identify system components, wiring, and cabling complying with TIA/EIA-606-A. Comply with requirements in Section 26 05 53 "Identification for Electrical Systems."

B. Comply with requirements in Section 09 91 13 "Painting" for painting backboards. For fire-resistant plywood, do not paint over manufacturer's label.

C. Paint and label colors for equipment identification shall comply with TIA/EIA-606-A for Class 2, Class 3, Class 4 level of administration including optional identification requirements of this standard.

D. The size, color, and contrast of all labels should be selected to ensure that the identifiers are easily read. Labels should be visible during the installation of and normal maintenance of the infrastructure.

E. Labels should be resistant to the environmental conditions at the point of installation (such as moisture, heat, or ultraviolet light), and should have a design life equal to or greater than that of the labeled component.

F. All labels shall be printed or generated by a mechanical device.

3.7 TELECOMMUNICATION IDENTIFIERS

A. All voice and data outlets and patch panels shall be clearly marked using permanent means. Voice and data outlets shall be labeled with: ER/TR Number – Rack/Wallfield Designation – Rack Unit Location of Patch Panel – Port Number. (ie. XX-A-38-01) Refer to drawings for details.

B. Outlet numbers shall be marked by permanent means on each cable at the outlet and at the IDF.

3.8 LABELING PROCEDURES

A. Visibility and durability
1. The size, color, and contrast of all labels should be selected to ensure that the identifiers are easily read. Labels should be visible during the installation of and normal maintenance of the infrastructure.

2. Labels should be resistant to the environmental conditions at the point of installation (such as moisture, heat, or ultraviolet light), and should have a design life equal to or greater than that of the labeled component.

3. Labels are generally of either the adhesive or insert type. All labels must be legible, resistant to defacement, and maintain adhesion to the application surface.

4. Outside plant labels shall be totally waterproof, even when submerged.

5. Labels applied directly to a cable shall have a clear vinyl wrapping applied over the label and around the cable to permanently affix the label.

6. Other types of labels, such as tie-on labels, may be used. However, the label must be appropriate for the environment in which it is used, and must be used in the manner intended by the manufacturer.

B. Mechanical generation

1. All cable and faceplate labels shall be printed or generated by a mechanical device.

END OF SECTION
SECTION 271300

COMMUNICATIONS BACKBONE CABLING

PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes:
 1. Pathways.
 2. UTP cable.
 3. 50/125-micrometer, optical fiber cabling.
 5. Cable connecting hardware, patch panels, and cross-connects.

1.2 DEFINITIONS

B. Cross-Connect: A facility enabling the termination of cable elements and their interconnection or cross-connection.
C. EMI: Electromagnetic interference.
D. IDC: Insulation displacement connector.
E. LAN: Local area network.
F. RCDD: Registered Communications Distribution Designer.
G. UTP: Unshielded twisted pair.

1.3 BACKBONE CABLING DESCRIPTION

A. Backbone cabling system shall provide interconnections between communications equipment rooms, main terminal space, and entrance facilities in the telecommunications cabling system structure. Cabling system consists of backbone cables, intermediate and main cross-connects, mechanical terminations, and patch cords or jumpers used for backbone-to-backbone cross-connection.
B. Backbone cabling cross-connects may be located in communications equipment rooms or at entrance facilities. Bridged taps and splitters shall not be used as part of backbone cabling.

1.4 PERFORMANCE REQUIREMENTS

A. General Performance: Backbone cabling system shall comply with transmission standards in TIA/EIA-568-B.1, when tested according to test procedures of this standard.
1.5 SUBMITTALS

A. Product Data: For each type of product indicated.
 1. For all cable, include the following installation data for each type used:
 a. Nominal OD.
 b. Minimum bending radius.
 c. Maximum pulling tension.

B. Shop Drawings:
 1. System Labeling Schedules: Electronic copy of labeling schedules, in software and
 format selected by Owner.
 2. System Labeling Schedules: Electronic copy of labeling schedules that are part of the
 cabling and asset identification system of the software.
 3. Cabling administration drawings and printouts.
 4. Wiring diagrams to show typical wiring schematics including the following:
 b. Patch panels.
 c. Patch cords.
 5. Cross-connects and patch panels. Detail mounting assemblies and show elevations and
 physical relationship between the installed components.

C. Qualification Data: For qualified layout technician, installation supervisor, and field inspector.

D. Source quality-control reports.

E. Field quality-control reports.

F. Maintenance Data: For splices and connectors to include in maintenance manuals.

G. Software and Firmware Operational Documentation:
 1. Software operating and upgrade manuals.
 2. Program Software Backup: On magnetic media or compact disk, complete with data
 files.
 3. Device address list.
 4. Printout of software application and graphic screens.

1.6 QUALITY ASSURANCE

A. Installer Qualifications: Cabling Installer must have personnel certified by BICSI on staff.
 1. Installation Supervision: Installation shall be under the direct supervision of an RCDD,
 who shall be present at all times when Work of this Section is performed at Project site.
 2. Testing Supervisor: Currently certified by BICSI as an RCDD to supervise on-site
 testing.

B. Testing Agency Qualifications: An NRTL.
 1. Testing Agency's Field Supervisor: Currently certified by BICSI as an RCDD to
 supervise on-site testing.
C. Surface-Burning Characteristics: As determined by testing identical products according to ASTM E 84 by a qualified testing agency. Identify products with appropriate markings of applicable testing agency.
 1. Flame-Spread Index: 25 or less.
 2. Smoke-Developed Index: 50 or less.

D. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

E. Telecommunications Pathways and Spaces: Comply with TIA/EIA-569-A.

1.7 DELIVERY, STORAGE, AND HANDLING

A. Test cables upon receipt at Project site.
 1. Test optical fiber cable to determine the continuity of the strand end to end. Use optical fiber flashlight or optical loss test set.
 2. Test optical fiber cable while on reels. Use an optical time domain reflectometer to verify the cable length and locate cable defects, splices, and connector, including the loss value of each. Retain test data and include the record in maintenance data.
 3. Test each pair of UTP cable for open and short circuits.

1.8 PROJECT CONDITIONS

A. Environmental Limitations: Do not deliver or install cables and connecting materials until wet work in spaces is complete and dry, and temporary HVAC system is operating and maintaining ambient temperature and humidity conditions at occupancy levels during the remainder of the construction period.

1.9 COORDINATION

A. Coordinate layout and installation of telecommunications pathways and cabling with Owner's telecommunications and LAN equipment and service suppliers.

1.10 PRICING

A. The contractor shall prepare and present to owner or their representative pricing based on plenum rated Category 6 type cable for voice and data. Pricing shall include the list of equipment and labor in tabular form including: part numbers, item description, unit pricing, number of units, extended pricing and totals. The pricing shall breakdown the material and labor into the following categories; workstation (voice, data and pathways), copper riser, fiber riser, ER build-out, TR build-out and project management.
PART 2 - PRODUCTS

2.1 PATHWAYS

A. General Requirements: Comply with TIA/EIA-569-A.

B. Cable Support: NRTL labeled for support of Category 6 cabling, designed to prevent degradation of cable performance and pinch points that could damage cable.
 2. Velcro straps.
 3. Erico Caddy

C. Cable Trays:
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Panduit
 b. Cablofil Inc.
 c. Wiremold, Inc.
 d. Chatsworth Products
 2. Cable Tray Materials: Metal, suitable for indoors and protected against corrosion by electroplated zinc galvanizing, complying with ASTM B 633, Type 1, not less than 0.000472 inch thick.
 a. Basket Cable Trays: 6 to 12 inches wide and 2 inches. Wire mesh spacing shall not exceed 2 by 4 inches (50 by 100 mm).
 b. Ladder Cable Trays: Nominally 12 to 18 inches wide, and a rung spacing of 12 inches.

D. Conduit and Boxes: Comply with requirements in Division 26 Section "Raceway and Boxes for Electrical Systems.

2.2 BACKBOARDS

A. Backboards: Plywood, fire-retardant treated, 3/4 by 48 by 96 inches. Comply with requirements for plywood backing panels specified in Division 06 Section "Rough Carpentry."

2.3 UTP CABLE

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. General Cable
 2. Belden
 3. Commscope/Systimax

B. Description: Solid copper 24 AWG, 100-ohm, multi-pair UTP, formed into 25-pair binder groups covered with a black thermoplastic jacket.
 1. Comply with ICEA S-90-661 for mechanical properties.
 2. Comply with TIA/EIA-568-B.1 for performance specifications.
 3. Comply with TIA/EIA-568-B.2
4. Listed and labeled by an NRTL acceptable to authorities having jurisdiction as complying with UL 444 and NFPA 70 for the following types:
 a. Communications, Plenum Rated: Type CMP, complying with NFPA 262.

2.4 UTP CABLE HARDWARE

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. Panduit

B. General Requirements for Cable Connecting Hardware: Comply with TIA/EIA-568-B.2, IDC type, with modules designed for punch-down caps or tools. Cables shall be terminated with connecting hardware of same category or higher.

C. Connecting Blocks: 110-style IDC for Category 6. Provide blocks for the number of cables terminated on the block, plus 25 percent spare. Integral with connector bodies, including plugs and jacks where indicated.

D. Cross-Connect: Modular array of connecting blocks arranged to terminate building cables and permit interconnection between cables.
 1. Number of Terminals per Field: One for each conductor in assigned cables.

E. Patch Panel: Modular panels housing multiple-numbered jack units with IDC-type connectors at each jack for permanent termination of pair groups of installed cables.
 1. Number of Jacks per Field: One for each four-pair.

F. Jacks and Jack Assemblies: Modular, color-coded, eight-position modular receptacle units with integral IDC-type terminals.

G. Patch Cords: Factory-made, four-pair cables in shall be 60 inches and 84 inches in length at Main, Intermediate and Horizontal cross-connects (MC, IC and HC respectively). 80% of the cables shall be 60 inches and 20% shall be 84 inches. At the Work Area Outlet (WAO) the cables shall be 120 inches.
 1. Patch cords shall have bend-relief-compliant boots and color-coded icons to ensure Category 6 performance. Patch cords shall have latch guards to protect against snagging.
 2. Patch cords shall have color-coded boots for circuit identification.

2.5 OPTICAL FIBER CABLE

A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 1. Commscope/Systimax
 2. Corning

B. Description: Multimode, laser optimized 50/125-micrometer, OM3 multi strand-fiber optical fiber cable intended for indoor use.
 1. Comply with ICEA S-83-596 for mechanical properties.
 2. Comply with TIA/EIA-568-B.3 for performance specifications.
 3. Comply with TIA/EIA-492AAAA-B for detailed specifications.
4. Listed and labeled by an NRTL acceptable to authorities having jurisdiction as complying with UL 444, UL 1651, and NFPA 70 for the following types:
 a. Plenum Rated, Nonconductive: Type OFNP, complying with NFPA 262.
 b. Plenum Rated, Conductive: Type OFCP, complying with NFPA 262.

5. Conductive cable shall be aluminum armored type.

6. Maximum Attenuation: 3.50 dB/km at 850 nm; 1.5 dB/km at 1300 nm.

7. Minimum Modal Bandwidth: 160 MHz-km at 850 nm; 500 MHz-km at 1300 nm.

C. Jacket:
 2. Cable cordage jacket, fiber, unit, and group color shall be according to TIA/EIA-598-B.
 3. Imprinted with fiber count, fiber type, and aggregate length at regular intervals not to exceed 40 inches.

2.6 OPTICAL FIBER CABLE HARDWARE

A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 1. Panduit

B. Cross-Connects and Patch Panels: Modular panels housing multiple-numbered, duplex cable connectors.
 1. Number of Connectors per Field: One for each fiber of cable or cables assigned to field, plus spares and blank positions adequate to suit specified expansion criteria.

C. Patch Cords: Factory-made, dual-fiber cables in 36-inch lengths.

D. Cable Connecting Hardware:
 2. Quick-connect, simplex and duplex, Type to comply with equipment termination connectors. Insertion loss not more than 0.75 dB.
 3. Type SFF connectors may be used in termination racks, panels, and equipment packages.

2.7 GROUNDING

A. Comply with requirements in Division 26 Section "Grounding and Bonding for Electrical Systems." for grounding conductors and connectors.

B. Comply with ANSI-J-STD-607-A.

2.8 IDENTIFICATION PRODUCTS

A. Comply with TIA/EIA-606-A and UL 969 for a system of labeling materials, including label stocks, laminating adhesives, and inks used by label printers.
2.9 SOURCE QUALITY CONTROL

A. Testing Agency: Engage a qualified testing agency to evaluate cables.

B. Factory test cables on reels according to TIA/EIA-568-B.1.

C. Factory test UTP cables according to TIA/EIA-568-B.2.

D. Factory test multimode optical fiber cables according to TIA/EIA-526-14-A and TIA/EIA-568-B.3.

E. Cable will be considered defective if it does not pass tests and inspections.

F. Prepare test and inspection reports.

PART 3 - EXECUTION

3.1 ENTRANCE FACILITIES

A. Coordinate backbone cabling with the protectors and demarcation point provided by communications service provider.

3.2 WIRING METHODS

A. Wiring Method: Install cables in raceways and cable trays except within consoles, cabinets, desks, and counters and except in accessible ceiling spaces, in attics, and in gypsum board partitions where unenclosed wiring method may be used. Conceal raceway and cables except in unfinished spaces.
 1. Install plenum cable in environmental air spaces, including plenum ceilings.
 2. Comply with requirements for raceways and boxes specified in Division 26 Section "Raceway and Boxes for Electrical Systems."

B. Wiring Method: Concel conductors and cables in accessible ceilings, walls, and floors where possible.

C. Wiring within Enclosures: Bundle, lace, and train cables within enclosures. Connect to terminal points with no excess and without exceeding manufacturer's limitations on bending radii. Provide and use lacing bars and distribution spools.

3.3 INSTALLATION OF PATHWAYS

A. Cable Trays: Comply with NEMA VE 2 and TIA/EIA-569-A.

B. Comply with requirements for demarcation point, pathways, cabinets, and racks specified in Division 27 Section "Communications Equipment Room Fittings." Drawings indicate general arrangement of pathways and fittings.
C. Comply with TIA/EIA-569-A for pull-box sizing and length of conduit and number of bends between pull points.

D. Comply with requirements in Division 26 Section "Raceway and Boxes for Electrical Systems" for installation of conduits and wireways.

E. Install manufactured conduit sweeps and long-radius elbows whenever possible.

F. Pathway Installation in Communications Equipment Rooms:
 1. Position conduit ends adjacent to a corner on backboard where a single piece of plywood is installed, or in the corner of room where multiple sheets of plywood are installed around perimeter walls of room.
 2. Install cable trays to route cables if conduits cannot be located in these positions.
 3. Secure conduits to backboard when entering room from overhead.
 4. Extend conduits 3 inches above finished floor.
 5. Install metal conduits with grounding bushings and connect with grounding conductor to grounding system.

G. Backboards: Install backboards with 96-inch dimension vertical. Butt adjacent sheets tightly, and form smooth gap-free corners and joints.

3.4 INSTALLATION OF CABLES

A. Comply with NECA 1.

B. General Requirements for Cabling:
 2. Comply with BICSI ITSIM, Ch. 6, "Cable Termination Practices."
 3. Install 110-style IDC termination hardware unless otherwise indicated.
 4. Terminate all conductors; no cable shall contain unterminated elements. Make terminations only at indicated outlets, terminals, cross-connects, and patch panels.
 5. Cables may not be spliced. Secure and support cables at intervals not exceeding 30 inches and not more than 6 inches from cabinets, boxes, fittings, outlets, racks, frames, and terminals.
 6. Install lacing bars to restrain cables, to prevent straining connections, and to prevent bending cables to smaller radii than minimums recommended by manufacturer.
 7. Bundle, lace, and train conductors to terminal points without exceeding manufacturer's limitations on bending radii, but not less than radii specified in BICSI ITSIM, "Cabling Termination Practices" Chapter. Use lacing bars and distribution spools.
 8. Do not install bruised, kinked, scored, deformed, or abraded cable. Do not splice cable between termination, tap, or junction points. Remove and discard cable if damaged during installation and replace it with new cable.
 9. Cold-Weather Installation: Bring cable to room temperature before dereeling. Heat lamps shall not be used for heating.
 10. In the communications equipment room, install a 10-foot long service loop on each end of cable.
 11. Pulling Cable: Comply with BICSI ITSIM, Ch. 4, "Pulling Cable." Monitor cable pull tensions.

C. UTP Cable Installation:
2. Do not untwist UTP cables more than 1/2 inch from the point of termination to maintain cable geometry.

D. Optical Fiber Cable Installation:
2. Cable may be terminated on connecting hardware that is rack or cabinet mounted.

E. Open-Cable Installation:
1. Install cabling with horizontal and vertical cable guides in telecommunications spaces with terminating hardware and interconnection equipment.
2. Suspend UTP cable not in a wireway or pathway, a minimum of 8 inches above ceilings by cable supports not more than 60 inches apart.
3. Cable shall not be run through structural members or in contact with pipes, ducts, or other potentially damaging items.

F. Group connecting hardware for cables into separate logical fields.

G. Separation from EMI Sources:
1. Comply with BICSI TDMM and TIA/EIA-569-A recommendations for separating unshielded copper voice and data communication cable from potential EMI sources, including electrical power lines and equipment.
2. Separation between open communications cables or cables in nonmetallic raceways and unshielded power conductors and electrical equipment shall be as follows:
 b. Electrical Equipment Rating between 2 and 5 kVA: A minimum of 12 inches.
3. Separation between communications cables in grounded metallic raceways and unshielded power lines or electrical equipment shall be as follows:
 b. Electrical Equipment Rating between 2 and 5 kVA: A minimum of 6 inches.
4. Separation between communications cables in grounded metallic raceways and power lines and electrical equipment located in grounded metallic conduits or enclosures shall be as follows:
 b. Electrical Equipment Rating between 2 and 5 kVA: A minimum of 3 inches.
5. Separation between Communications Cables and Electrical Motors and Transformers, 5 kVA or HP and Larger: A minimum of 48 inches.
6. Separation between Communications Cables and Fluorescent Fixtures: A minimum of 5 inches.

3.5 FIRESTOPPING

A. Comply with BICSI TDMM, "Firestopping Systems" Article.
3.6 GROUNDING

A. Install grounding according to BICSI TDMM, "Grounding, Bonding, and Electrical Protection" Chapter.

B. Comply with ANSI-J-STD-607-A.

C. Locate grounding bus bar to minimize the length of bonding conductors. Fasten to wall allowing at least 2-inch clearance behind the grounding bus bar. Connect grounding bus bar with a minimum No. 4 AWG grounding electrode conductor from grounding bus bar to suitable electrical building ground.

D. Bond metallic equipment to the grounding bus bar, using not smaller than No. 6 AWG equipment grounding conductor.

3.7 IDENTIFICATION

A. Comply with color coding on T001

B. Identify system components, wiring, and cabling complying with TIA/EIA-606-A. Comply with requirements for identification specified in Division 26 Section "Identification for Electrical Systems."
 1. Color-code cross-connect fields and apply colors to voice and data service backboards, connections, covers, and labels.

C. See Division 27 Section "Communications Horizontal Cabling" for additional identification requirements. See Evaluations for discussion about TIA/EIA standard as it applies to this Section. Paint and label colors for equipment identification shall comply with TIA/EIA-606-A and shall be approved by owner prior to implementation.

D. Comply with requirements in Division 27 Section "Communications Horizontal Cabling" for cable and asset management software.

E. Cable Schedule: Install in a prominent location in each equipment room and wiring closet. List incoming and outgoing cables and their designations, origins, and destinations. Protect with rigid frame and clear plastic cover. Furnish an electronic copy of final comprehensive schedules for Project.

F. Cabling Administration Drawings: Show building floor plans with cabling administration-point labeling. Identify labeling convention and show labels for telecommunication closets, backbone pathways and cables, entrance pathways and cables, terminal hardware and positions, horizontal cables, work areas and workstation terminal positions, grounding buses and pathways, and equipment grounding conductors.

G. Cable and Wire Identification:
 1. Label each cable within 4 inches of each termination and tap, where it is accessible in a cabinet or junction or outlet box, and elsewhere as indicated.
 2. Each wire connected to building-mounted devices is not required to be numbered at device if color of wire is consistent with associated wire connected and numbered within panel or cabinet.
3. Exposed Cables and Cables in Cable Trays and Wire Troughs: Label each cable at intervals not exceeding 15 feet.
4. Label each terminal strip and screw terminal in each cabinet, rack, or panel.
 a. Individually number wiring conductors connected to terminal strips and identify each cable or wiring group being extended from a panel or cabinet to a building-mounted device with name and number of particular device as shown.
 b. Label each unit and field within distribution racks and frames.
5. Identification within Connector Fields in Equipment Rooms and Wiring Closets: Label each connector and each discrete unit of cable-terminating and connecting hardware. Where similar jacks and plugs are used for both voice and data communication cabling, use a different color for jacks and plugs of each service.

H. Labels shall be preprinted or computer-printed type with printing area and font color that contrasts with cable jacket color but still complies with requirements in TIA/EIA 606-A, for the following:
 1. Cables use flexible vinyl or polyester that flexes as cables are bent.

3.8 FIELD QUALITY CONTROL

A. Perform tests and inspections.

B. Tests and Inspections:
 2. Visually inspect cable placement, cable termination, grounding and bonding, equipment and patch cords, and labeling of all components.
 3. Test UTP copper cabling for DC loop resistance, shorts, opens, intermittent faults, and polarity between conductors. Test operation of shorting bars in connection blocks. Test cables after termination but not cross-connection.
 a. Test instruments shall meet or exceed applicable requirements in TIA/EIA-568-B.2. Perform tests with a tester that complies with performance requirements in "Test Instruments (Normative)" Annex, complying with measurement accuracy specified in "Measurement Accuracy (Informative)" Annex. Use only test cords and adapters that are qualified by test equipment manufacturer for channel or link test configuration.
 4. Optical Fiber Cable Tests:
 a. Test instruments shall meet or exceed applicable requirements in TIA/EIA-568-B.1. Use only test cords and adapters that are qualified by test equipment manufacturer for channel or link test configuration.
 b. Link End-to-End Attenuation Tests:
 1) Horizontal and multimode backbone link measurements: Test at 850 or 1300 nm in 1 direction according to TIA/EIA-526-14-A, Method B, One Reference Jumper.
 2) Attenuation test results for backbone links shall be less than 2.0 dB. Attenuation test results shall be less than that calculated according to equation in TIA/EIA-568-B.1.
C. Data for each measurement shall be documented. Data for submittals shall be printed in a summary report that is formatted similar to Table 10.1 in BICSI TDMM, or transferred from the instrument to the computer, saved as text files, and printed and submitted.

D. Remove and replace cabling where test results indicate that they do not comply with specified requirements.

E. End-to-end cabling will be considered defective if it does not pass tests and inspections.

Prepare test and inspection reports.

END OF SECTION
PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes:

1. Pathways.
2. UTP cabling.
3. Multiuser telecommunications outlet assemblies.
4. Cable connecting hardware, patch panels, and cross-connects.
5. Telecommunications outlet/connector.
6. Cabling system identification products.
7. Cable management system.

1.2 DEFINITIONS

A. Basket Cable Tray: A fabricated structure consisting of wire mesh bottom and side rails.
C. Channel Cable Tray: A fabricated structure consisting of a one-piece, ventilated-bottom or solid-bottom channel.
D. Consolidation Point: A location for interconnection between horizontal cables extending from building pathways and horizontal cables extending into furniture pathways.
E. Cross-Connect: A facility enabling the termination of cable elements and their interconnection or cross-connection.
F. EMI: Electromagnetic interference.
G. IDC: Insulation displacement connector.
H. Ladder Cable Tray: A fabricated structure consisting of two longitudinal side rails connected by individual transverse members (rungs).
I. LAN: Local area network.
J. MUTOA: Multiuser telecommunications outlet assembly, a grouping in one location of several telecommunications outlet/ connectors.
K. Outlet/Connectors: A connecting device in the work area on which horizontal cable or outlet cable terminates.
L. RCDD: Registered Communications Distribution Designer.
M. Solid-Bottom or Nonventilated Cable Tray: A fabricated structure consisting of longitudinal side rails and a bottom without ventilation openings.

N. Trough or Ventilated Cable Tray: A fabricated structure consisting of longitudinal side rails and a bottom having openings for the passage of air.

O. UTP: Unshielded twisted pair.

1.3 HORIZONTAL CABLE DESCRIPTION

A. Horizontal cable and its connecting hardware provide the means of transporting signals between the telecommunications outlet/connector and the horizontal cross-connect located in the communications equipment room. This cabling and its connecting hardware are called "permanent link," a term that is used in the testing protocols.

1. Refer to project drawings for outlet locations and number of cables per outlet. If number is not identified a minimum of two cables shall be provided to each outlet.
2. Horizontal cabling shall contain no more that one transition point or consolidation point between the horizontal cross-connect and the telecommunications outlet/connector.
3. Bridged taps and splices shall not be installed in the horizontal cabling.
4. Splitters shall not be installed as part of the optical fiber cabling.

B. A work area includes the components that extend from the telecommunications outlet/connectors to the station equipment.

C. The maximum allowable horizontal cable length is 295 feet. This maximum allowable length does not include an allowance for the length of 16 feet to the workstation equipment. The maximum allowable length does not include an allowance for the length of 16 feet in the horizontal cross-connect.

1.4 PERFORMANCE REQUIREMENTS

A. General Performance: Horizontal cabling system shall comply with transmission standards in TIA/EIA-568-B.1, when tested according to test procedures of this standard.

1.5 SUBMITTALS

A. Product Data: For each type of product indicated.

1. For all cable, include the following installation data for each type used:
 a. Nominal OD.
 b. Minimum bending radius.
 c. Maximum pulling tension.

B. Shop Drawings:

1. System Labeling Schedules: Electronic copy of labeling schedules, in software and format selected by Owner.
2. System Labeling Schedules: Electronic copy of labeling schedules that are part of the cabling and asset identification system of the software.
3. Cabling administration drawings and printouts.
4. Wiring diagrams to show typical wiring schematics, including the following:
 b. Patch panels.
 c. Patch cords.
5. Cross-connects and patch panels. Detail mounting assemblies, and show elevations and physical relationship between the installed components.
6. Cable tray layout, showing cable tray route to scale, with relationship between the tray and adjacent structural, electrical, and mechanical elements. Include the following:
 a. Vertical and horizontal offsets and transitions.
 b. Clearances for access above and to side of cable trays.
 c. Vertical elevation of cable trays above the floor or bottom of ceiling structure.
 d. Load calculations to show dead and live loads as not exceeding manufacturer's rating for tray and its support elements.

C. Qualification Data: For Installer, qualified layout technician, installation supervisor, and field inspector.

D. Source quality-control reports.

E. Field quality-control reports.

F. Maintenance Data: For splices and connectors to include in maintenance manuals.

1.6 QUALITY ASSURANCE

A. Contracting Company: Company must be a Certified Partner for the product they are installing

B. Installer Qualifications: Cabling Installer must have personnel certified by BICSI on staff.

1. Layout Responsibility: Preparation of Shop Drawings, Cabling Administration Drawings, and field testing program development by an RCDD.
2. Installation Supervision: Installation shall be under the direct supervision of a BISCI Certified Technician who shall be present at all times when work of this section is performed at project site.
3. Testing Supervisor: Currently certified by BICSI as an RCDD to supervise on-site testing.

C. Testing Agency Qualifications: An NRTL.

1. Testing Agency's Field Supervisor: Currently certified by BICSI as an RCDD to supervise on-site testing.

D. Surface-Burning Characteristics: As determined by testing identical products according to ASTM E 84 by a qualified testing agency. Identify products with appropriate markings of applicable testing agency.

1. Flame-Spread Index: 25 or less.
2. Smoke-Developed Index: 50 or less.

E. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

F. Telecommunications Pathways and Spaces: Comply with TIA/EIA-569-A.

1.7 DELIVERY, STORAGE, AND HANDLING

A. Test cables upon receipt at Project site.

1. Test optical fiber cables to determine the continuity of the strand end to end. Use optical fiber flashlight or optical loss test set.

2. Test optical fiber cables while on reels. Use an optical time domain reflectometer to verify the cable length and locate cable defects, splices, and connector; including the loss value of each. Retain test data and include the record in maintenance data.

3. Test each pair of UTP cable for open and short circuits.

1.8 PROJECT CONDITIONS

A. Environmental Limitations: Do not deliver or install cables and connecting materials until wet work in spaces is complete and dry, and temporary HVAC system is operating and maintaining ambient temperature and humidity conditions at occupancy levels during the remainder of the construction period.

1.9 COORDINATION

A. Coordinate layout and installation of telecommunications pathways and cabling with Owner's telecommunications and LAN equipment and service suppliers.

B. Coordinate telecommunications outlet/connector locations with location of power receptacles at each work area.

1.10 Pricing

A. The contractor shall prepare and present to DeSoto Independent School District or their representative pricing based on plenum rated Category 6 type cable for voice and data. Pricing shall include the list of equipment and labor in tabular form including; part numbers, item description, unit pricing, number of units, extended pricing and totals. The pricing shall breakdown the material and labor into the following categories; workstation (voice, data and pathways), copper riser, fiber riser, ER build-out, TR build-out and project management.
PART 2 - PRODUCTS

2.1 PATHWAYS

A. General Requirements: Comply with TIA/EIA-569-A.

B. Cable Support: NRTL labeled for support of Category 6 cabling, designed to prevent degradation of cable performance and pinch points that could damage cable.

1. Support brackets with cable tie slots for fastening cable ties to brackets.
2. Lacing bars, spools, J-hooks, and D-rings shall be white.
 a. Erico Caddy

C. Conduit and Boxes: Comply with requirements in Division 26 Section "Raceway and Boxes for Electrical Systems."

1. Standard work area outlet rough-in will include a 1” conduit to a double gang back box with a single gang reducer plate.

2.2 UTP CABLE

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. General Cable GenSPEED 6500 #7131930
2. Panduit PUP6504BU-UY
3. Belden
4. Commscope
5. Berk-Tek LANmark-1000

B. Description: 100-ohm, 4-pair UTP, formed into 25-pair, binder groups covered with a white flame-retardant PVC jacket.

1. Comply with ICEA S-90-661 for mechanical properties.
3. Listed and labeled by an NRTL acceptable to authorities having jurisdiction as complying with UL 444 and NFPA 70 for the following types:
 a. Communications, Plenum Rated: Type CMP, complying with NFPA 262.
 b. Communications, Riser Rated: Type CMR, complying with UL 1666.

2.3 UTP CABLE HARDWARE

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. Panduit Corp.
2. Commscope/Uniprise
3. Leviton Cabling Solutions

B. General Requirements for Cable Connecting Hardware: Comply with TIA/EIA-568-B.2, IDC type, with modules designed for punch-down caps or tools. Cables shall be terminated with connecting hardware of same category or higher.

C. Cross-Connect: Modular array of connecting blocks arranged to terminate building cables and permit interconnection between cables.
 1. Number of Terminals per Field: One for each conductor in assigned cables.

D. Patch Panel: Modular panels housing multiple-numbered jack units with CFFPL4 type front removable snap in faceplates.

E. Coordinate subparagraph below with Drawings for quantity of fields.
 1. Number of Jacks per Field: Two for each four-pair UTP cable indicated.

F. Jacks and Jack Assemblies: Modular, color-coded, eight-position modular receptacle units with integral IDC-type terminals and shall comply with the rating of the communications cable routed to the assembly. Cords are generally available in lengths to 20 feet (6 m) and longer in 24-inch (600-mm) increments.

G. Patch Cords: Factory-made, four-pair cables in shall be 60 inches. Panduit or Equivalent
 1. Patch cords shall have bend-relief-compliant boots and color-coded icons to ensure Category 6 performance. Patch cords shall have latch guards to protect against snagging.
 2. Patch cords shall have color-coded boots for circuit identification.

2.4 TELECOMMUNICATIONS OUTLET/CONNECTORS

B. Workstation Outlets: Four-port-connector assemblies mounted in single faceplate.
 1. Plastic Faceplate: High-impact plastic. Coordinate color with Division 26 Section "Wiring Devices."
 2. For use with snap-in jacks accommodating any combination of UTP and optical fiber work area cords.

2.5 GROUNDING

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. Erico International
B. Comply with requirements in Division 26 Section "Grounding and Bonding for Electrical Systems" for grounding conductors and connectors.

C. Comply with ANSI-J-STD-607-A.

2.6 IDENTIFICATION PRODUCTS

A. Comply with TIA/EIA-606-A and UL 969 for labeling materials, including label stocks, laminating adhesives, and inks used by label printers.

B. Comply with requirements in Division 26 Section "Identification for Electrical Systems."

C. The contractor is responsible for coordinating with the owner for specific labeling requirements.

2.7 SOURCE QUALITY CONTROL

A. Testing Agency: Engage a qualified testing agency to evaluate cables.

B. Factory test UTP and optical fiber cables on reels according to TIA/EIA-568-B.1.

C. Factory test UTP cables according to TIA/EIA-568-B.2.

D. Factory test multimode optical fiber cables according to TIA/EIA-526-14-A and TIA/EIA-568-B.3.

E. Factory-sweep test coaxial cables at frequencies from 5 MHz to 1 GHz. Sweep test shall test the frequency response, or attenuation over frequency, of a cable by generating a voltage whose frequency is varied through the specified frequency range and graphing the results.

F. Cable will be considered defective if it does not pass tests and inspections.

G. Prepare test and inspection reports.

PART 3 - EXECUTION

3.1 WIRING METHODS

A. Wiring Method: Install cables in raceways and cable trays except within consoles, cabinets, desks, and counters and except in accessible ceiling spaces, in attics, and in gypsum board partitions where unenclosed wiring method may be used. Conceal raceway and cables except in unfinished spaces.

1. Install plenum rated cable in all areas.

2. Comply with requirements for raceways and boxes specified in Division 26 Section "Raceway and Boxes for Electrical Systems."

B. Wiring Method: Conceal conductors and cables in accessible ceilings, walls, and floors where possible.
C. Wiring within Enclosures: Bundle, lace, and train cables to terminal points with no excess and without exceeding manufacturer's limitations on bending radii. Provide and use lacing bars and distribution spools.

3.2 INSTALLATION OF PATHWAYS

A. Comply with requirements for demarcation point, pathways, cabinets, and racks specified in Division 27 Section "Communications Equipment Room Fittings." Drawings indicate general arrangement of pathways and fittings.

B. Comply with TIA/EIA-569-A for pull-box sizing and length of conduit and number of bends between pull points.

C. Comply with requirements in Division 26 Section "Raceway and Boxes for Electrical Systems" for installation of conduits and wireways.

D. Install manufactured conduit sweeps and long-radius elbows whenever possible.

E. Pathway Installation in Communications Equipment Rooms:
 1. Position conduit ends adjacent to a corner on backboard where a single piece of plywood is installed, or in the corner of room where multiple sheets of plywood are installed around perimeter walls of room.
 2. Install cable trays to route cables if conduits cannot be located in these positions.
 3. Secure conduits to backboard when entering room from overhead.
 4. Extend conduits 3 inches above finished floor.
 5. Install metal conduits with grounding bushings and connect with grounding conductor to grounding system.

3.3 INSTALLATION OF CABLES

A. Comply with NECA 1.

B. General Requirements for Cabling:
 2. Comply with BICSI ITSIM, Ch. 6, "Cable Termination Practices."
 3. MUTOA shall not be used as a cross-connect point.
 4. Consolidation points may be used only for making a direct connection to telecommunications outlet/connectors:
 a. Do not use consolidation point as a cross-connect point, as a patch connection, or for direct connection to workstation equipment.
 b. Locate consolidation points for UTP at least 49 feet from communications equipment room.
 5. Terminate conductors; no cable shall contain unterminated elements. Make terminations only at indicated outlets, terminals, cross-connects, and patch panels.
6. Cables may not be spliced. Secure and support cables at intervals not exceeding 30 inches and not more than 6 inches from cabinets, boxes, fittings, outlets, racks, frames, and terminals.

7. Install lacing bars to restrain cables, to prevent straining connections, and to prevent bending cables to smaller radii than minimums recommended by manufacturer.

8. Bundle, lace, and train conductors to terminal points without exceeding manufacturer's limitations on bending radii, but not less than radii specified in BICSI ITSIM, "Cabling Termination Practices" Chapter. Install lacing bars and distribution spools.

9. Do not install bruised, kinked, scored, deformed, or abraded cable. Do not splice cable between termination, tap, or junction points. Remove and discard cable if damaged during installation and replace it with new cable.

10. Cold-Weather Installation: Bring cable to room temperature before dereeling. Heat lamps shall not be used for heating.

11. In the communications equipment room, install a 12-foot long service loop on each end of cable.

12. Pulling Cable: Comply with BICSI ITSIM, Ch. 4, "Pulling Cable." Monitor cable pull tensions.

C. UTP Cable Installation:

2. Do not untwist UTP cables more than 1/2 inch from the point of termination to maintain cable geometry.

D. Open-Cable Installation:

1. Install cabling with horizontal and vertical cable guides in telecommunications spaces with terminating hardware and interconnection equipment.
2. Suspend UTP cable not in a wireway or pathway a minimum of 8 inches above ceilings by cable supports not more than 60 inches apart.
3. Cable shall not be run through structural members or in contact with pipes, ducts, or other potentially damaging items.

E. Group connecting hardware for cables into separate logical fields.

F. Separation from EMI Sources:

1. Comply with BICSI TDMM and TIA/EIA-569-A for separating unshielded copper voice and data communication cable from potential EMI sources, including electrical power lines and equipment.
2. Separation between open communications cables or cables in nonmetallic raceways and unshielded power conductors and electrical equipment shall be as follows:
 b. Electrical Equipment Rating between 2 and 5 kVA: A minimum of 12 inches.
3. Separation between communications cables in grounded metallic raceways and unshielded power lines or electrical equipment shall be as follows:
 b. Electrical Equipment Rating between 2 and 5 kVA: A minimum of 6 inches.

4. Separation between communications cables in grounded metallic raceways and power lines and electrical equipment located in grounded metallic conduits or enclosures shall be as follows:
 b. Electrical Equipment Rating between 2 and 5 kVA: A minimum of 3 inches.

5. Separation between Communications Cables and Electrical Motors and Transformers, 5 kVA or HP and Larger: A minimum of 48 inches.

6. Separation between Communications Cables and Fluorescent Fixtures: A minimum of 5 inches.

3.4 GROUNDING

A. Install grounding according to BICSI TDMM, "Grounding, Bonding, and Electrical Protection" Chapter.

B. Comply with ANSI-J-STD-607-A.

C. Locate grounding bus bar to minimize the length of bonding conductors. Fasten to wall allowing at least 2-inch clearance behind the grounding bus bar. Connect grounding bus bar with a minimum No. 4 AWG grounding electrode conductor from grounding bus bar to suitable electrical building ground.

D. Bond metallic equipment to the grounding bus bar, using not smaller than No. 6 AWG equipment grounding conductor.

3.5 IDENTIFICATION

A. Cable and Wire Identification:
 1. Coordinate with owner for specific labeling requirements.
 2. Label each cable within 4 inches of each termination and tap, where it is accessible in a cabinet or junction or outlet box, and elsewhere as indicated.
 3. Each wire connected to building-mounted devices is not required to be numbered at device if color of wire is consistent with associated wire connected and numbered within panel or cabinet.
 4. Exposed Cables and Cables in Cable Trays and Wire Troughs: Label each cable at intervals not exceeding 15 feet.
 5. Label each terminal strip and screw terminal in each cabinet, rack, or panel.
 a. Individually number wiring conductors connected to terminal strips, and identify each cable or wiring group being extended from a panel or cabinet to a building-mounted device shall be identified with name and number of particular device as shown.
 b. Label each unit and field within distribution racks and frames.
6. Identification within Connector Fields in Equipment Rooms and Wiring Closets: Label each connector and each discrete unit of cable-terminating and connecting hardware. Where similar jacks and plugs are used for both voice and data communication cabling, use a different color for jacks and plugs of each service.

B. Labels shall be preprinted or computer-printed type with printing area and font color that contrasts with cable jacket color but still complies with requirements in TIA/EIA-606-A.
 1. Cables use flexible vinyl or polyester that flex as cables are bent.

3.6 FIELD QUALITY CONTROL

A. Perform tests and inspections.

B. Tests and Inspections:
 2. Visually confirm Category 6, marking of outlets, cover plates, outlet/connectors, and patch panels.
 3. Visually inspect cable placement, cable termination, grounding and bonding, equipment and patch cords, and labeling of all components.
 4. Test UTP backbone copper cabling for DC loop resistance, shorts, opens, intermittent faults, and polarity between conductors. Test operation of shorting bars in connection blocks. Test cables after termination but not cross-connection.
 a. Test instruments shall meet or exceed applicable requirements in TIA/EIA-568-B.2. Perform tests with a tester that complies with performance requirements in "Test Instruments (Normative)" Annex, complying with measurement accuracy specified in "Measurement Accuracy (Informative)" Annex. Use only test cords and adapters that are qualified by test equipment manufacturer for channel or link test configuration.
 5. UTP Performance Tests:
 a. Test for each outlet and MUTOA. Perform the following tests according to TIA/EIA-568-B.1 and TIA/EIA-568-B.2:
 1) Wire map.
 2) Length (physical vs. electrical, and length requirements).
 3) Insertion loss.
 4) Near-end crosstalk (NEXT) loss.
 5) Power sum near-end crosstalk (PSNEXT) loss.
 6) Equal-level far-end crosstalk (ELFEXT).
 7) Power sum equal-level far-end crosstalk (PSELFEXT).
 8) Return loss.
 9) Propagation delay.
 10) Delay skew.
6. Final Verification Tests: Perform verification tests for UTP and optical fiber systems after the complete communications cabling and workstation outlet/connectors are installed.

a. Voice Tests: These tests assume that dial tone service has been installed. Connect to the network interface device at the demarcation point. Go off-hook and listen and receive a dial tone. If a test number is available, make and receive a local, long distance, and digital subscription line telephone call.

b. Data Tests: These tests assume the Information Technology Staff has a network installed and is available to assist with testing. Connect to the network interface device at the demarcation point. Log onto the network to ensure proper connection to the network.

C. Document data for each measurement. Data for submittals shall be printed in a summary report that is formatted similar to Table 10.1 in BICSI TDMM, or transferred from the instrument to the computer, saved as text files, and printed and submitted.

D. End-to-end cabling will be considered defective if it does not pass tests and inspections.

E. Prepare test and inspection reports.

3.7 DEMONSTRATION

A. The contractor shall train the Owner's maintenance personnel in cable-plant management operations, including changing signal pathways for different workstations, rerouting signals in failed cables, and keeping records of cabling assignments and revisions when extending wiring to establish new workstation outlets.

END OF SECTION
PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:

1. Fire-alarm control unit.
3. System smoke detectors.
4. Air-sampling smoke detectors.
5. Nonsystem smoke detectors.
6. Heat detectors.
8. Device guards.
9. Firefighters' two-way telephone communication service.
10. Firefighters' smoke-control station.

B. Related Requirements:

1. Section 280513 "Conductors and Cables for Electronic Safety and Security" for cables and conductors for fire-alarm systems.

1.3 DEFINITIONS

A. EMT: Electrical Metallic Tubing.

B. FACP: Fire Alarm Control Panel.

C. HLI: High Level Interface.

E. PC: Personal computer.
1.4 ACTION SUBMITTALS

A. Product Data: For each type of product, including furnished options and accessories.

1. Include construction details, material descriptions, dimensions, profiles, and finishes.
2. Include rated capacities, operating characteristics, and electrical characteristics.

B. Shop Drawings: For fire-alarm system.

1. Comply with recommendations and requirements in the "Documentation" section of the "Fundamentals" chapter in NFPA 72.
2. Include plans, elevations, sections, details, and attachments to other work.
3. Include details of equipment assemblies. Indicate dimensions, weights, loads, required clearances, method of field assembly, components, and locations. Indicate conductor sizes, indicate termination locations and requirements, and distinguish between factory and field wiring.
4. Detail assembly and support requirements.
5. Include voltage drop calculations for notification-appliance circuits.
6. Include battery-size calculations.
7. Include input/output matrix.
8. Include statement from manufacturer that all equipment and components have been tested as a system and meet all requirements in this Specification and in NFPA 72.
9. Include performance parameters and installation details for each detector.
10. Verify that each duct detector is listed for complete range of air velocity, temperature, and humidity possible when air-handling system is operating.
11. Include plans, sections, and elevations of heating, ventilating, and air-conditioning ducts, drawn to scale; coordinate location of duct smoke detectors and access to them.
 a. Show critical dimensions that relate to placement and support of sampling tubes, detector housing, and remote status and alarm indicators.
 b. Show field wiring required for HVAC unit shutdown on alarm.
 c. Show field wiring and equipment required for HVAC unit shutdown on alarm and override by firefighters' control system.
 d. Show field wiring and equipment required for HVAC unit shutdown on alarm and override by firefighters' smoke-evacuation system.
 e. Locate detectors according to manufacturer's written recommendations.
 f. Show air-sampling detector pipe routing.
12. Include floor plans to indicate final outlet locations showing address of each addressable device. Show size and route of cable and conduits and point-to-point wiring diagrams.

C. General Submittal Requirements:

1. Submittals shall be approved by authorities having jurisdiction prior to submitting them to Architect.
2. Shop Drawings shall be prepared by persons with the following qualifications:
 a. Trained and certified by manufacturer in fire-alarm system design.
 b. NICET-certified, fire-alarm technician; Level III minimum.
 c. Licensed or certified by authorities having jurisdiction.
D. Delegated-Design Submittal: For notification appliances and smoke and heat detectors, in addition to submittals listed above, indicate compliance with performance requirements and design criteria, including analysis data signed and sealed by the qualified professional engineer responsible for their preparation.

1. Drawings showing the location of each notification appliance and smoke and heat detector, ratings of each, and installation details as needed to comply with listing conditions of the device.
2. Design Calculations: Calculate requirements for selecting the spacing and sensitivity of detection, complying with NFPA 72. Calculate spacing and intensities for strobe signals and sound-pressure levels for audible appliances.
3. Indicate audible appliances required to produce square wave signal per NFPA 72.

1.5 Sample Warranty: For special warranty.

1.6 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For fire-alarm systems and components to include in emergency, operation, and maintenance manuals.

1. In addition to items specified in Section 017823 "Operation and Maintenance Data," include the following:
 a. Comply with the "Records" section of the "Inspection, Testing and Maintenance" chapter in NFPA 72.
 b. Provide "Fire Alarm and Emergency Communications System Record of Completion Documents" according to the "Completion Documents" Article in the "Documentation" section of the "Fundamentals" chapter in NFPA 72.
 c. Complete wiring diagrams showing connections between all devices and equipment. Each conductor shall be numbered at every junction point with indication of origination and termination points.
 d. Riser diagram.
 e. Device addresses.
 f. Air-sampling system sample port locations and modeling program report showing layout meets performance criteria.
 g. Record copy of site-specific software.
 h. Provide "Inspection and Testing Form" according to the "Inspection, Testing and Maintenance" chapter in NFPA 72, and include the following:
 1) Equipment tested.
 2) Frequency of testing of installed components.
 3) Frequency of inspection of installed components.
 4) Requirements and recommendations related to results of maintenance.
 5) Manufacturer's user training manuals.
 i. Manufacturer's required maintenance related to system warranty requirements.
 j. Abbreviated operating instructions for mounting at fire-alarm control unit and each annunciator unit.
B. Software and Firmware Operational Documentation:

1. Software operating and upgrade manuals.
2. Program Software Backup: On magnetic media or compact disk, complete with data files.
3. Device address list.

1.7 QUALITY ASSURANCE

A. Installer Qualifications: Personnel shall be trained and certified by manufacturer for installation of units required for this Project.

B. Installer Qualifications: Installation shall be by personnel certified by NICET as fire-alarm Level II technician.

1.8 PROJECT CONDITIONS

A. Perform a full test of the existing system prior to starting work. Document any equipment or components not functioning as designed.

B. Interruption of Existing Fire-Alarm Service: Do not interrupt fire-alarm service to facilities occupied by Owner or others unless permitted under the following conditions and then only after arranging to provide temporary guard service according to requirements indicated:

 1. Notify Architect no fewer than 14 days in advance of proposed interruption of fire-alarm service.
 2. Do not proceed with interruption of fire-alarm service without owner’s written permission.

C. Use of Devices during Construction: Protect devices during construction unless devices are placed in service to protect the facility during construction.

1.9 SEQUENCING AND SCHEDULING

A. Existing Fire-Alarm Equipment: Maintain existing equipment fully operational until new equipment has been tested and accepted. As new equipment is installed, label it "NOT IN SERVICE" until it is accepted. Remove labels from new equipment when put into service, and label existing fire-alarm equipment "NOT IN SERVICE" until removed from the building.

B. Equipment Removal: After acceptance of new fire-alarm system, remove existing disconnected fire-alarm equipment and wiring.

1.10 WARRANTY

A. Special Warranty: Manufacturer agrees to repair or replace fire-alarm system equipment and components that fail in materials or workmanship within specified warranty period.

 1. Warranty Extent: All equipment and components not covered in the Maintenance Service Agreement.
2. **Warranty Period:** Five years from date of Substantial Completion.

PART 2 - PRODUCTS

2.1 **SYSTEM DESCRIPTION**

A. **Source Limitations for Fire-Alarm System and Components:** Components shall be compatible with, and operate as an extension of, existing system. Provide system manufacturer's certification that all components provided have been tested as, and will operate as, a system.

B. Noncoded, UL-certified addressable system, with multiplexed signal transmission and horn/strobe evacuation.

C. Automatic sensitivity control of certain smoke detectors.

D. All components provided shall be listed for use with the selected system.

E. **Electrical Components, Devices, and Accessories:** Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

2.2 **SYSTEMS OPERATIONAL DESCRIPTION**

A. **Fire-alarm signal initiation shall be by one or more of the following devices and systems:**

2. Heat detectors.
3. Flame detectors.
4. Smoke detectors.
5. Duct smoke detectors.
6. Carbon monoxide detectors.
7. Automatic sprinkler system water flow.
8. Preaction system.
10. Fire standpipe system.
11. Dry system pressure flow switch.
12. Fire pump running.

B. **Fire-alarm signal shall initiate the following actions:**

1. Continuously operate alarm notification appliances.
2. Identify alarm and specific initiating device at fire-alarm control unit and remote annunciators.
3. Unlock electric door locks in designated egress paths.
4. Release fire and smoke doors held open by magnetic door holders.
5. Switch heating, ventilating, and air-conditioning equipment controls to fire-alarm mode.
6. Close smoke dampers in air ducts of designated air-conditioning duct systems.
7. Activate preaction system.
8. Recall elevators to primary or alternate recall floors.
9. Activate elevator power shunt trip.
10. Activate emergency lighting control.
11. Activate emergency shutoffs for gas and fuel supplies.
12. Record events in the system memory.

C. Supervisory signal initiation shall be by one or more of the following devices and actions:

1. Valve supervisory switch.
2. High- or low-air-pressure switch of a dry-pipe or preaction sprinkler system.
3. Alert and Action signals of air-sampling detector system.
4. Elevator shunt-trip supervision.
5. Fire pump running.
6. Fire-pump loss of power.
7. Fire-pump power phase reversal.
8. Independent fire-detection and suppression systems.
9. User disabling of zones or individual devices.
10. Loss of communication with any panel on the network.

D. System trouble signal initiation shall be by one or more of the following devices and actions:

1. Open circuits, shorts, and grounds in designated circuits.
2. Opening, tampering with, or removing alarm-initiating and supervisory signal-initiating devices.
3. Loss of communication with any addressable sensor, input module, relay, control module, remote annunciator, printer interface, or Ethernet module.
4. Loss of primary power at fire-alarm control unit.
5. Ground or a single break in internal circuits of fire-alarm control unit.
6. Abnormal ac voltage at fire-alarm control unit.
7. Break in standby battery circuitry.
8. Failure of battery charging.
9. Abnormal position of any switch at fire-alarm control unit or annunciator.

E. System Supervisory Signal Actions:

1. Initiate notification appliances.
2. Identify specific device initiating the event at fire-alarm control unit and remote annunciators.
3. Transmit system status to building management system.

2.3 FIRE-ALARM CONTROL UNIT

A. General Requirements for Fire-Alarm Control Unit:

1. Field-programmable, microprocessor-based, modular, power-limited design with electronic modules, complying with UL 864.
 a. System software and programs shall be held in nonvolatile flash, electrically erasable, programmable, read-only memory, retaining the information through failure of primary and secondary power supplies.
b. Include a real-time clock for time annotation of events on the event recorder and printer.
c. Provide communication between the FACP and remote circuit interface panels, annunciators, and displays.
d. The FACP shall be listed for connection to a central-station signaling system service.
e. Provide nonvolatile memory for system database, logic, and operating system and event history. The system shall require no manual input to initialize in the event of a complete power down condition. The FACP shall provide a minimum 500-event history log.

2. Addressable Initiation Device Circuits: The FACP shall indicate which communication zones have been silenced and shall provide selective silencing of alarm notification appliance by building communication zone.

3. Addressable Control Circuits for Operation of Notification Appliances and Mechanical Equipment: The FACP shall be listed for releasing service.

B. Alphanumeric Display and System Controls: Arranged for interface between human operator at fire-alarm control unit and addressable system components including annunciation and supervision. Display alarm, supervisory, and component status messages and the programming and control menu.

1. Annunciator and Display: Liquid-crystal type, 80 characters, minimum.
2. Keypad: Arranged to permit entry and execution of programming, display, and control commands.

C. Alphanumeric Display and System Controls: Arranged for interface between human operator at fire-alarm control unit and addressable system components including annunciation and supervision. Display alarm, supervisory, and component status messages and the programming and control menu.

1. Annunciator and Display: Liquid-crystal type, two line(s) of 40 characters, minimum.
2. Keypad: Arranged to permit entry and execution of programming, display, and control commands.

D. Initiating-Device, Notification- Appliance, and Signaling-Line Circuits:

1. Pathway Class Designations: NFPA 72, Class B.

E. Stairwell and Elevator Shaft Pressurization: Provide an output signal using an addressable relay to start the stairwell and elevator shaft pressurization system. Signal shall remain on until alarm conditions are cleared and fire-alarm system is reset. Signal shall not stop in response to alarm acknowledge or signal silence commands.

1. Pressurization starts when any alarm is received at fire-alarm control unit.
2. Alarm signals from smoke detectors at pressurization air supplies have a higher priority than other alarm signals that start the system.

F. Smoke-Alarm Verification:
1. Initiate audible and visible indication of an "alarm-verification" signal at fire-alarm control unit.
2. Activate an approved "alarm-verification" sequence at fire-alarm control unit and detector.
3. Record events by the system printer.
4. Sound general alarm if the alarm is verified.
5. Cancel fire-alarm control unit indication and system reset if the alarm is not verified.

G. Notification-Appliance Circuit:
1. Audible appliances shall sound in a three-pulse temporal pattern, as defined in NFPA 72.
2. Where notification appliances provide signals to sleeping areas, the alarm signal shall be a 520-Hz square wave with an intensity 15 dB above the average ambient sound level or 5 dB above the maximum sound level, or at least 75 dBA, whichever is greater, measured at the pillow.
3. Visual alarm appliances shall flash in synchronization where multiple appliances are in the same field of view, as defined in NFPA 72.

H. Elevator Recall:
1. Elevator recall shall be initiated only by one of the following alarm-initiating devices:
 a. Elevator lobby detectors except the lobby detector on the designated floor.
 b. Smoke detector in elevator machine room.
 c. Smoke detectors in elevator hoistway.
2. Elevator controller shall be programmed to move the cars to the alternate recall floor if lobby detectors located on the designated recall floors are activated.
3. Water-flow alarm connected to sprinkler in an elevator shaft and elevator machine room shall shut down elevators associated with the location without time delay.
 a. Water-flow switch associated with the sprinkler in the elevator pit may have a delay to allow elevators to move to the designated floor.

I. Door Controls: Door hold-open devices that are controlled by smoke detectors at doors in smoke-barrier walls shall be connected to fire-alarm system.

J. Primary Power: 24-V dc obtained from 120-V ac service and a power-supply module. Initiating devices, notification appliances, signaling lines, trouble signals, supervisory signals shall be powered by 24-V dc source.
1. Alarm current draw of entire fire-alarm system shall not exceed 80 percent of the power-supply module rating.

K. Secondary Power: 24-V dc supply system with batteries, automatic battery charger, and automatic transfer switch.

L. Instructions: Computer printout or typewritten instruction card mounted behind a plastic or glass cover in a stainless-steel or aluminum frame. Include interpretation and describe
appropriate response for displays and signals. Briefly describe the functional operation of the system under normal, alarm, and trouble conditions.

2.4 MANUAL FIRE-ALARM BOXES

A. General Requirements for Manual Fire-Alarm Boxes: Comply with UL 38. Boxes shall be finished in red with molded, raised-letter operating instructions in contrasting color; shall show visible indication of operation; and shall be mounted on recessed outlet box. If indicated as surface mounted, provide manufacturer's surface back box.

1. Single-action mechanism, breaking-glass or plastic-rod type; with integral addressable module arranged to communicate manual-station status (normal, alarm, or trouble) to fire-alarm control unit.
2. Double-action mechanism requiring two actions to initiate an alarm, breaking-glass or plastic-rod type; with addressable module arranged to communicate manual-station status (normal, alarm, or trouble) to fire-alarm control unit.
3. Station Reset: Key- or wrench-operated switch.
4. Weatherproof Protective Shield: Factory-fabricated, clear plastic enclosure hinged at the top to permit lifting for access to initiate an alarm.

2.5 SYSTEM SMOKE DETECTORS

A. General Requirements for System Smoke Detectors:

1. Comply with UL 268; operating at 24-V dc, nominal.
2. Detectors shall be two-wire type except where four wire type is needed for AHU shutdown or other similar functions.
3. Integral Addressable Module: Arranged to communicate detector status (normal, alarm, or trouble) to fire-alarm control unit.
4. Base Mounting: Detector and associated electronic components shall be mounted in a twist-lock module that connects to a fixed base. Provide terminals in the fixed base for connection to building wiring.
5. Self-Restoring: Detectors do not require resetting or readjustment after actuation to restore them to normal operation.
6. Integral Visual-Indicating Light: LED type, indicating detector has operated and power-on status.

B. Photoelectric Smoke Detectors:

1. Detector address shall be accessible from fire-alarm control unit and shall be able to identify the detector's location within the system and its sensitivity setting.
2. An operator at fire-alarm control unit, having the designated access level, shall be able to manually access the following for each detector:

 a. Primary status.
 b. Device type.
 c. Present average value.
 d. Present sensitivity selected.
 e. Sensor range (normal, dirty, etc.).
C. Duct Smoke Detectors: Photoelectric type complying with UL 268A.

1. Detector address shall be accessible from fire-alarm control unit and shall be able to identify the detector's location within the system and its sensitivity setting.
2. An operator at fire-alarm control unit, having the designated access level, shall be able to manually access the following for each detector:
 a. Primary status.
 b. Device type.
 c. Present average value.
 d. Present sensitivity selected.
 e. Sensor range (normal, dirty, etc.).

3. Weatherproof Duct Housing Enclosure: NEMA 250, Type 4X; NRTL listed for use with the supplied detector for smoke detection in HVAC system ducts.
4. Each sensor shall have multiple levels of detection sensitivity.
5. Sampling Tubes: Design and dimensions as recommended by manufacturer for specific duct size, air velocity, and installation conditions where applied.

2.6 PROJECTED BEAM SMOKE DETECTORS

A. Projected Beam Light Source and Receiver: Designed to accommodate small angular movements and continue to operate and not cause nuisance alarms.

B. Detector Address: Accessible from fire-alarm control unit and able to identify the detector's location within the system and its sensitivity setting.

C. An operator at fire-alarm control unit, having the designated access level, shall be able to manually access the following for each detector:

1. Primary status.
2. Device type.
3. Present average value.
4. Present sensitivity selected.
5. Sensor range (normal, dirty, etc.).

2.7 CARBON MONOXIDE DETECTORS

A. General: Carbon monoxide detector listed for connection to fire-alarm system.

1. Mounting: Adapter plate for outlet box mounting.
2. Testable by introducing test carbon monoxide into the sensing cell.
3. Detector shall provide alarm contacts and trouble contacts.
4. Detector shall send trouble alarm when nearing end-of-life, power supply problems, or internal faults.
5. Comply with UL 2075.
6. Locate, mount, and wire according to manufacturer's written instructions.
7. Provide means for addressable connection to fire-alarm system.
8. Test button simulates an alarm condition.

2.8 HEAT DETECTORS

A. General Requirements for Heat Detectors: Comply with UL 521.
 1. Temperature sensors shall test for and communicate the sensitivity range of the device.

B. Heat Detector, Combination Type: Actuated by either a fixed temperature of 135 deg F or a rate of rise that exceeds 15 deg F per minute.
 1. Mounting: Twist-lock base interchangeable with smoke-detector bases.
 2. Integral Addressable Module: Arranged to communicate detector status (normal, alarm, or trouble) to fire-alarm control unit.

C. Heat Detector, Fixed-Temperature Type: Actuated by temperature that exceeds a fixed temperature of 190 deg F.
 1. Mounting: Twist-lock base interchangeable with smoke-detector bases.
 2. Integral Addressable Module: Arranged to communicate detector status (normal, alarm, or trouble) to fire-alarm control unit.

2.9 NOTIFICATION APPLIANCES

A. General Requirements for Notification Appliances: Individually addressed, connected to a signaling-line circuit, equipped for mounting as indicated, and with screw terminals for system connections.

B. General Requirements for Notification Appliances: Connected to notification-appliance signal circuits, zoned as indicated, equipped for mounting as indicated, and with screw terminals for system connections.
 1. Combination Devices: Factory-integrated audible and visible devices in a single-mounting assembly, equipped for mounting as indicated, and with screw terminals for system connections.

C. Chimes, Low-Level Output: Vibrating type, 75-dBA minimum rated output.

D. Chimes, High-Level Output: Vibrating type, 81-dBA minimum rated output.

E. Horns: Electric-vibrating-polarized type, 24-V dc; with provision for housing the operating mechanism behind a grille. Comply with UL 464. Horns shall produce a sound-pressure level of 90 dBA, measured 10 feet from the horn, using the coded signal prescribed in UL 464 test protocol.

F. Visible Notification Appliances: Xenon strobe lights complying with UL 1971, with clear or nominal white polycarbonate lens mounted on an aluminum faceplate. The word "FIRE" is engraved in minimum 1-inch-high letters on the lens.
1. Rated Light Output:
 a. Candella level as required by the dimensions and conditions in each space, or 15/30/75/110 cd, selectable in the field.

2. Mounting: Ceiling mounted where allowed by code. Wall mounted where ceiling height is too high to allow for ceiling mounted.

3. For units with guards to prevent physical damage, light output ratings shall be determined with guards in place.

4. Flashing shall be in a temporal pattern, synchronized with other units.

5. Strobe Leads: Factory connected to screw terminals.

G. Tone Notification Appliances:

1. Comply with UL 1480.

2. High-Range Units: Rated 2 to 15 W.

3. Low-Range Units: Rated 1 to 2 W.

4. Mounting: semirecessed or surface mounted and bidirectional.

5. Matching Transformers: Tap range matched to acoustical environment of speaker location.

2.10 MAGNETIC DOOR HOLDERS

A. Description: Units are equipped for wall or floor mounting as indicated and are complete with matching doorplate.

1. Electromagnets: Require no more than 3 W to develop 25-lbf holding force.

2. Wall-Mounted Units: Flush mounted unless otherwise indicated.

3. Rating: 24-V ac or dc.

B. Material and Finish: Match door hardware.

2.11 REMOTE ANNUNCIATOR

A. Description: Annunciator functions shall match those of fire-alarm control unit for alarm, supervisory, and trouble indications. Manual switching functions shall match those of fire-alarm control unit, including acknowledging, silencing, resetting, and testing.

1. Mounting: Flush cabinet, NEMA 250, Type 1.

B. Display Type and Functional Performance: Alphanumeric display and LED indicating lights shall match those of fire-alarm control unit. Provide controls to acknowledge, silence, reset, and test functions for alarm, supervisory, and trouble signals.

2.12 ADDRESSABLE INTERFACE DEVICE

A. General:
1. Include address-setting means on the module.
2. Store an internal identifying code for control panel use to identify the module type.
3. Listed for controlling HVAC fan motor controllers.

B. Monitor Module: Microelectronic module providing a system address for alarm-initiating devices for wired applications with normally open contacts.

C. Integral Relay: Capable of providing a direct signal to elevator controller to initiate elevator recall.
 1. Allow the control panel to switch the relay contacts on command.
 2. Have a minimum of two normally open and two normally closed contacts available for field wiring.

D. Control Module:
 1. Operate notification devices.
 2. Operate solenoids for use in sprinkler service.

2.13 NETWORK COMMUNICATIONS

A. Provide network communications for fire-alarm system according to fire-alarm manufacturer's written requirements.

B. Provide network communications pathway per manufacturer's written requirements and requirements in NFPA 72 and NFPA 70.

C. Provide integration gateway using for connection to building automation system. Coordinate with controls contractor to determine protocol type.

2.14 DEVICE GUARDS

A. Description: Welded wire mesh of size and shape for the manual station, smoke detector, gong, or other device requiring protection.
 1. Factory fabricated and furnished by device manufacturer.
 2. Finish: Paint of color to match the protected device.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine areas and conditions for compliance with requirements for ventilation, temperature, humidity, and other conditions affecting performance of the Work.
 1. Verify that manufacturer's written instructions for environmental conditions have been permanently established in spaces where equipment and wiring are installed, before installation begins.
B. Examine roughing-in for electrical connections to verify actual locations of connections before installation.

C. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 EQUIPMENT INSTALLATION

A. Comply with NFPA 72, NFPA 101, and requirements of authorities having jurisdiction for installation and testing of fire-alarm equipment. Install all electrical wiring to comply with requirements in NFPA 70 including, but not limited to, Article 760, "Fire Alarm Systems."

1. Devices placed in service before all other trades have completed cleanup shall be replaced.
2. Devices installed but not yet placed in service shall be protected from construction dust, debris, dirt, moisture, and damage according to manufacturer's written storage instructions.

B. Connecting to Existing Equipment: Verify that existing fire-alarm system is operational before making changes or connections.

1. Connect new equipment to existing control panel in existing part of the building.
2. Connect new equipment to existing monitoring equipment at the supervising station.
3. Expand, modify, and supplement existing control and monitoring equipment as necessary to extend existing control and monitoring functions to the new points. New components shall be capable of merging with existing configuration without degrading the performance of either system.

C. Install wall-mounted equipment, with tops of cabinets not more than 78 inches above the finished floor.

D. Manual Fire-Alarm Boxes:

1. Install manual fire-alarm box in the normal path of egress within 60 inches of the exit doorway.
3. The operable part of manual fire-alarm box shall be between 42 inches and 48 inches above floor level. All devices shall be mounted at the same height unless otherwise indicated.

E. Smoke- or Heat-Detector Spacing:

1. Comply with the "Smoke-Sensing Fire Detectors" section in the "Initiating Devices" chapter in NFPA 72, for smoke-detector spacing.
2. Comply with the "Heat-Sensing Fire Detectors" section in the "Initiating Devices" chapter in NFPA 72, for heat-detector spacing.
3. Smooth ceiling spacing shall not exceed 30 feet.
4. Spacing of detectors for irregular areas, for irregular ceiling construction, and for high ceiling areas shall be determined according to Annex A in NFPA 72.
5. HVAC: Locate detectors not closer than 60 inches from air-supply diffuser or return-air opening.
6. Lighting Fixtures: Locate detectors not closer than 12 inches from any part of a lighting fixture and not directly above pendant mounted or indirect lighting.

F. Install a cover on each smoke detector that is not placed in service during construction. Cover shall remain in place except during system testing. Remove cover prior to system turnover.

G. Duct Smoke Detectors: Comply with NFPA 72 and NFPA 90A. Install sampling tubes so they extend the full width of duct. Tubes more than 36 inches long shall be supported at both ends.
 1. Do not install smoke detector in duct smoke-detector housing during construction. Install detector only during system testing and prior to system turnover.

H. Air-Sampling Smoke Detectors: If using multiple pipe runs, the runs shall be pneumatically balanced.

I. Elevator Shafts: Coordinate temperature rating and location with sprinkler rating and location. Do not install smoke detectors in sprinklered elevator shafts.

J. Single-Station Smoke Detectors: Where more than one smoke alarm is installed within a dwelling or suite, they shall be connected so that the operation of any smoke alarm causes the alarm in all smoke alarms to sound.

K. Remote Status and Alarm Indicators: Install in a visible location near each smoke detector, sprinkler water-flow switch, and valve-tamper switch that is not readily visible from normal viewing position.

L. Audible Alarm-Indicating Devices: Install not less than 6 inches below the ceiling. Install bells and horns on flush-mounted back boxes with the device-operating mechanism concealed behind a grille. Install all devices at the same height unless otherwise indicated.

M. Visible Alarm-Indicating Devices: Install adjacent to each alarm bell or alarm horn and at least 6 inches below the ceiling. Install all devices at the same height unless otherwise indicated.

N. Device Location-Indicating Lights: Locate in public space near the device they monitor.

3.3 PATHWAYS

A. Pathways above recessed ceilings and in nonaccessible locations may be routed exposed.
 1. Exposed pathways located less than 96 inches above the floor shall be installed in EMT.

B. Where exposed below 10’, fire alarm wire shall be installed in EMT. Exposed EMT shall be painted red enamel or shall be factory colored red conduit.

3.4 CONNECTIONS

A. For fire-protection systems related to doors in fire-rated walls and partitions and to doors in smoke partitions, comply with requirements in Section 087100 "Door Hardware." Connect hardware and devices to fire-alarm system.
1. Verify that hardware and devices are listed for use with installed fire-alarm system before making connections.

B. Make addressable connections with a supervised interface device to the following devices and systems. Install the interface device less than 36 inches from the device controlled. Make an addressable confirmation connection when such feedback is available at the device or system being controlled.

1. Alarm-initiating connection to smoke-control system (smoke management) at firefighters' smoke-control system panel.
2. Alarm-initiating connection to stairwell and elevator-shaft pressurization systems.
3. Smoke dampers in air ducts of designated HVAC duct systems.
4. Magnetically held-open doors.
5. Electronically locked doors and access gates.
6. Alarm-initiating connection to elevator recall system and components.
7. Alarm-initiating connection to activate emergency lighting control.
8. Alarm-initiating connection to activate emergency shutoffs for gas and fuel supplies.
10. Supervisory connections at low-air-pressure switch of each dry-pipe sprinkler system.
11. Supervisory connections at elevator shunt-trip breaker.
12. Data communication circuits for connection to building management system.
13. Data communication circuits for connection to mass notification system.
15. Supervisory connections at fire-pump power failure including a dead-phase or phase-reversal condition.
16. Supervisory connections at fire-pump engine control panel.

3.5 IDENTIFICATION

A. Identify system components, wiring, cabling, and terminals. Comply with requirements for identification specified in Section 260553 "Identification for Electrical Systems."

B. Install framed instructions in a location visible from fire-alarm control unit.

3.6 GROUNDING

A. Ground fire-alarm control unit and associated circuits; comply with IEEE 1100. Install a ground wire from main service ground to fire-alarm control unit.

B. Ground shielded cables at the control panel location only. Insulate shield at device location.

3.7 FIELD QUALITY CONTROL

A. Perform the following tests and inspections:

1. Visual Inspection: Conduct visual inspection prior to testing.
a. Inspection shall be based on completed record Drawings and system documentation that is required by the "Completion Documents, Preparation" table in the "Documentation" section of the "Fundamentals" chapter in NFPA 72.

b. Comply with the "Visual Inspection Frequencies" table in the "Inspection" section of the "Inspection, Testing and Maintenance" chapter in NFPA 72; retain the "Initial/Reacceptance" column and list only the installed components.

3. Test audible appliances for the public operating mode according to manufacturer's written instructions. Perform the test using a portable sound-level meter complying with Type 2 requirements in ANSI S1.4.

4. Test audible appliances for the private operating mode according to manufacturer's written instructions.

5. Test visible appliances for the public operating mode according to manufacturer's written instructions.

6. Factory-authorized service representative shall prepare the "Fire Alarm System Record of Completion" in the "Documentation" section of the "Fundamentals" chapter in NFPA 72 and the "Inspection and Testing Form" in the "Records" section of the "Inspection, Testing and Maintenance" chapter in NFPA 72.

B. Reacceptance Testing: Perform reacceptance testing to verify the proper operation of added or replaced devices and appliances.

C. Fire-alarm system will be considered defective if it does not pass tests and inspections.

D. Prepare test and inspection reports.

E. Maintenance Test and Inspection: Perform tests and inspections listed for weekly, monthly, quarterly, and semiannual periods. Use forms developed for initial tests and inspections.

F. Annual Test and Inspection: One year after date of Substantial Completion, test fire-alarm system complying with visual and testing inspection requirements in NFPA 72. Use forms developed for initial tests and inspections.

3.8 MAINTENANCE SERVICE

A. Initial Maintenance Service: Beginning at Substantial Completion, maintenance service shall include 12 months' full maintenance by skilled employees of manufacturer's designated service organization. Include preventive maintenance, repair or replacement of worn or defective components, lubrication, cleaning, and adjusting as required for proper operation. Parts and supplies shall be manufacturer's authorized replacement parts and supplies.

1. Include visual inspections according to the "Visual Inspection Frequencies" table in the "Testing" paragraph of the "Inspection, Testing and Maintenance" chapter in NFPA 72.

3.9 SOFTWARE SERVICE AGREEMENT

A. Comply with UL 864.

B. Technical Support: Beginning at Substantial Completion, service agreement shall include software support for two years.

C. Upgrade Service: At Substantial Completion, update software to latest version. Install and program software upgrades that become available within two years from date of Substantial Completion. Upgrading software shall include operating system and new or revised licenses for using software.

1. Upgrade Notice: At least 30 days to allow Owner to schedule access to system and to upgrade computer equipment if necessary.

END OF SECTION