Phase I 100% Construction Documents
Moffett Library Renovation – Phase I
March 19, 2018
Project #: 17809.00

Project Directory

Client: Midwestern State University
3410 Taft Blvd.
Wichita Falls, TX 76308
T:
F:
W: https://mwsu.edu/

Library
Clara Latham, University Librarian
Andrea Williams, Curriculum Material Librarian
Cortny Bates, Associate University Librarian

Facilities Planning and Construction
Kyle Owen, Associate VP of Facilities Services
E: kyle.owen@mwsu.edu

Architect of Record: Holzman Moss Bottino Architecture LLP
90 Broad street
Suite 1803
New York, NY 10004
T: 212.465.0808
F: 212.465.2226
W: http://holzmanmossbottino.com/

Doug Moss, AIA
E: dmoss@holzmanmossbottino.com
Ermira Kasapi, Ass. AIA
E: ekasapi@holzmanmossbottino.com

Local Architect: Harper Perkins Architects
4724 Jacksboro Highway
Wichita Falls, TX 76302
T: 940.767.1421
F: 940.397.0273
W: http://www.harperperkins.com/

Glenda G. Ramsey
E: gramsey@harperperkins.com
Sam K. Kenshalo
E: skenshalo@harperperkins.com
CW Farris
E: cwfarris@harperperkins.com
Construction Manager: **M&F Litteken**
1804 East Scott
Wichita Falls, TX 76301
T: 940.766.4442
Shane Darnell
E: shane@mflitteken.com
Kevin Darnell
E: kevin@mflitteken.com

Structural Engineer: **RTP Structural**
107 N. Goliad Street
Rockwall, TX 75087
T: 214.293.2503
Trent Perkins
E: trent@rtpstructural.com

MEP Engineer: **Summit Consultants INC.**
1300 Summit Ave, Suite 500
Fort Worth, TX 76102
T: 817.878.4242
Brian Richards
E: bdr@summitmep.com
TABLE OF CONTENTS

VOLUME II

DIVISION 10 - SPECIALTIES

SECTION

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>101400</td>
<td>Signage</td>
</tr>
<tr>
<td>102600</td>
<td>Corner Guards</td>
</tr>
<tr>
<td>102813</td>
<td>Toilet Accessories</td>
</tr>
<tr>
<td>104413</td>
<td>Fire Protection Specialties</td>
</tr>
</tbody>
</table>

DIVISION 11 - EQUIPMENT

SECTION

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>115100</td>
<td>Library Equipment</td>
</tr>
</tbody>
</table>

DIVISION 12 - FURNISHINGS

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>122413</td>
<td>Window Shades</td>
</tr>
</tbody>
</table>

DIVISION 13 - SPECIAL CONSTRUCTION

NOT USED

DIVISION 14 - CONVEYING EQUIPMENT

NOT USED

DIVISION 22 - PLUMBING

NOT USED

DIVISION 23 - HEATING, VENTILATING AND AIR CONDITIONING

SECTION

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>230500</td>
<td>Basic Mechanical Materials and Methods</td>
</tr>
<tr>
<td>230529</td>
<td>Hangers and Supports for HVAC Piping and Equipment</td>
</tr>
<tr>
<td>230553</td>
<td>Mechanical Identification</td>
</tr>
<tr>
<td>230593</td>
<td>Testing, Adjusting and Balancing for HVAC</td>
</tr>
<tr>
<td>230700</td>
<td>Duct Insulation</td>
</tr>
<tr>
<td>230720</td>
<td>HVAC Pipe Insulation</td>
</tr>
<tr>
<td>232113</td>
<td>Hydronic Piping</td>
</tr>
<tr>
<td>Code</td>
<td>Description</td>
</tr>
<tr>
<td>--------</td>
<td>--</td>
</tr>
<tr>
<td>233113</td>
<td>Metal Ducts</td>
</tr>
<tr>
<td>233300</td>
<td>Air Duct Accessories</td>
</tr>
<tr>
<td>238219</td>
<td>Fan Coil Units</td>
</tr>
</tbody>
</table>

DIVISION 26 - ELECTRICAL

SECTION

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>260500</td>
<td>Common Work Results for Electrical</td>
</tr>
<tr>
<td>260519</td>
<td>Low-Voltage Electrical Power Conduits and Cables</td>
</tr>
<tr>
<td>260526</td>
<td>Grounding and Bonding for Electrical Systems</td>
</tr>
<tr>
<td>260529</td>
<td>Hangers and Supports for Electrical Systems</td>
</tr>
<tr>
<td>260533</td>
<td>Raceways and Boxes for Electrical Systems</td>
</tr>
<tr>
<td>260543</td>
<td>Underground Ducts and Raceways for Electrical Systems</td>
</tr>
<tr>
<td>260544</td>
<td>Sleeves and Sleeve Seals for Electrical Raceways and Cabling</td>
</tr>
<tr>
<td>260553</td>
<td>Identification for Electrical Systems</td>
</tr>
<tr>
<td>262200</td>
<td>Low-Voltage Transformers</td>
</tr>
<tr>
<td>262413</td>
<td>Switchboards</td>
</tr>
<tr>
<td>262416</td>
<td>Panelboards</td>
</tr>
<tr>
<td>262726</td>
<td>Wiring Devices</td>
</tr>
<tr>
<td>262813</td>
<td>Fuses</td>
</tr>
<tr>
<td>262816</td>
<td>Enclosed Switches and Circuit Breaker</td>
</tr>
<tr>
<td>265119</td>
<td>LED Interior Lighting</td>
</tr>
</tbody>
</table>

DIVISION 27 – TECHNOLOGY

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>270500</td>
<td>Common Work Results for Communication</td>
</tr>
<tr>
<td>270526</td>
<td>Grounding and Bonding for Communication System</td>
</tr>
<tr>
<td>271100</td>
<td>Communications Equipment Room Fittings</td>
</tr>
<tr>
<td>271300</td>
<td>Communications Backbone Cabling</td>
</tr>
<tr>
<td>271500</td>
<td>Communications Horizontal Cabling</td>
</tr>
<tr>
<td>274000</td>
<td>Audio Video Systems</td>
</tr>
</tbody>
</table>

DIVISION 28 – ELECTRONICS SAFETY AND SECURITY

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>283111</td>
<td>Digital Addressable Fire-Alarm System</td>
</tr>
</tbody>
</table>
DIVISION 31 - EARTHWORK

NOT USED

DIVISION 32 – EXTERIOR IMPROVEMENTS

321411 Stone Steps
SECTION 101400
SIGNAGE

PART 1 GENERAL

1.1 GENERAL REQUIREMENTS

A. Work of this Section, as shown or specified, shall be in accordance with the requirements of the Contract Documents.

1.2 SECTION INCLUDES

A. The Work of this Section includes all labor, materials, equipment and services necessary to complete the signage as shown on the drawings and/or specified herein, including but not limited to, the following:

1. Panel signs.
2. Steel laser cut signage.

1.3 RELATED SECTIONS

A. Exit signs - Division 26.

1.4 SYSTEM DESCRIPTION

A. Signage under this section is intended to include items for identification, direction, control, and information of building where installed as complete integrated system from a single manufacturer.

B. ADA design requirements:

1. Provide signage that conforms to the requirements of all regulatory agencies holding jurisdiction.

2. Comply with all applicable provisions of the Standards for Accessible Design (the updated ADA Accessibility Guidelines, ADAAG), most recent edition. Requirements include, but are not limited to the following:

 a. Tactile copy must be all upper case and raised at least 1/32”. Tactile characters must be sans serif, not italic, not oblique, script or highly decorative.

 b. The stroke width of the upper case “I” has to be 15% of the letter height or less. The character width of the uppercase “O” must be between 55% and 100% of the height of the corresponding uppercase “I”.

 c. The copy height for tactile information must be between 5/8” and 2”. If separate visual characters are provided, raised characters can be ½” and need not contrast with the background.
d. The distance between characters on tactile copy must be a minimum of 1/8” and a maximum of 4 times the character stroke width. These distances are measured between the closest points of adjacent characters.

e. Spacing between lines of tactile copy needs to be a minimum of 135% and a maximum of 170% of the corresponding upper case “I” height (measured from baseline to baseline).

f. Braille must be Grade II and positioned directly below the corresponding raised characters. If text is multi-lined, Braille is placed below the entire body of text and separated 3/8” from any other tactile characters and 3/8” minimum from raised borders and decorative elements.

g. Visual characters and symbols, and their background, are to have a non-glare finish. The color of raised characters must contrast as much as possible with their background to make sure signs are more legible for persons with low vision.

h. Pictograms, selected from International Standards, are to be located within a 6” vertical void and accompanying text descriptions are to be located directly below the pictogram.

1.5 QUALITY ASSURANCE

A. For actual installation of the identifying devices, use only personnel who are thoroughly familiar with the manufacturer's recommended methods of installation and who are completely trained in the required skills.

1.6 SUBMITTALS

A. Product Data: Submit manufacturer's technical data and installation instructions for each type of identifying device required.

B. Samples: Submit samples of each identifying device showing finishes, colors, surface textures and qualities of manufacture and design of each sign component including graphics.

C. Shop Drawings: Submit shop drawings for fabrication and erection of identifying devices. Include plans, elevations, and large scale details of sign wording and lettering layout. Show anchorage and accessory items. Furnish location template drawings for items supported or anchored to permanent construction.

D. Signage Schedule: Complete with location of each sign and the required copy/text.

E. Sign Program Maintenance Plan:

1. Manufacturer shall provide details of software and system of perforated and color coated paper sign inserts allowing client to update and maintain signage graphics in-house.

2. Manufacturer shall provide details of an Online Reordering & Maintenance Application whereby the client can submit sign reorders online and store relevant project information such as sign type drawings, message schedules and product instructions.
F. Contract close out:

1. Furnish appropriate checklist for aiding in reordering after Date of Substantial Completion. Maintain computer schedule program for five years for ordering new signage required by Owner.

2. Maintenance data and cleaning requirements for exterior surfaces.

3. Furnish one complete SignWord Pro software package Windows 3.0 or Windows 95 or later, Windows NT 4.0 or later in Owner selected format for PC type computer.

1.7 PRODUCT HANDLING

A. Protection: Use all means necessary to protect the materials of this Section before, during and after installation and to protect the installed work and materials of all other trades.

B. Replacements: In the event of damage, immediately make all repairs and replacements necessary.

1.8 WARRANTY

A. Special Warranty: Manufacturer agrees to repair or replace components of signs that fail in materials or workmanship within specified warranty period.

1. Failures include, but are not limited to, the following:
 a. Deterioration of finishes beyond normal weathering.
 b. Deterioration of embedded graphic image.
 c. Separation or delamination of sheet materials and components.

2. Warranty Period: Five years from date of Substantial Completion.

PART 2 PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

A. Thermal Movements: For exterior signs, allow for thermal movements from ambient and surface temperature changes.

1. Temperature Change: 120 deg. F. ambient; 180 deg. F. material surfaces.

B. Accessibility Standard: Comply with applicable provisions in the U.S. Architectural & Transportation Barriers Compliance Board’s ADA-ABA Accessibility Guidelines for Buildings and Facilities and ICC 117.1 for signs.

2.2 MANUFACTURERS

A. Subject to compliance with requirements of the contract documents, provide signage as manufactured by one of the following, or approved equal:
2. APCO Graphics, Inc. IM System (Signmatch)

1. Designer Sign Systems.
2. ASI Sign Systems, Inc.
3. The Supersine Co.

2.3 SYSTEM REQUIREMENTS

A. General:

1. Sign system shall be 100% modular and feature solutions for all the following sign types, including but not limited to wall mounted personnel signs, work station personnel signs, primary room identification, wall signs, restroom signs, regulatory and information signs, stair signs and changeable slide conference room signs.

2. Signs within the system shall feature the same family of components and convey a uniform look throughout.

B. Features:

1. Updatability: Signs shall allow for easy updating of message inserts without the need to replace the entire sign assembly. System shall offer a solution for easy in-house updating of laser printed sign inserts for all sign types, including personnel signs, signs and Emergency Plans.

2. Mounting: Signs shall accommodate installation via fully concealed mechanical fasteners.

C. Graphics and Typography: As selected from manufacturer’s standards. Reference sign drawings.

D. Colors and Finishes: As selected from manufacturer’s standards. Reference sign drawings.

E. ADA Compliance: Sign system shall comply with all applicable provisions of the Standards for Accessible Design (the updated ADA Accessibility Guidelines, ADAAG), most recent edition. This includes requirements regarding which sign types require Braille/tactile features, character heights, raised character spacing, raised character stroke width, color contrast and installation locations and mounting heights within the facility.

F. Materials and Construction:

1. Frames/Holders: Integrally colored, injection molded, high-impact, UV resistant, ASA automotive grade plastic. Frames constructed of polystyrene will not be accepted.
2. Braille / Tactile Inserts: PETG-backed photopolymer with raised characters and Braille of minimum 1/32 inch (0.8 mm) depth/thickness. Braille/tactile plaques shall contain a minimum of 40% recycled content.

3. Non Tactile Opaque Inserts: Injection molded, high-impact, UV resistant, automotive grade plastic with 1st surface direct-print graphics.

4. Clear Insert for SubSurface Graphics: Injection molded of a translucent, non-glare plastic with discreet protrusions that engage with the holder allowing for subsurface, digitally-printed graphics.

2.4 LASER CUT STEEL NUMBER AND FIGURES

A. Steel Plates, Shapes and Bars: ASTM A 36.

B. Paint: Per Section 099000.

2.5 ACCESSORIES

A. Fasteners and Anchors: Manufacturer’s standards required for secure anchorage of signage, non-corrosive and compatible with each material joined and complying with the following:

1. Use concealed fasteners and anchors unless indicated to be exposed.

2. For exterior exposure, furnish stainless steel devices unless otherwise indicated.

3. Sign Mounting Fasteners:
 a. Concealed Studs: Concealed (blind), threaded studs welded or brazed to back of sign material or screwed into back of sign assembly, unless otherwise indicated.
 b. Projecting Studs: Threaded studs with sleeve spacer, welded or brazed to back of sign material or screwed into back of sign assembly, unless otherwise indicated.

4. Inserts: Furnish inserts to be set by other trades into concrete or masonry work.

B. Two Face Tape: Manufacturer’s standard high bond, foam care tape, 0.045” thick with adhesive on both sides.

2.6 FABRICATION

A. General

1. Preassemble signs and assemblies in the shop to greatest extent possible. Disassemble signs and assemblies only as necessary for shipping and handling limitations. Clearly mark units for reassembly and installation; apply markings in locations concealed from view after final assembly.

2. Mill joints to a tight, hairline fit. Form assemblies and joints exposed to weather to resist water penetration and retention.
3. Comply with AWS for recommended practices in welding and brazing. Provide welds and brazes behind finished surfaces without distorting or discoloring exposed side. Clean exposed welded and brazed connections of flux, and dress exposed and contact surfaces.

4. Conceal connections if possible; otherwise, locate connections where they are inconspicuous.

5. Internally brace signs for stability and for securing fasteners.

6. Provide rebates, lugs, and brackets necessary to assembly components and to attach to existing work. Drill and tap for required fasteners. Use concealed fasteners where possible; use exposed fasteners that match sign finish.

PART 3 EXECUTION

3.1 INSPECTION

A. Examine the areas and conditions where signage is to be installed and correct any conditions detrimental to the proper and timely completion of the work. Do not proceed with the work until unsatisfactory conditions are corrected to permit proper installation of the work.

3.2 INSTALLATION

A. General: Install signs using mounting methods indicated and according to manufacturer’s written instruction.

1. Install signs level, plumb, true to line and at locations and heights indicted, with sign surfaces free of distortion and other defects in appearance.

2. Install signs so that do not protrude or obstruct according to the accessibility standard

B. Room Identification Signs and Other Accessible Signage: Install in locations on walls as indicated on Drawings and according to accessibility standard

C. Mounting Methods:

1. Concealed Studs: Use a template, drill holes in substrate aligning with studs on back of sign. Remove loose debris from hole and substrate surface.
 a. Masonry Substrates: Fill holes with adhesive. Leave space in hole for displaced adhesive. Place sign in position and push until flush to surface, embedding studs in holes. Temporarily support sign in position until adhesive full sets.
 b. Thin or Hollow Surfaces: Place sign in position and flush to surface, install washers and nuts on studs projecting through opposite of surface and tighten.

2. Projecting Studs: Using a template, drill holes in substrate aligning with studs on back of sign. Remove loose debris from hole and substrate surface.
a. Masonry Substrates: Fill holes with adhesive. Leave space in hole for displaced adhesive. Place spacers on studs, place sign in position and push until spacers are pinched between sign and substrate, embedding studs in holes. Temporarily support sign in position until adhesive full sets.

b. Thin or Hollow Surfaces: Place spacers on studs, place sign in position spacers pinched between sign and substrate and install washers and nuts on studs projecting through opposite of surface and tighten.

3. Two Face Tape: Clean bond breaking materials from substrate surface and remove loose debris. Apply tape strips symmetrically to back of sign and of suitable quality to support weight of sign without slippage. Keep strips away from edges to prevent visibility at sign edges. Place sign in position, and push to engage tape adhesive.

3.3 ADJUSTING AND CLEANING

A. Remove and replace damaged or deformed signs and signs that do not comply with specified requirements. Replace signs with damaged or deteriorated finishes or components that cannot be successfully repaired by finish touch p or similar minor repair procedures.

B. Remove temporary protective coverings and strippable films as signs are installed.

C. On completion of installation, clean exposed surfaces of signs according to manufacturer’s written instructions, and touch up minor nicks and abrasions in finish. Maintain signs in a clean condition during construction and protect from damage until acceptance by Owner.

END OF SECTION
PART 1 GENERAL

1.1 GENERAL REQUIREMENTS

A. Work of this Section, as shown or specified, shall be in accordance with the requirements of the Contract Documents.

1.2 SECTION INCLUDES

A. Work of this Section includes all labor, materials, equipment, and services necessary to complete the corner guards as shown on the drawings and/or specified herein.

1.3 RELATED SECTIONS

A. Gypsum Drywall - Section 092900

1.4 QUALITY ASSURANCE

A. Cover materials shall be classified in accordance with ASTM E 84 as to flame spread and smoke development and shall be classified as self-extinguishing in accordance with ASTM D 635.

1.5 SUBMITTALS

A. Samples: Two (2) samples of wall guards and corner guards each 12" long shall be delivered to the Architect.

B. Shop Drawings: Submit shop drawings for corner guards showing all anchorage devices.

PART 2 PRODUCTS

2.1 MATERIALS

A. Corner Guards: Provide "Model A675" aluminum corner guards as manufactured by InPro Corporation, or approved equal.

1. Size: 3" x 3" x 1/8" radius x 0.080" thick.

2. Full Wall: Refer to Finish Schedule for ceiling heights.

3. Attachment and Fasteners: Pre-drilled beveled holes and Phillips head screws.

4. Finish: As selected by the Architect from manufacturer's full range.
PART 3 EXECUTION

3.1 INSPECTION

A. Examine the areas and conditions where corner guards are to be installed and correct any conditions detrimental to the proper and timely completion of the work. Do not proceed with the work until unsatisfactory conditions are corrected to permit proper installation of the work.

3.2 INSTALLATION

A. Corner guards shall be set in alignment with the corner bead of the gypsum wallboard substrate.

B. Surface must be dry, clean and properly sealed.

C. Screw-On Installation: Position the corner guard on the wall and attach it using the supplied screws.

3.3 ADJUST AND CLEAN

A. Clean surfaces promptly after installation, exercise care to avoid damage to surfaces.

B. Protect corner guards from damage until acceptance of work.

END OF SECTION
SECTION 102813

TOILET ACCESSORIES

PART 1 GENERAL

1.1 GENERAL REQUIREMENTS

A. Work of this Section, as shown or specified, shall be in accordance with the requirements of the Contract Documents.

1.2 SECTION INCLUDES

A. Work of this Section includes all labor, materials, equipment, and services necessary to complete the toilet accessories as shown on the drawings and/or specified herein, including, but not limited to, the following:

1. Mirrors.
2. Grab bars.
3. Soap dispensers.
4. Toilet paper dispensers.
5. Paper towel dispensers.
7. Sanitary napkin vendor/dispenser.
8. Sanitary napkin disposal unit.
10. Mop and broom holder with shelf.

1.3 RELATED SECTIONS

A. Gypsum Drywall - Section 092900.
B. Ceramic Tiling - Section 093013.
C. Toilet Partitions - Section 102113.

1.4 QUALITY ASSURANCE

A. Inserts and Anchorages: Furnish inserts and anchoring devices which must be set in concrete or built into masonry; coordinate delivery with other work to avoid delay.
B. Accessory Locations: Coordinate accessory locations with other work to avoid interference and to assure proper operation and servicing of accessory units. Accessories shall be installed at heights in compliance with prevailing Handicapped Code.

C. Products: Unless otherwise noted, provide products of same manufacturer for each type of unit and for units exposed in same areas.

1.5 SUBMITTALS

A. Product Data: Submit manufacturer's technical data, catalog cuts and installation instructions for each toilet accessory.

B. Setting Drawings: Provide setting drawings, templates, instructions, and directions for installation of anchorage devices in other work

C. Submit schedule of accessories indicating quantity and location of each item.

1.6 PRODUCT HANDLING

A. Deliver accessories to the site ready for use in the manufacturer's original and unopened containers and packaging, bearing labels as to type or material, manufacturer's name and brand name. Delivered materials shall be identical to approved samples.

PART 2 PRODUCTS

2.1 MATERIALS

A. Stainless Steel: AISI Type 302/304, with polished No. 4 finish, 22 gauge minimum, unless otherwise indicated.

B. Brass: ASTM B 19 flat products; ASTM B 16, rods, shapes, forgings, and flat products with finished edges; or ASTM B 30, castings.

C. Galvanized Steel Sheet: ASTM A 653, G60.

D. Chromium Plating: Nickel and chromium electro-deposited on base metal, ASTM B 456, Type SC 2.

E. Mirrors: ASTM C 1503, mirror glazing quality, clear glass mirrors, nominal 1/4" thick.

2.2 FASTENING DEVICES

A. Exposed Fasteners: Theft-proof type, chrome plated, or stainless steel; match finishes on which they are being used.

B. Concealed Fasteners: Galvanized (ASTM A 123) or cadmium plated.

C. No exposed fastening devices permitted on exposed frames.
D. For metal stud drywall partitions, provide ten (10) gauge galvanized sheet concealed anchor plates for securing surface mounted accessories.

2.3 FABRICATION

A. General: Stamped names or labels on exposed faces of toilet accessory units are not permitted. Unobtrusive labels on surfaces not exposed to view are acceptable. Where locks are required for a particular type of toilet accessory, provide same keying throughout project. Furnish two keys for each lock.

B. Surface-Mounted Toilet Accessories, General: Fabricate units with tight seams and joints, exposed edges rolled. Hang doors or access panels with continuous stainless steel piano hinge. Provide concealed anchorage.

C. Recessed Toilet Accessories, General: Fabricate units of all welded construction, without mitered corners. Hang doors of access panels with full-length stainless steel piano hinge. Provide anchorage that is fully concealed when unit is closed.

D. Diaper-Changing Table: As manufactured by Koala Kare products, Division of Bobrick; recessed-mounted horizontal unit that opens by folding down from stored position and with child-protection strap. Diaper-changing table shall be engineered to support a minimum of 250 lb. static load when opened.

2.4 MANUFACTURERS

2.5 ACCESSORY SCHEDULE

A. As selected by the Architect.

PART 3 EXECUTION

3.1 INSPECTION

A. Examine the areas and conditions where toilet accessories are to be installed and correct any conditions detrimental to the proper and timely completion of the work. Do not proceed with the work until unsatisfactory conditions are corrected to permit proper installation of the work.

3.2 PREPARATION

A. Accessories that are to be partition mounted shall be closely coordinated with other trades, so that the necessary reinforcing is provided to receive the accessories.

B. Furnish templates and setting drawings and anchor plates required for the proper installation of the accessories at gypsum drywall and masonry partitions. Coordinate the work to assure that base plates and anchoring frames are in the proper position to secure the accessories.
C. Verify by measurements taken at the job site those dimensions affecting the work. Bring field dimensions that are at variance with those on the approved shop drawings to the attention of the Architect. Obtain decision regarding corrective measures before the start of fabrication of items affected.

D. Cooperate in the coordination and scheduling of the work of this Section with the work of other Sections so as not to delay job progress.

3.3 INSTALLATION

A. Install accessories at locations indicated on the drawings, using skilled mechanics, in a plumb, level and secure manner.

B. Concealed anchor assemblies for gypsum drywall partitions shall be securely anchored to metal studs to accommodate accessories. Assemblies shall consist of plates and/or angles tack welded to studs.

C. Secure accessories in place, at their designated locations by means of theft-proof concealed set screws, so as to render removing of the accessory with a screwdriver impossible.

D. Unless otherwise indicated, accessories shall conform to heights from the finished floor as shown on the drawings. Where locations are not indicated, such locations shall be as directed by the Architect.

E. Installed accessories shall operate quietly and smoothly for use intended. Doors and operating hardware shall function without binding or unnecessary friction. Dispenser type accessories shall be keyed alike. Prior to final acceptance, master key and one duplicate key shall be given to Owner’s authorized agent.

F. The Architect shall be the sole judge of workmanship. Workmanship shall be of the highest quality. Open joints, weld marks, poor connections, etc., will not be permitted. The Architect has the right to reject any accessory if he feels the workmanship is below the standards of this project.

G. Grab bars shall be installed so that they can support a three hundred (300) lb. load for five minutes per ASTM F 446.

3.4 CLEANING AND PROTECTION

A. Upon completion of the installation, clean accessories of dirt, paint and foreign matter.

B. During the installation of accessories and until finally installed and accepted, protect accessories with gummed canvas or other means in order to maintain the accessories in acceptable condition.

C. Replace and/or repair, to the Owner's satisfaction, and at no additional cost to the Owner, installed work that is damaged or defective.

END OF SECTION
SECTION 104413

FIRE PROTECTION SPECIALTIES

PART 1 GENERAL

1.1 GENERAL REQUIREMENTS

A. Work of this Section, as shown or specified, shall be in accordance with the requirements of the Contract Documents.

1.2 SECTION INCLUDES

A. The Work of this Section includes all labor, materials, equipment, and services necessary to complete the fire protection specialties as shown on the drawings and/or specified herein.

1. Portable fire extinguishers.

2. Fire-protection cabinets.

1.3 RELATED SECTIONS

A. Gypsum Drywall - Section 092900.

B. Fire suppression systems - Division 21.

C. Fire hose cabinets and valve cabinets - Division 21.

1.4 QUALITY ASSURANCE

A. Provide portable fire extinguishers, cabinets and accessories by one manufacturer.

B. UL-Listed Products: Provide new portable fire extinguishers which are UL-listed and bear UL "Listing Mark" for type, rating, and classification of extinguisher indicated.

1.5 SUBMITTALS

A. Product Data: Submit manufacturer's technical data and installation instructions for all portable fire extinguishers required. For fire extinguisher cabinets include roughing-in dimensions, and details showing mounting methods, relationships to surrounding construction, door hardware, cabinet type and materials, trim style and door construction, style and materials. Where color selections by Architect are required, include color charts showing full range of manufacturer's standard colors and designs available.

B. Samples: Submit samples, 6" square, of each required finish. Prepare samples on metal of same gauge as metal to be used in the work. Where normal color variations are to be expected, include 2 or more units in each sample showing the limits of such variations.
PART 2 PRODUCTS

2.1 MANUFACTURERS

A. Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:

1. JL Industries.

2.2 PORTABLE FIRE EXTINGUISHERS

A. General: Provide fire extinguishers for each extinguisher cabinet and other locations indicated, in colors and finishes selected by Architect from manufacturer's standard which comply with requirements of governing authorities.

B. Abbreviations indicated below to identify extinguisher type related to UL classification and rating system and not necessarily to type and amount of extinguishing material contained in extinguisher.

C. Multi-Purpose Dry Chemical Type: UL rated 4-A:60-B:C, 10 lb. nominal capacity, in enameled steel container, for Class A, Class B and Class C fires.

1. Product: J.L. Industries' "COSMIC 10E," or approved equal, multipurpose dry chemical type consisting of heavy-duty steel cylinder, rugged metal valve and siphon tube, replaceable molded valve stem seal, pull pin and upright squeeze-grip operation.

2.3 CABINETS

A. Type and Style: Fire extinguisher cabinets shall be metal, recessed, with clear, tempered glass panel, sized to fit within the partition or wall depth. Provide fire-rated cabinets within fire-rated partitions.

B. Color: Fire extinguisher cabinets shall be factory pre-finished with baked enamel in the colors selected by the Architect from the standard range of colors of the selected manufacturer.

C. Type: JL Industries' "Ambassador 3036G11FX" or approved equal, # 6 satin stainless return trim, fire extinguisher cabinet with flanged tub constructed of cold-rolled steel, die cut letters in white.

2.4 MOUNTING BRACKETS

A. Provide manufacturer's standard bracket designed to prevent accidental dislodgment of extinguisher, of proper size for type and capacity of extinguisher specified, in manufacturer's standard enamel finish; color to match extinguisher.
2.5 IDENTIFICATION

A. Identify fire extinguisher in cabinet with lettering spelling "FIRE EXTINGUISHER" painted on door by silk-screen process. Provide lettering on door as selected by Architect from manufacturer's standard letter sizes, styles, colors and layouts.

B. Identify bracket-mounted extinguishers with red letter decals spelling 'FIRE EXTINGUISHER' applied to wall surface. Letter size, style and location as selected by the Architect.

PART 3 EXECUTION

3.1 INSPECTION

A. Examine the areas and conditions where fire extinguishers and cabinets are to be installed and correct any conditions detrimental to the proper and timely completion of the work. Do not proceed with the work until unsatisfactory conditions are corrected to permit proper installation of the work.

3.2 INSTALLATION

A. Install items included in this Section in locations indicated and at heights to comply with applicable regulations of governing authorities.

1. Prepare recesses in walls for fire extinguisher cabinets as required by type and size of cabinet and style of trim and to comply with manufacturer's instructions.

2. Securely fasten mounting brackets and fire extinguisher cabinets to structure, square and plumb, to comply with manufacturer's instructions.

B. Where exact location of cabinets and bracket-mounted fire extinguishers is not indicated, locate as directed by the Architect.

3.3 SERVICE

A. Determine the approximate completion date of the work and then inspect, charge, and tag the fire extinguishers at a date not more than 10 days before or not less than one day before actual completion date of the work.

END OF SECTION
This page intentionally left blank
SECTION 115100

LIBRARY EQUIPMENT

PART 1 GENERAL

1.1 GENERAL REQUIREMENTS

A. Work of this Section, as shown or specified, shall be in accordance with the requirements of the Contract Documents.

B. The Work of this Section includes all labor, materials, equipment, and services necessary to complete the library equipment as shown on the drawings and/or specified herein.

1. Book detection system.

2. Metal shelving.

1.2 QUALITY ASSURANCE

A. Qualifications of Installers: For installation of library equipment, use only personnel who are thoroughly trained and experienced in the skills involved and who are completely familiar with the manufacturer's recommended methods of installation.

1.3 SUBMITTALS

A. Product Data: Submit manufacturer’s product data for each type of library equipment specified, including details of construction-relative materials, dimensions, profiles, component parts, accessories, and finishes.

B. Shop Drawings: Submit shop drawings from manufacturer for each type of library equipment assembly, indicating layout, details, individual unit dimensions, required clearances, component parts, method of field assembly, and anchorage to surrounding construction.

C. Samples: Submit 12" x 12" samples of each exposed finish and condition required.

1. Provide 6" long samples for each accessory item as required.

D. Manufacturer’s recommended installation procedures.

1.4 PRODUCT HANDLING

A. Protection: Use all means necessary to protect the materials of this Section before, during, and after installation, and to protect the installed work and materials of all other trades.

B. Replacements: In the event of damage, immediately make all repairs and replacements necessary.
PART 2 PRODUCTS

2.1 LIBRARY EQUIPMENT
 A. Book Detection System: Provide "Liberty PX Detection System" as manufactured by
 Checkpoint Systems, Inc., distributed by 3M, or approved equal.

2.2 MISCELLANEOUS ACCESSORIES
 A. Provide all required accessories, trim and ancillary items for complete installation of
 library equipment.

PART 3 EXECUTION

3.1 INSPECTION
 A. Examine the areas and conditions where library equipment is to be installed and correct
 any conditions detrimental to the proper and timely completion of the work. Do not
 proceed with the work until unsatisfactory conditions are corrected to permit proper
 installation of the work.

3.2 INSTALLATION
 A. Install library equipment at locations shown in accordance with manufacturer's
 instructions for plumb, level, rigid and flush installation.

3.3 ADJUST AND CLEAN
 A. Adjust equipment to operate easily without binding. Verify that equipment is operating
 properly.

 B. Touch-up marred finishes, but replace units which cannot be restored to factory-
 finished appearance. Use only materials and procedures recommended or furnished by
 equipment manufacturer.

END OF SECTION
SECTION 122413

WINDOW SHADES

PART 1 GENERAL

1.1 GENERAL REQUIREMENTS

A. Work of this Section, as shown or specified, shall be in accordance with the requirements of the Contract Documents.

1.2 SECTION INCLUDES

A. Work of this Section includes all labor, materials, equipment, and services necessary to complete the window shades as shown on the drawings and/or specified herein, including, but not limited to, the following:

1. Manually-operated window shades.

2. Field measurements of as-built conditions.

3. Accessories and hardware required for complete installation and operation.

1.3 QUALITY ASSURANCE

A. Provide assemblies which are complete assemblies produced by one manufacturer, including hardware, accessory items, mounting brackets, and fastenings.

B. Provide materials in colors as selected by the Architect from manufacturer's standard colors.

1.4 SUBMITTALS

A. Product Data: For each type of product indicated. Include styles, material descriptions, construction details, dimensions of individual components and profiles, features, finishes, and operating instructions.

 1. Motorized Shade Operators: Include operating instructions.

 2. Motors: Show nameplate data, ratings, characteristics, and mounting arrangements.

B. Shop Drawings: Submit floor layout and elevations, indicating location of all window treatments, mechanism details, type and size of each unit, type and location of controls. Shop drawings must also show seaming of shade fabric. Submit shop drawings showing details of installation and relation to adjoining construction and conditions.

C. Samples: Submit full size sample of each shade type for Architect's acceptance.

D. Mock-Up

 1. Install each type of shade assembly on one complete column bay for Architect's acceptance of installation details, workmanship and operation.
2. Approved mock-up shall be used as the standard for installation of work under this Section, and no further installation work shall proceed before Architect's acceptance of the mock-up.

1.5 WARRANTY

A. Manufacturer’s standard non-depreciating 25-year limited warranty covering all hardware, chains, motors, motor control system and shade cloth.

1.6 DELIVERY, STORAGE AND HANDLING

A. Protect shades from damage, soiling and deterioration during transit, storage and handling to, until Owner's acceptance.

PART 2 PRODUCTS

2.1 MANUALLY OPERATED SHADES

A. Provide manually operated shade system equal to "Mechoshade/5 System," made by the Mecho-Shade Corp. or equal made by Sol-R-Veil Inc., Draper, or approved equal conforming to standards specified herein.

B. Shade system shall be pre-engineered overrunning clutch design that disengages to 90% during the raising and lowering of the shade. The brake can stand a pull force of 40 lb. in the stop position. Requires no adjustment. Self-lubricating hub on to which the brake system is mounted includes an articulated brake assembly which assures smooth, non-jerky operation in raising and lowering the shades. System shall include the following components:

1. Provide shade hardware allowing for the removal of shade roller tube from brackets without removing hardware from opening and without requiring end or center supports to be removed.

2. Provide shade hardware that allows for removal and remounting of the shade bands without having to remove the shade tube, drive or operating support brackets.

3. Provide for universal, regular and offset drive capacity, allowing drive chain to fall at front, rear or non-offset for all shade drive end brackets. Universal offset shall be adjustable for future change.

4. Provide shade hardware system that allows for removable regular and/or reverse roll fascias to be mounted continuously across two or more shade bands without requiring exposed fasteners of any kind.

5. Provide shade hardware system that allow for operation of multiple shade bands (multi-banded shades) by a single chain operator. Connectors shall be offset to assure alignment from the first to the last shade band.

6. Provide shade hardware constructed of minimum 1/8" thick plated steel or heavier as required to support 150% of the full weight of each shade.

7. Drive Bracket/Brake Assembly:
a. MechoShade Drive Bracket M5 or equal by other manufacturers noted herein.
b. Drive Chain: #10 qualified stainless steel chain rated to 90 lb.
c. Minimum Breaking Strength: Nickel plate chain shall not be accepted.

C. Shade Bands: Construction of shade band includes the fabric, the hem weight, hem pocket, shade roller tube, and the attachment of the shade band to the roller tube. Sewn hems and open hem pockets are not acceptable.

1. Hem Pockets and Hem Weights: Fabric hem pocket with RF welded seams (including welded ends) and concealed hem weights. Hem weights shall be of appropriate size and weight for shade band. Hem weight shall be continuous inside a sealed hem pocket. Hem pocket construction and hem weights shall be the same, for all shades within one room.

2. Shade Band and Shade Roller Attachment:
 a. Provide extruded aluminum shade roller tube of a diameter and wall thickness required to support shade fabric without deflection. Provide for positive mechanical engagement with drive/brake mechanism.
 b. Provide for positive mechanical attachment of shade band to roller tube; shade band shall be made removable/replaceable with a snap-on/snap-off spline mounting, without having to remove shade roller from shade brackets.
 c. Mounting spline shall not require use of adhesives, adhesive tapes, staples and/or rivets.

2.2 SHADE CLOTH
 A. Thermoviel Densse Basket Weave, series 1300 (5% open) or approved equal.
 1. Content: 75% PVC (coating), 25% polyester (yarn).
 2. Openness factor: 5%.

2.3 FABRICATION
 A. The shade and the fabric shall hang flat without buckling or distortion. The edge, when trimmed, shall hang straight without curling or raveling. An unguided roller shade cloth shall roll true and straight, without shifting sideways more than +/- 1/8" in either direction due to warp distortion or weave design. Shades shall fill window openings from head to sill and jamb to jamb.

PART 3 EXECUTION

3.1 INSPECTION
 A. Examine the areas and conditions where window treatments are to be installed and correct any conditions detrimental to the proper and timely completion of the work. Do
not proceed with the work until unsatisfactory conditions are corrected to permit proper installation of the work.

3.2 INSTALLATION: GENERAL

A. Coordinate with the work of other trades to assure proper and adequate provision in the work of those trades for interface with the work of this Section.

B. Install the work of this Section in strict accordance with the indicated design and the installation recommendations of the manufacturer as approved by the Architect.

C. Upon completion of the installation, put all components through at least ten (10) complete cycles of operation, adjusting as necessary to achieve optimum operation.

3.3 INSTALLATION OF MANUAL ROLLER SHADES

A. Install roller shades level, plumb, square, and true according to manufacturer’s written instructions and located so shade band is not closer than 2" to interior face of glass. Allow proper clearances for window operation hardware.

B. Adjust and balance roller shades to operate smoothly, easily, safely, and free from binding or malfunction throughout entire operational range.

C. Clean roller shade surfaces after installation, according to manufacturers written instructions.

3.4 PROTECTION AND CLEANING

A. Protect installed units to ensure proper operating condition, without damage or blemishes. Repair or replace damaged units as directed by the Architect.

END OF SECTION
PART 1 GENERAL

1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 1 Specification Sections, apply to this Section.

1.2 SUMMARY
A. Not all listed materials and systems may be utilized for this project. Use applicable items, as required
B. This Section includes the following:
 1. Piping materials and installation instructions common to most piping systems.
 2. Transition fittings.
 3. Mechanical sleeve seals.
 4. Sleeves.
 5. Grout.
 6. Equipment installation requirements common to equipment sections.
 7. Painting and finishing.
 8. Concrete bases.

1.3 DEFINITIONS
A. Finished Spaces: Spaces other than mechanical and electrical equipment rooms, furred spaces, pipe and duct shafts, unheated spaces immediately below roof, spaces above ceilings, unexcavated spaces, crawlspace, and tunnels.
B. Exposed, Interior Installations: Exposed to view indoors. Examples include finished occupied spaces and mechanical equipment rooms.
C. Exposed, Exterior Installations: Exposed to view outdoors or subject to outdoor ambient temperatures and weather conditions. Examples include rooftop locations.
D. Concealed, Interior Installations: Concealed from view and protected from physical contact by building occupants. Examples include above ceilings and in duct shafts.
E. Concealed, Exterior Installations: Concealed from view and protected from weather conditions and physical contact by building occupants but subject to outdoor ambient temperatures. Examples include installations within unheated shelters.
F. The following are industry abbreviations for plastic materials:
 2. CPVC: Chlorinated polyvinyl chloride plastic.
 3. PE: Polyethylene plastic.
 4. PVC: Polyvinyl chloride plastic.
The following are industry abbreviations for rubber materials:

1. EPDM: Ethylene-propylene-diene terpolymer rubber.
2. NBR: Acrylonitrile-butadiene rubber.

1.4 SUBMITTALS

A. GENERAL MECHANICAL SUBMITTAL REQUIREMENTS

1. In addition to submittal procedures indicated in other sections of this specification, all Division 23 items shall be submitted as one complete set, tabbed and indexed with all equipment and systems properly and clearly identified per project document designations (partial submittals will not be accepted without the written permission of the Engineer). All capacities, standard accessories, options and characteristics shall be clearly and individually identified. Any deviations from the specified systems and equipment shall be clearly identified and accompanied by descriptions, explanations, drawings and calculations, etc. to support their use, indicating specifically how the submitted items will meet requirements of the original design specifications. The Engineer shall have sole discretion, without recourse, as to the determination of what items are deemed suitable for approval. Alternative submittals/substitutions: If re-design of the building and/or systems is required to accommodate the proposed alternative equipment/systems, such re-design shall be performed by the A/E of record, and paid for (on an hourly basis, plus expenses) by the contractor requesting the substitution. Submittals not meeting these requirements are subject to return without notice or review.

B. Product Data: For the following:
 1. Transition fittings.
 2. Dielectric fittings.
 3. Mechanical sleeve seals.
 4. Escutcheons.

C. Welding certificates.

1.5 QUALITY ASSURANCE

A. Steel Support Welding: Qualify processes and operators according to AWS D1.1, "Structural Welding Code--Steel."

B. Steel Pipe Welding: Qualify processes and operators according to ASME Boiler and Pressure Vessel Code: Section IX, "Welding and Brazing Qualifications."
 1. Comply with provisions in ASME B31 Series, "Code for Pressure Piping."
 2. Certify that each welder has passed AWS qualification tests for welding processes involved and that certification is current.

C. Electrical Characteristics for Mechanical Equipment: Equipment of higher electrical characteristics may be furnished provided such proposed equipment is approved in writing and connecting electrical services, circuit breakers, and conduit sizes are appropriately modified. If minimum energy ratings or efficiencies are specified, equipment shall comply with requirements.

D. MOTOR STARTERS AND CONTROLS SHALL BE FURNISHED WITH ALL MECHANICAL EQUIPMENT AND SYSTEMS, UNLESS OTHERWISE APPROVED. EXCEPTION: STARTERS THAT ARE TO BE FURNISHED AS PART OF A MOTOR CONTROL CENTER (MCC) SHALL BE COORDINATED WITH, AND FURNISHED BY ELECTRICAL.
E. ALL CONTROL WIRING SHALL BE INSTALLED IN EMT CONDUIT (OR OTHER APPROVED RACEWAY) AS PER DIVISION 16, AND NEC REQUIREMENTS, UNLESS OTHERWISE APPROVED. EXCEPTION: PROPERLY RATED CABLE (CEILING PLENUM, ETC.) MAY BE INSTALLED IN ACCESSIBLE, CONCEALED SPACES, AS DIRECTED IN OTHER SECTIONS OF THIS SPECIFICATION.

F. Work shall be performed in accordance with quality, commercial practices. The appearance of finished work shall be of equal importance with its operation. Materials and equipment shall be installed based upon the actual dimensions and conditions at the project site. Locations for materials or equipment requiring an exact fit shall be field measured. Rotating equipment, piping and duct system shall be isolated to avoid unacceptable noise levels from objectionable vibrations from all systems without cost to the Owner.

G. Some mechanical equipment sizes indicated on the Drawings are based on a particular manufacturer. It is the responsibility of the Contractor to verify that the equipment he proposes to furnish will fit in the space indicated on the Drawings. Refer to Architectural and Structural Drawings for building dimensions. Equipment furnished by the Owner shall be coordinated with equipment furnished and installed under this section and other sections.

1.6 DELIVERY, STORAGE, AND HANDLING

A. Deliver pipes and tubes with factory-applied end caps. Maintain end caps through shipping, storage, and handling to prevent pipe end damage and to prevent entrance of dirt, debris, and moisture.

B. Store plastic pipes protected from direct sunlight. Support to prevent sagging and bending.

1.7 COORDINATION

A. Arrange for pipe spaces, chases, slots, and openings in building structure during progress of construction, to allow for mechanical installations.

B. Coordinate installation of required supporting devices and set sleeves in poured-in-place concrete and other structural components as they are constructed.

C. Coordinate requirements for access panels and doors for mechanical items requiring access that are concealed behind finished surfaces.

D. Where the mechanical drawings indicate (diagrammatically or otherwise) the work intended and the functions to be performed, even though some minor details are not shown, the Contractor shall furnish all equipment, material (other than Owner furnished items), and labor to complete the installation, and accomplish all indicated functions of the mechanical installation. Further, the Contractor shall be responsible for taking the necessary actions to ensure that all mechanical work is coordinated and compatible with architectural, plumbing, electrical and structural plans. In the event of conflict between the plans and the enforcing code authority, the latter shall rule. Any modification resulting there from shall be made without additional cost to the Owner or Engineer. The contractor shall report such modifications to the Architect in writing and secure approval before proceeding. Where a conflict between the construction drawings and specifications occur the greater quantity and/or greater quality shall be used.

E. Maintain "As-Built" Drawing to be included with the O & M Manuals. Maintain a set of "Blue-Line Prints and indicate changes and diagrams of those portions of work in which actual construction is significantly at variance with the Contract Drawings. Mark the Drawings with a colored pencil. Prepare, as the work progresses and upon completion of work, drawings clearly indicating locations of all devices, equipment and other pertinent items, as installed. Include
invert elevation or buried depth of piping. Upon completion of the project, submit all materials to the Owner, after verifying all the above data is shown correctly.

F. Perform work to meet or exceed the requirements of the International Building Code, International Mechanical Code, International Plumbing Code and other applicable statutes, ordinances, codes and regulations of governmental authorities having jurisdiction. Resolve any code violation discovered in the Contract Documents with the Engineer prior to award of the Contract. After award of the Contract, make any corrections or additions necessary for compliance with applicable codes at no additional cost to the Owner.

G. Obtain and pay for all permits, licenses and inspections as required by law for the completion of the work. Comply with the requirements of the applicable utility companies serving this project. Make all arrangements with the utility companies for proper coordination of the work.

PART 2 PRODUCTS

2.1 MANUFACTURERS

A. In other Part 2 articles where subparagraph titles below introduce lists, the following requirements apply for product selection:

1. Manufacturers: Subject to compliance with requirements, provide products by the manufacturers specified.

2.2 PIPE, TUBE, AND FITTINGS

A. Pipe Threads: ASME B1.20.1 for factory-threaded pipe and pipe fittings.

2.3 JOINING MATERIALS

A. Refer to individual Division 23 piping Sections for special joining materials not listed below.

B. Pipe-Flange Gasket Materials: Suitable for chemical and thermal conditions of piping system contents.

1. ASME B16.21, nonmetallic, flat, asbestos-free, 1/8-inch maximum thickness unless thickness or specific material is indicated.
 a. Full-Face Type: For flat-face, Class 125, cast-iron and cast-bronze flanges.
 b. Narrow-Face Type: For raised-face, Class 250, cast-iron and steel flanges.

2. AWWA C110, rubber, flat face, 1/8 inch thick, unless otherwise indicated; and full-face or ring type, unless otherwise indicated.

C. Flange Bolts and Nuts: ASME B18.2.1, carbon steel, unless otherwise indicated.

D. Plastic, Pipe-Flange Gasket, Bolts, and Nuts: Type and material recommended by piping system manufacturer, unless otherwise indicated.

E. Solder Filler Metals: ASTM B 32, lead-free alloys. Include water-flushable flux according to ASTM B 813.

F. Brazing Filler Metals: AWS A5.8, BCuP Series, copper-phosphorus alloys for general-duty brazing, unless otherwise indicated; and AWS A5.8, BAg1, silver alloy for refrigerant piping, unless otherwise indicated.

G. Welding Filler Metals: Comply with AWS D10.12 for welding materials appropriate for wall thickness and chemical analysis of steel pipe being welded.
H. Fiberglass Pipe Adhesive: As furnished or recommended by pipe manufacturer.

2.4 TRANSITION FITTINGS

A. AWWA Transition Couplings: Same size as, and with pressure rating at least equal to and with ends compatible with, piping to be joined.
 1. Manufacturers:
 b. Dresser Industries, Inc.; DMD Div.
 c. JCM Industries.

2. Underground Piping NPS 1-1/2 and Smaller: Manufactured fitting or coupling.
4. Aboveground Pressure Piping: Pipe fitting.

B. Flexible Transition Couplings for Underground Nonpressure Drainage Piping: ASTM C 1173 with elastomeric sleeve, ends same size as piping to be joined, and corrosion-resistant metal band on each end.
 1. Manufacturers:
 b. Fernco, Inc.

2.5 MECHANICAL SLEEVE SEALS

A. Description: Modular sealing element unit, designed for field assembly, to fill annular space between pipe and sleeve.
 1. Manufacturers:
 a. Advance Products & Systems, Inc.
 b. Calpico, Inc.
 c. Metraflex Co.

2. Sealing Elements: EPDM interlocking links shaped to fit surface of pipe. Include type and number required for pipe material and size of pipe.
3. Pressure Plates: Stainless steel. Include two for each sealing element.
4. Connecting Bolts and Nuts: Stainless steel of length required to secure pressure plates to sealing elements. Include one for each sealing element.

2.6 SLEEVES

A. Galvanized-Steel Sheet: 0.0239-inch minimum thickness; round tube closed with welded longitudinal joint.
B. Steel Pipe: ASTM A 53, Type E, Grade B, Schedule 40, galvanized, plain ends.
C. Cast Iron: Cast or fabricated "wall pipe" equivalent to ductile-iron pressure pipe, with plain ends and integral waterstop, unless otherwise indicated.
D. Stack Sleeve Fittings: Manufactured, cast-iron sleeve with integral clamping flange. Include clamping ring and bolts and nuts for membrane flashing.
 1. Underdeck Clamp: Clamping ring with set screws.

2.7 GROUT
A. Description: ASTM C 1107, Grade B, nonshrink and nonmetallic, dry hydraulic-cement grout.
 2. Design Mix: 5000-psi, 28-day compressive strength.

2.10 DRAIN PANS
A. Description: Aluminum or stainless steel formed or welded construction, sized to accommodate the equipment the pan is intended to protect. All equipment (i.e. water heaters, air handlers, pumps, etc.) that are required by code or as indicated on the construction documents shall be provided with a drain pan with the associated copper drain pipe routed to a code compliant receptor.

PART 3 EXECUTION

3.1 PIPING SYSTEMS - COMMON REQUIREMENTS
A. Install piping according to the following requirements and Division 23 Sections specifying piping systems.
B. Drawing plans, schematics, and diagrams indicate general location and arrangement of piping systems. Indicated locations and arrangements were used to size pipe and calculate friction loss, expansion, pump sizing, and other design considerations. Install piping as indicated unless deviations to layout are approved prior to installation.
C. Install piping in concealed locations, unless otherwise indicated and except in equipment rooms and service areas.
D. Install piping indicated to be exposed and piping in equipment rooms and service areas at right angles or parallel to building walls. Diagonal runs are prohibited unless specifically indicated otherwise.
E. Install piping above accessible ceilings to allow sufficient space for ceiling panel, and lighting fixture removal.
F. Install piping to permit valve servicing.
G. Install piping at indicated slopes.
H. Install piping free of sags and bends.
I. Install fittings for changes in direction and branch connections.
J. Install piping to allow application of insulation.
K. Select system components with pressure rating equal to or greater than system operating pressure.
L. Install escutcheons for penetrations of walls, ceilings, and floors according to the following:
 1. New Piping:
 a. Piping with Fitting or Sleeve Protruding from Wall: One-piece, deep-pattern type.
 b. Chrome-Plated Piping: One-piece, cast-brass type with polished chrome-plated finish.
 c. Insulated Piping: One-piece, stamped-steel type with spring clips.
 d. Bare Piping at Wall and Floor Penetrations in Finished Spaces: One-piece, cast-brass type with polished chrome-plated finish.
e. Bare Piping at Ceiling Penetrations in Finished Spaces: One-piece, stamped-steel type or split-plate, stamped-steel type with concealed hinge and set screw.

f. Bare Piping in Unfinished Service Spaces: One-piece, stamped-steel type with concealed hinge and set screw or spring clips.

g. Bare Piping in Equipment Rooms: One-piece, stamped-steel type with set screw or spring clips.

h. Bare Piping at Floor Penetrations in Equipment Rooms: One-piece, floor-plate type.

M. Install sleeves for pipes passing through concrete and masonry walls and concrete floor and roof slabs.

1. Cut sleeves to length for mounting flush with both surfaces.
 a. Exception: Extend sleeves installed in floors of mechanical equipment areas or other wet areas 2 inches above finished floor level. Extend cast-iron sleeve fittings below floor slab as required to secure clamping ring if ring is specified.

2. Install sleeves in new walls and slabs as new walls and slabs are constructed.

3. Install sleeves that are large enough to provide 1/4-inch annular clear space between sleeve and pipe or pipe insulation. Use the following sleeve materials:
 a. Steel Pipe Sleeves: For pipes smaller than NPS 6.
 b. Steel Sheet Sleeves: For pipes NPS 6 and larger, penetrating gypsum-board partitions.
 c. Stack Sleeve Fittings: For pipes penetrating floors with membrane waterproofing. Secure flashing between clamping flanges. Install section of cast-iron soil pipe to extend sleeve to 2 inches above finished floor level. Installation shall comply with roofing system warranty requirements.

 1) Seal space outside of sleeve fittings with grout.

4. Except for underground wall penetrations, seal annular space between sleeve and pipe or pipe insulation, using joint sealants appropriate for size, depth, and location of joint.

N. Aboveground, Exterior-Wall Pipe Penetrations: Seal penetrations using sleeves and mechanical sleeve seals. Select sleeve size to allow for 1-inch annular clear space between pipe and sleeve for installing mechanical sleeve seals.

1. Install steel pipe for sleeves smaller than 6 inches in diameter.
2. Install cast-iron "wall pipes" for sleeves 6 inches and larger in diameter.
3. Mechanical Sleeve Seal Installation: Select type and number of sealing elements required for pipe material and size. Position pipe in center of sleeve. Assemble mechanical sleeve seals and install in annular space between pipe and sleeve. Tighten bolts against pressure plates that cause sealing elements to expand and make watertight seal.

O. Underground, Exterior-Wall Pipe Penetrations: Install cast-iron "wall pipes" for sleeves. Seal pipe penetrations using mechanical sleeve seals. Select sleeve size to allow for 1-inch annular clear space between pipe and sleeve for installing mechanical sleeve seals.

1. Mechanical Sleeve Seal Installation: Select type and number of sealing elements required for pipe material and size. Position pipe in center of sleeve. Assemble mechanical sleeve seals and install in annular space between pipe and sleeve. Tighten bolts against pressure plates that cause sealing elements to expand and make watertight seal.

P. Fire-Barrier Penetrations: Maintain indicated fire rating of walls, partitions, ceilings, and floors at pipe penetrations. Seal pipe penetrations with firestop materials.
Q. Verify final equipment locations for roughing-in.

3.2 PIPING JOINT CONSTRUCTION

A. Join pipe and fittings according to the following requirements and Division 23 Sections specifying piping systems.

B. Ream ends of pipes and tubes and remove burrs. Bevel plain ends of steel pipe.

C. Remove scale, slag, dirt, and debris from inside and outside of pipe and fittings before assembly.

D. Soldered Joints: Apply ASTM B 813, water-flushable flux, unless otherwise indicated, to tube end. Construct joints according to ASTM B 828 or CDA's "Copper Tube Handbook," using lead-free solder alloy complying with ASTM B 32.

F. Threaded Joints: Thread pipe with tapered pipe threads according to ASME B1.20.1. Cut threads full and clean using sharp dies. Ream threaded pipe ends to remove burrs and restore full ID.

Join pipe fittings and valves as follows:
1. Apply appropriate tape or thread compound to external pipe threads unless dry seal threading is specified.
2. Damaged Threads: Do not use pipe or pipe fittings with threads that are corroded or damaged. Do not use pipe sections that have cracked or open welds.

G. Welded Joints: Construct joints according to AWS D10.12, using qualified processes and welding operators according to Part 1 "Quality Assurance" Article.

H. Flanged Joints: Select appropriate gasket material, size, type, and thickness for service application. Install gasket concentrically positioned. Use suitable lubricants on bolt threads.

I. PE Piping Heat-Fusion Joints: Clean and dry joining surfaces by wiping with clean cloth or paper towels. Join according to ASTM D 2657.
1. Plain-End Pipe and Fittings: Use butt fusion.
2. Plain-End Pipe and Socket Fittings: Use socket fusion.

J. Fiberglass Bonded Joints: Prepare pipe ends and fittings, apply adhesive, and join according to pipe manufacturer's written instructions.

3.3 PIPING CONNECTIONS

A. Make connections according to the following, unless otherwise indicated:
1. Install unions, in piping NPS 2 and smaller, adjacent to each valve and at final connection to each piece of equipment.
2. Install flanges, in piping NPS 2-1/2 and larger, adjacent to flanged valves and at final connection to each piece of equipment.
3. Dry Piping Systems: Install dielectric unions and flanges to connect piping materials of dissimilar metals.

3.4 EQUIPMENT INSTALLATION - COMMON REQUIREMENTS

A. Install equipment to allow maximum possible headroom unless specific mounting heights are indicated.
B. Install equipment level and plumb, parallel and perpendicular to other building systems and components in exposed interior spaces, unless otherwise indicated.

C. Install mechanical equipment to facilitate service, maintenance, and repair or replacement of components. Connect equipment for ease of disconnecting, with minimum interference to other installations. Extend grease fittings to accessible locations.

D. Install equipment to allow right of way for piping installed at required slope.

E. Install drain pans under equipment in such a manner that there is sufficient fall for the water to drain if an overflow/leak condition occurs. The contractor is responsible for coordinating the size and equipment installation for a drain pan and piping system that meets code and functionality requirements.

3.5 PAINTING

A. Damage and Touchup: Repair marred and damaged factory-painted finishes with materials and procedures to match original factory finish.

B. Unless otherwise indicated, where “bright” ductwork, or other piping, etc. systems are visible to the occupied space through grilles, etc., they shall be painted with “flat” black paint, as required.

3.6 CONCRETE BASES

A. Concrete Bases: Anchor equipment to concrete base according to equipment manufacturer's written instructions and according to seismic codes at Project.

1. Construct concrete bases of dimensions indicated, but not less than 4 inches larger in both directions than supported unit.

2. Install dowel rods to connect concrete base to concrete floor. Unless otherwise indicated, install dowel rods on 18-inch centers around the full perimeter of the base.

3. Install epoxy-coated anchor bolts for supported equipment that extend through concrete base, and anchor into structural concrete floor.

4. Place and secure anchorage devices. Use supported equipment manufacturer's setting drawings, templates, diagrams, instructions, and directions furnished with items to be embedded.

5. Install anchor bolts to elevations required for proper attachment to supported equipment.

6. Install anchor bolts according to anchor-bolt manufacturer's written instructions.

7. Use 3000-psi, 28-day compressive-strength concrete and reinforcement.

3.7 ERECTION OF METAL SUPPORTS AND ANCHORAGES

A. Cut, fit, and place miscellaneous metal supports accurately in location, alignment, and elevation to support and anchor mechanical materials and equipment.

B. Field Welding: Comply with AWS D1.1.

3.8 ERECTION OF WOOD SUPPORTS AND ANCHORAGES

A. Cut, fit, and place wood grounds, nailers, blocking, and anchorages to support, and anchor mechanical materials and equipment.

B. Select fastener sizes that will not penetrate members if opposite side will be exposed to view or will receive finish materials. Tighten connections between members. Install fasteners without splitting wood members.

C. Attach to substrates as required to support applied loads.
3.9 GROUTING

A. Mix and install grout for mechanical equipment base bearing surfaces, pump and other equipment base plates, and anchors.

B. Clean surfaces that will come into contact with grout.

C. Provide forms as required for placement of grout.

D. Avoid air entrapment during placement of grout.

E. Place grout, completely filling equipment bases.

F. Place grout on concrete bases and provide smooth bearing surface for equipment.

G. Place grout around anchors.

H. Cure placed grout.

END OF SECTION
SECTION 23 05 29

HANGERS AND SUPPORTS FOR HVAC PIPING

PART 1 GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:

1. Metal pipe hangers and supports.
2. Fastener systems.
3. Equipment supports.

1.3 DEFINITIONS

A. MSS: Manufacturers Standardization Society of the Valve and Fittings Industry Inc.

1.4 PERFORMANCE REQUIREMENTS

A. Delegated Design: Equipment supports, including comprehensive engineering analysis by a qualified professional engineer, using performance requirements and design criteria indicated.

B. Structural Performance: Hangers and supports for HVAC piping and equipment shall withstand the effects of gravity loads and stresses within limits and under conditions indicated according to ASCE/SEI 7.

1. Design supports for multiple pipes, including pipe stands, capable of supporting combined weight of supported systems, system contents, and test water.
2. Design equipment supports capable of supporting combined operating weight of supported equipment and connected systems and components.

1.5 ACTION SUBMITTALS

A. Product Data: For each type of product indicated.

B. Shop Drawings: Show fabrication and installation details and include calculations for the following; include Product Data for components:

1. Equipment supports.
2. Metal pipe hangers and supports.

1.6 INFORMATIONAL SUBMITTALS
A. Welding certificates.

1.7 QUALITY ASSURANCE
A. Structural Steel Welding Qualifications: Qualify procedures and personnel according to AWS D1.1/D1.1M, "Structural Welding Code - Steel."
B. Pipe Welding Qualifications: Qualify procedures and operators according to ASME Boiler and Pressure Vessel Code.

PART 2 PRODUCTS

2.1 METAL PIPE HANGERS AND SUPPORTS
A. Carbon-Steel Pipe Hangers and Supports:
 1. Description: MSS SP-58, Types 1 through 58, factory-fabricated components.
 2. Galvanized Metallic Coatings: Pre-galvanized or hot dipped.
 3. Nonmetallic Coatings: Plastic coating, jacket, or liner.
 4. Padded Hangers: Hanger with fiberglass or other pipe insulation pad or cushion to support bearing surface of piping.

2.2 FASTENER SYSTEMS
A. Powder-Actuated Fasteners: Threaded-steel stud, for use in hardened portland cement concrete with pull-out, tension, and shear capacities appropriate for supported loads and building materials where used.
B. Mechanical-Expansion Anchors: Insert-wedge-type, steel anchors, for use in hardened portland cement concrete; with pull-out, tension, and shear capacities appropriate for supported loads and building materials where used.

2.3 EQUIPMENT SUPPORTS
A. Description: Welded, shop- or field-fabricated equipment support made from structural carbon-steel shapes. Exterior equipment supports shall be primed and painted.
2.4 MISCELLANEOUS MATERIALS

A. Structural Steel: ASTM A 36/A 36M, carbon-steel plates, shapes, and bars; black and galvanized.

B. Grout: ASTM C 1107, factory-mixed and -packaged, dry, hydraulic-cement, non-shrink and nonmetallic grout; suitable for interior and exterior applications.
 2. Design Mix: 5000-psi, 28-day compressive strength.

PART 3 EXECUTION

3.1 HANGER AND SUPPORT INSTALLATION

A. Metal Pipe-Hanger Installation: Comply with MSS SP-69 and MSS SP-89. Install hangers, supports, clamps, and attachments as required to properly support piping from the building structure.

B. Install hangers and supports complete with necessary attachments, inserts, bolts, rods, nuts, washers, and other accessories.

D. Install hangers and supports to allow controlled thermal and seismic movement of piping systems, to permit freedom of movement between pipe anchors, and to facilitate action of expansion joints, expansion loops, expansion bends, and similar units.

E. Install lateral bracing with pipe hangers and supports to prevent swaying.

F. Install building attachments within concrete slabs or attach to structural steel. Install additional attachments at concentrated loads, including valves, flanges, and strainers, NPS 2-1/2 and larger and at changes in direction of piping. Install concrete inserts before concrete is placed; fasten inserts to forms and install reinforcing bars through openings at top of inserts.

G. Load Distribution: Install hangers and supports so that piping live and dead loads and stresses from movement will not be transmitted to connected equipment.

H. Pipe Slopes: Install hangers and supports to provide indicated pipe slopes and to not exceed maximum pipe deflections allowed by ASME B31.9 for building services piping.

I. Insulated Piping:
 1. Attach clamps and spacers to piping.
 a. Piping Operating above Ambient Air Temperature: Clamp may project through insulation.
 b. Piping Operating below Ambient Air Temperature: Use thermal-hanger shield insert with clamp sized to match OD of insert.
c. Do not exceed pipe stress limits allowed by ASME B31.9 for building services piping.

2. Install MSS SP-58, Type 39, protection saddles if insulation without vapor barrier is indicated. Fill interior voids with insulation that matches adjoining insulation.
 a. Option: Thermal-hanger shield inserts may be used. Include steel weight-distribution plate for pipe NPS 4 and larger if pipe is installed on rollers.

3. Install MSS SP-58, Type 40, protective shields on cold piping with vapor barrier. Shields shall span an arc of 180 degrees.
 a. Option: Thermal-hanger shield inserts may be used. Include steel weight-distribution plate for pipe NPS 4 and larger if pipe is installed on rollers.

4. Shield Dimensions for Pipe: Not less than the following:
 a. NPS 1/4 to NPS 3-1/2: 12 inches long and 0.048 inch thick.
 b. NPS 4: 12 inches long and 0.06 inch thick.
 c. NPS 5 and NPS 6: 18 inches long and 0.06 inch thick.
 d. NPS 8 to NPS 14: 24 inches long and 0.075 inch thick.
 e. NPS 16 to NPS 24: 24 inches long and 0.105 inch thick.

5. Pipes NPS 8 and Larger: Include wood or reinforced calcium-silicate-insulation inserts of length at least as long as protective shield.

6. Thermal-Hanger Shields: Install with insulation same thickness as piping insulation.

3.2 EQUIPMENT SUPPORTS

A. Fabricate structural-steel stands to suspend equipment from structure overhead or to support equipment above floor.

B. Grouting: Place grout under supports for equipment and make bearing surface smooth.

C. Provide lateral bracing, to prevent swaying, for equipment supports.

3.3 METAL FABRICATIONS

A. Cut, drill, and fit miscellaneous metal fabrications for trapeze pipe hangers and equipment supports.

B. Fit exposed connections together to form hairline joints. Field weld connections that cannot be shop welded because of shipping size limitations.

C. Field Welding: Comply with AWS D1.1/D1.1M procedures for shielded, metal arc welding; appearance and quality of welds; and methods used in correcting welding work; and with the following:
1. Use materials and methods that minimize distortion and develop strength and corrosion resistance of base metals.
2. Obtain fusion without undercut or overlap.
3. Remove welding flux immediately.
4. Finish welds at exposed connections so no roughness shows after finishing and so contours of welded surfaces match adjacent contours.

3.4 ADJUSTING

A. Hanger Adjustments: Adjust hangers to distribute loads equally on attachments and to achieve indicated slope of pipe.

B. Trim excess length of continuous-thread hanger and support rods to 1-1/2 inches.

3.5 PAINTING

A. Touchup: Clean field welds and abraded areas of shop paint. Paint exposed areas immediately after erecting hangers and supports. Use same materials as used for shop painting. Comply with SSPC-PA 1 requirements for touching up field-painted surfaces.

1. Apply paint by brush or spray to provide a minimum dry film thickness of 2.0 mils.

B. Galvanized Surfaces: Clean welds, bolted connections, and abraded areas and apply galvanizing-repair paint to comply with ASTM A 780.

3.6 HANGER AND SUPPORT SCHEDULE

A. Vertical-Piping Clamps: Unless otherwise indicated and except as specified in piping system Sections, install the following types:

1. Extension Pipe or Riser Clamps (MSS Type 8): For support of pipe risers NPS 3/4 to NPS 24.
2. Carbon- or Alloy-Steel Riser Clamps (MSS Type 42): For support of pipe risers NPS 3/4 to NPS 24 if longer ends are required for riser clamps.

B. Hanger-Rod Attachments: Unless otherwise indicated and except as specified in piping system Sections, install the following types:

1. Steel Turnbuckles (MSS Type 13): For adjustment up to 6 inches for heavy loads.
2. Steel Clevises (MSS Type 14): For 120 to 450 deg F piping installations.
3. Swivel Turnbuckles (MSS Type 15): For use with MSS Type 11, split pipe rings.
4. Malleable-Iron Sockets (MSS Type 16): For attaching hanger rods to various types of building attachments.
5. Steel Weldless Eye Nuts (MSS Type 17): For 120 to 450 deg F piping installations.

C. Building Attachments: Unless otherwise indicated and except as specified in piping system Sections, install the following types:
1. Steel or Malleable Concrete Inserts (MSS Type 18): For upper attachment to suspend pipe hangers from concrete ceiling.
2. Top-Beam C-Clamps (MSS Type 19): For use under roof installations with bar-joist construction, to attach to top flange of structural shape.
3. Side-Beam or Channel Clamps (MSS Type 20): For attaching to bottom flange of beams, channels, or angles.
4. Center-Beam Clamps (MSS Type 21): For attaching to center of bottom flange of beams.
5. Welded Beam Attachments (MSS Type 22): For attaching to bottom of beams if loads are considerable and rod sizes are large.
6. C-Clamps (MSS Type 23): For structural shapes.
7. Top-Beam Clamps (MSS Type 25): For top of beams if hanger rod is required tangent to flange edge.
8. Side-Beam Clamps (MSS Type 27): For bottom of steel I-beams.
9. Steel-Beam Clamps with Eye Nuts (MSS Type 28): For attaching to bottom of steel I-beams for heavy loads.
10. Linked-Steel Clamps with Eye Nuts (MSS Type 29): For attaching to bottom of steel I-beams for heavy loads, with link extensions.
11. Malleable-Beam Clamps with Extension Pieces (MSS Type 30): For attaching to structural steel.
12. Welded-Steel Brackets: For support of pipes from below or for suspending from above by using clip and rod. Use one of the following for indicated loads:
 a. Light (MSS Type 31): 750 lb.
 b. Medium (MSS Type 32): 1500 lb.
 c. Heavy (MSS Type 33): 3000 lb.
13. Side-Beam Brackets (MSS Type 34): For sides of steel or wooden beams.
14. Plate Lugs (MSS Type 57): For attaching to steel beams if flexibility at beam is required.
15. Horizontal Travelers (MSS Type 58): For supporting piping systems subject to linear horizontal movement where headroom is limited.

D. Saddles and Shields: Unless otherwise indicated and except as specified in piping system Sections, install the following types:
1. Steel-Pipe-Covering Protection Saddles (MSS Type 39): To fill interior voids with insulation that matches adjoining insulation.
2. Protection Shields (MSS Type 40): Of length recommended in writing by manufacturer to prevent crushing insulation.
3. Thermal-Hanger Shield Inserts: For supporting insulated pipe.

E. Use powder-actuated fasteners or mechanical-expansion anchors instead of building attachments where required in concrete construction.
SECTION 23 05 53
MECHANICAL IDENTIFICATION

PART 1 GENERAL

1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 1 Specification Sections, apply to this Section.

1.2 SUMMARY
A. This Section includes the following mechanical identification materials and their installation:
 1. Equipment nameplates.
 2. Equipment markers.
 3. Equipment signs.
 4. Access panel and door markers.
 5. Pipe markers.
 6. Duct markers.
 7. Stencils.
 8. Valve tags.
 10. Warning tags.

B. Not all pipe/ductwork types or equipment types may be used on this project. Use the applicable colors and identification tags for equipment provided.

1.3 SUBMITTALS
A. Product Data: For each type of product indicated.
B. Samples: For color, letter style, and graphic representation required for each identification material and device. Provide a color board with piping name, color sample and stencil/identifier label to be used on pipe. This board, after approval, shall be mounted in the maintenance office for future reference.
C. Valve numbering scheme.
D. Valve Schedules: For each piping system. Furnish extra copies (in addition to mounted copies) to include in maintenance manuals.

1.4 COORDINATION
A. Coordinate installation of identifying devices with completion of covering and painting of surfaces where devices are to be applied.
B. Coordinate installation of identifying devices with location of access panels and doors.
C. Install identifying devices and paint before installing acoustical ceilings and similar concealment.

PART 2 PRODUCTS
2.1 MASTER COLOR CHART
A. Domestic Cold Water Blue
B. Domestic Hot Water Magenta
C. Domestic Hot Water Return Magenta
D. Sanitary Sewer Brown
E. Roof Drain White
F. Condensate Purple
G. Chilled Water Light Blue
H. Condenser Water Yellow
I. Heating Water Orange
J. Fire Sprinkler Red
K. Fuel Oil Piping Forest Green

2.2 EQUIPMENT IDENTIFICATION DEVICES
A. Equipment Nameplates: Metal, with data engraved or stamped, for permanent attachment on equipment.
 1. Data:
 a. Manufacturer, product name, model number, and serial number.
 b. Capacity, operating and power characteristics, and essential data.
 c. Labels of tested compliances.
 2. Location: Accessible and visible.
 3. Fasteners: As required to mount on equipment.
B. Equipment Markers: Engraved, color-coded laminated plastic. Include contact-type, permanent adhesive.
 1. Terminology: Match schedules as closely as possible.
 2. Data:
 a. Name and plan number.
 b. Equipment service.
 c. Design capacity.
 d. Other design parameters such as pressure drop, entering and leaving conditions, and speed.
 3. Size: 2-1/2 by 4 inches for control devices, dampers, and valves; 4-1/2 by 6 inches for equipment.
C. Equipment Signs: ASTM D 709, Type I, cellulose, paper-base, phenolic-resin-laminate engraving stock; Grade ES-2, black surface, black phenolic core, with white melamine subcore, unless otherwise indicated. Fabricate in sizes required for message. Provide holes for mechanical fastening.
 1. Data: Instructions for operation of equipment and for safety procedures.
 2. Engraving: Manufacturer's standard letter style, of sizes and with terms to match equipment identification.
3. Thickness: 1/16 inch for units up to 20 sq. in. or 8 inches in length, and 1/8 inch for larger units.

4. Fasteners: Self-tapping, stainless-steel screws or contact-type, permanent adhesive.

D. Access Panel and Door Markers: 1/16-inch-thick, engraved laminated plastic, with abbreviated terms and numbers corresponding to identification (i.e. FD = fire damper, MAINT = maintenance access). Provide 1/8-inch center hole for attachment.
 1. Fasteners: Self-tapping, stainless-steel screws or contact-type, permanent adhesive.

2.3 PIPING IDENTIFICATION DEVICES

A. Manufactured Pipe Markers, General: Preprinted, color-coded, with lettering indicating service, and showing direction of flow.
 1. Colors: Background color shall be white with black letters
 2. Lettering: Use piping system terms indicated and abbreviate only as necessary for each application length.
 3. Pipes with OD, Including Insulation, Less Than 6 Inches: Full-band pipe markers extending 360 degrees around pipe at each location.
 4. Pipes with OD, Including Insulation, 6 Inches and Larger: Either full-band or strip-type pipe markers at least three times letter height and of length required for label.
 5. Arrows: Integral with piping system service lettering to accommodate both directions; or as separate unit on each pipe marker to indicate direction of flow.

B. Plastic Pipe Covers: Color impregnated plastic pipe covers including straight lengths and fittings shall be provided on all insulated piping to comply with the requirements of the Master Color Chart listed in section 2.1 of this specification. All piping exposed in mechanical rooms and chases shall be color coded to match the Master Color Chart, do not come back after bidding and say that you did not see this requirement because it is clearly indicated here!

C. Painting: Piping that is not insulated shall be painted to match the Master Color Chart listed in section 2.1. Once again, do not miss this requirement, it is required on this project!

D. Shaped Pipe Markers: Preformed semirigid plastic formed to partially cover circumference of pipe and to attach to pipe with mechanical fasteners that do not penetrate insulation vapor barrier.

F. Plastic Tape: Continuously printed, vinyl tape at least 3 mils thick with pressure-sensitive, permanent-type, self-adhesive back.
 2. Width for Markers on Pipes with OD, Including Insulation, 6 Inches or Larger: 1-1/2 inches minimum.

2.4 DUCT IDENTIFICATION

A. Where ductwork is exposed in public spaces the contractor shall coordinate with the Architect to determine color selection for ductwork paint if no direction is given or if there is no preference then the ductwork shall be painted per the master color chart.
2.5 VALVE TAGS
A. Valve Tags: Stamped or engraved with 1/4-inch letters for piping system abbreviation and 1/2-inch numbers, with numbering scheme approved by Architect. Provide 5/32-inch hole for fastener.
 1. Material: 0.032-inch-thick brass.
 2. Valve-Tag Fasteners: Brass wire-link or beaded chain; or S-hook.

2.6 VALVE SCHEDULES
A. Valve Schedules: For each piping system, on standard-size bond paper. Tabulate valve number, piping system, system abbreviation (as shown on valve tag), location of valve (room or space), normal-operating position (open, closed, or modulating), and variations for identification. Mark valves for emergency shutoff and similar special uses.
 1. Valve-Schedule Frames: Glazed display frame for removable mounting on masonry walls for each page of valve schedule. Include mounting screws.
 2. Frame: Extruded aluminum.
 3. Glazing: ASTM C 1036, Type I, Class 1, Glazing Quality B, 2.5-mm, single-thickness glass.

2.7 WARNING TAGS
A. Warning Tags: Preprinted or partially preprinted, accident-prevention tags; of plasticized card stock with matte finish suitable for writing.
 1. Size: Approximately 4 by 7 inches.
 2. Fasteners: Brass grommet and wire.
 3. Nomenclature: Large-size primary caption such as DANGER, CAUTION, or DO NOT OPERATE.

PART 3 EXECUTION

3.1 APPLICATIONS, GENERAL
A. Products specified are for applications referenced in other Division 23 Sections. If more than single-type material, device, or label is specified for listed applications, selection is Installer's option.

3.2 EQUIPMENT IDENTIFICATION
A. Install and permanently fasten equipment nameplates on each item of mechanical equipment. Locate nameplates where accessible and visible. Include nameplates for the following general categories of equipment:
 1. Fuel-burning units, including boilers, furnaces, unit heaters, etc.
 2. Pumps, compressors, chillers, condensers, booster pumps, fire pumps and similar motor-driven units.
3. Heat exchangers, coils, evaporators, condensing units/condensers, cooling towers, heat recovery units, and similar equipment.

4. Fans, blowers, primary balancing dampers, and terminal units (VAV boxes).

5. HVAC central-station and zone-type units.

B. Install equipment markers with permanent adhesive on or near each major item of mechanical equipment. Data required for markers may be included on signs, and markers may be omitted if both are indicated.

1. Letter Size: Minimum 1/4 inch for name of units if viewing distance is less than 24 inches, 1/2 inch for viewing distances up to 72 inches, and proportionately larger lettering for greater viewing distances. Include secondary lettering two-thirds to three-fourths the size of principal lettering.

2. Data: Distinguish among multiple units, indicate operational requirements, indicate safety and emergency precautions, warn of hazards and improper operations, and identify units.

3. Locate markers where accessible and visible. Include markers for the following general categories of equipment:
 a. Main control and operating valves, including safety devices and hazardous units such as gas outlets.
 b. Fire department hose valves and hose stations.
 c. Fuel-burning units, including boilers, furnaces, water heaters.
 d. Pumps, compressors, chillers, condensers, booster pump, fire pump and similar motor-driven units.
 e. Heat exchangers, coils, evaporators, cooling towers, heat recovery units, and similar equipment.
 f. Fans, blowers, primary balancing dampers, and terminal units (VAV boxes).
 g. HVAC central-station and zone-type units.
 h. Tanks and pressure vessels.
 i. Strainers, filters, humidifiers, water-treatment systems, and similar equipment.

C. Install equipment signs with screws or permanent adhesive on or near each major item of mechanical equipment. Locate signs where accessible and visible.

1. Identify mechanical equipment with equipment markers in the following color codes:
 a. All identifiers shall be white face with black letters.

2. Letter Size: Minimum 1/4 inch for name of units if viewing distance is less than 24 inches, 1/2 inch for viewing distances up to 72 inches, and proportionately larger lettering for greater viewing distances. Include secondary lettering two-thirds to three-fourths the size of principal lettering.

3. Data: Distinguish among multiple units, indicate operational requirements, indicate safety and emergency precautions, warn of hazards and improper operations, and identify units.

4. Include signs for the following general categories of equipment:
 a. Main control and operating valves, including safety devices and hazardous units such as gas outlets.
 b. Fuel-burning units, including boilers, furnaces, water heaters.
 c. Pumps, compressors, chillers, condensers, booster pump, fire pump and similar motor-driven units.
d. Heat exchangers, coils, evaporators, cooling towers, heat recovery units, and similar equipment.

e. Fans, blowers, primary balancing dampers, and terminal units (VAV boxes).

f. HVAC central-station and zone-type units.

g. Tanks and pressure vessels.

h. Strainers, filters, humidifiers, water-treatment systems, and similar equipment.

D. Install access panel markers with screws on equipment access panels.

3.3 PIPING IDENTIFICATION

A. Paint all exposed piping according to the master color chart. In addition to exposed piping all domestic cold, hot and hot water return piping shall be painted throughout the building regardless of location (do not paint piping inside of walls).

B. Install manufactured pipe markers indicating service on each piping system. Install with flow indication arrows showing direction of flow.

1. Pipes with OD, Including Insulation, Less Than 6 Inches: Self-adhesive pipe markers. Use color-coded, self-adhesive plastic tape, 1-1/2 inches wide, lapped at least 1-1/2 inches at both ends of pipe marker, and covering full circumference of pipe.

2. Pipes with OD, Including Insulation, 6 Inches and Larger: Self-adhesive pipe markers. Use color-coded, self-adhesive plastic tape, at least 1-1/2 inches wide, lapped at least 3 inches at both ends of pipe marker, and covering full circumference of pipe.

C. Locate pipe markers where piping is exposed in finished spaces; machine rooms; accessible maintenance spaces such as shafts, tunnels, access doors, above layin ceilings and plenums; and exterior nonconcealed locations as follows:

1. Near each valve and control device.

2. Near each branch connection, excluding short takeoffs for fixtures and terminal units. Where flow pattern is not obvious, mark each pipe at branch.

3. Near penetrations through walls, floors, ceilings, and nonaccessible enclosures.

4. At access doors, manholes, and similar access points that permit view of concealed piping.

5. Near major equipment items and other points of origination and termination.

6. Spaced at maximum intervals of 50 feet along each run. Reduce intervals to 25 feet in areas of congested piping and equipment.

7. On piping above removable acoustical ceilings.

3.4 DUCT IDENTIFICATION

A. Paint exposed ductwork according to the master color chart.

3.5 VALVE-TAG INSTALLATION

A. Install tags on valves and control devices in piping systems, except check valves; valves within factory-fabricated equipment units; plumbing fixture supply stops; faucets; convenience and lawn-watering hose connections; and HVAC terminal devices and similar roughing-in connections of end-use fixtures and units. List tagged valves in a valve schedule.

3.6 VALVE-SCHEDULE INSTALLATION
A. Mount valve schedule on wall in accessible location in each major equipment room.

3.7 WARNING-TAG INSTALLATION
A. Write required message on, and attach warning tags to, equipment and other items where required.

3.8 ADJUSTING
A. Relocate mechanical identification materials and devices that have become visually blocked by other work.

3.9 CLEANING
A. Clean faces of mechanical identification devices and glass frames of valve schedules.

END OF SECTION
This page intentionally left blank
SECTION 23 05 93

TESTING, ADJUSTING, AND BALANCING FOR HVAC

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:

1. Balancing Air Systems:
 a. Constant-volume air systems.
 b. Variable-air-volume systems.

2. Balancing Hydronic Piping Systems:
 a. Variable-flow hydronic systems.

3. Balancing steam systems.

4. Testing, Adjusting, and Balancing Equipment:
 a. Heat exchangers.
 b. Motors.
 c. Chillers.
 d. Cooling towers.
 e. Condensing units.
 f. Boilers.
 g. Heat-transfer coils.

5. Testing, adjusting, and balancing existing systems and equipment.

6. Control system verification.

1.3 DEFINITIONS

B. BAS: Building automation systems.

D. TAB: Testing, adjusting, and balancing.

F. TAB Specialist: An independent entity meeting qualifications to perform TAB work.

G. TDH: Total dynamic head.

1.4 PREINSTALLATION MEETINGS

A. TAB Conference: Will conduct a TAB conference after approval of the TAB strategies and procedures plan to develop a mutual understanding of the details. Provide a minimum of 14 days' advance notice of scheduled meeting time and location.

1. Minimum Agenda Items:
 b. The TAB plan.
 c. Needs for coordination and cooperation of trades and subcontractors.
 d. Proposed procedures for documentation and communication flow.

1.5 ACTION SUBMITTALS

A. Qualification Data: Within 90 days of Contractor's Notice to Proceed, submit documentation that the TAB specialist and this Project's TAB team members meet the qualifications specified in "Quality Assurance" Article.

D. System Readiness Checklists: Within 90 days of Contractor's Notice to Proceed, submit system readiness checklists as specified in "Preparation" Article.

E. Examination Report: Submit a summary report of the examination review required in "Examination" Article.

F. Certified TAB reports.

G. Sample report forms.

H. Instrument calibration reports, to include the following:
 1. Instrument type and make.
 2. Serial number.
 3. Application.
 4. Dates of use.
 5. Dates of calibration.
1.6 QUALITY ASSURANCE

A. TAB Specialists Qualifications: Certified by AABC or NEBB.
 1. TAB Field Supervisor: Employee of the TAB specialist and certified by certifying organization.
 2. TAB Technician: Employee of the TAB specialist and certified by certifying organization as a TAB technician.

B. Instrumentation Type, Quantity, Accuracy, and Calibration: Comply with requirements in ASHRAE 111, Section 4, "Instrumentation."

C. ASHRAE Compliance: Applicable requirements in ASHRAE 62.1, Section 7.2.2 - "Air Balancing."

D. ASHRAE/IESNA Compliance: Applicable requirements in ASHRAE/IESNA 90.1, Section 6.7.2.3 - "System Balancing."

1.7 FIELD CONDITIONS

A. Partial Owner Occupancy: Owner may occupy completed areas of building before Substantial Completion. Cooperate with Owner during TAB operations to minimize conflicts with Owner's operations.

PART 2 - PRODUCTS (Not Applicable)

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine the Contract Documents to become familiar with Project requirements and to discover conditions in systems designs that may preclude proper TAB of systems and equipment.

B. Examine installed systems for balancing devices, such as test ports, gage cocks, thermometer wells, flow-control devices, balancing valves and fittings, and manual volume dampers. Verify that locations of these balancing devices are applicable for intended purpose and are accessible.

C. Examine the approved submittals for HVAC systems and equipment.

D. Examine design data including HVAC system descriptions, statements of design assumptions for environmental conditions and systems output, and statements of philosophies and assumptions about HVAC system and equipment controls.

E. Examine ceiling plenums and underfloor air plenums used for supply, return, or relief air to verify that they are properly separated from adjacent areas. Verify that penetrations in plenum walls are sealed and fire-stopped if required.
F. Examine equipment performance data including fan and pump curves.
 1. Relate performance data to Project conditions and requirements, including system effects that can create undesired or unpredicted conditions that cause reduced capacities in all or part of a system.
 2. Calculate system-effect factors to reduce performance ratings of HVAC equipment when installed under conditions different from the conditions used to rate equipment performance. To calculate system effects for air systems, use tables and charts found in AMCA 201, "Fans and Systems," or in SMACNA's "HVAC Systems - Duct Design." Compare results with the design data and installed conditions.

G. Examine system and equipment installations and verify that field quality-control testing, cleaning, and adjusting specified in individual Sections have been performed.

H. Examine test reports specified in individual system and equipment Sections.

I. Examine HVAC equipment and verify that bearings are greased, belts are aligned and tight, filters are clean, and equipment with functioning controls is ready for operation.

J. Examine terminal units, such as variable-air-volume boxes, and verify that they are accessible and their controls are connected and functioning.

K. Examine strainers. Verify that startup screens have been replaced by permanent screens with indicated perforations.

L. Examine control valves for proper installation for their intended function of throttling, diverting, or mixing fluid flows.

M. Examine heat-transfer coils for correct piping connections and for clean and straight fins.

N. Examine system pumps to ensure absence of entrained air in the suction piping.

O. Examine operating safety interlocks and controls on HVAC equipment.

P. Report deficiencies discovered before and during performance of TAB procedures. Observe and record system reactions to changes in conditions. Record default set points if different from indicated values.

3.2 PREPARATION

A. Prepare a TAB plan that includes the following:
 1. Equipment and systems to be tested.
 3. Instrumentation to be used.
 4. Sample forms with specific identification for all equipment.

B. Perform system-readiness checks of HVAC systems and equipment to verify system readiness for TAB work. Include, at a minimum, the following:
1. **Airside:**
 a. Duct systems are complete with terminals installed.
 b. Volume, smoke, and fire dampers are open and functional.
 c. Clean filters are installed.
 d. Fans are operating, free of vibration, and rotating in correct direction.
 e. Variable-frequency controllers' startup is complete and safeties are verified.
 f. Automatic temperature-control systems are operational.
 g. Ceilings are installed.
 h. Windows and doors are installed.
 i. Suitable access to balancing devices and equipment is provided.

2. **Hydronics:**
 a. Verify leakage and pressure tests on water distribution systems have been satisfactorily completed.
 b. Piping is complete with terminals installed.
 c. Water treatment is complete.
 d. Systems are flushed, filled, and air purged.
 e. Strainers are pulled and cleaned.
 f. Control valves are functioning per the sequence of operation.
 g. Shutoff and balance valves have been verified to be 100 percent open.
 h. Pumps are started and proper rotation is verified.
 i. Pump gage connections are installed directly at pump inlet and outlet flanges or in discharge and suction pipe prior to valves or strainers.
 j. Variable-frequency controllers' startup is complete and safeties are verified.
 k. Suitable access to balancing devices and equipment is provided.

3.3 GENERAL PROCEDURES FOR TESTING AND BALANCING

1. Perform testing and balancing procedures on each system according to the procedures contained in certifying organization standards and in this Section.

B. Cut insulation, ducts, pipes, and equipment cabinets for installation of test probes to the minimum extent necessary for TAB procedures.

 1. After testing and balancing, patch probe holes in ducts with same material and thickness as used to construct ducts.
 2. After testing and balancing, install test ports and duct access doors that comply with requirements in Section 233300 "Air Duct Accessories."
 3. Install and join new insulation that matches removed materials. Restore insulation, coverings, vapor barrier, and finish according to Section 230713 "Duct Insulation," Section 230716 "HVAC Equipment Insulation," and Section 230719 "HVAC Piping Insulation."

C. Mark equipment and balancing devices, including damper-control positions, valve position indicators, fan-speed-control levers, and similar controls and devices, with paint or other suitable, permanent identification material to show final settings.

D. Take and report testing and balancing measurements in inch-pound (IP) units.
3.4 GENERAL PROCEDURES FOR BALANCING AIR SYSTEMS

A. Prepare test reports for both fans and outlets. Obtain manufacturer's outlet factors and recommended testing procedures. Cross-check the summation of required outlet volumes with required fan volumes.

B. Prepare schematic diagrams of systems' "as-built" duct layouts.

C. For variable-air-volume systems, develop a plan to simulate diversity.

D. Determine the best locations in main and branch ducts for accurate duct-airflow measurements.

E. Check airflow patterns from the outdoor-air louvers and dampers and the return- and exhaust-air dampers through the supply-fan discharge and mixing dampers.

F. Locate start-stop and disconnect switches, electrical interlocks, and motor starters.

G. Verify that motor starters are equipped with properly sized thermal protection.

H. Check dampers for proper position to achieve desired airflow path.

I. Check for airflow blockages.

J. Check condensate drains for proper connections and functioning.

K. Check for proper sealing of air-handling-unit components.

L. Verify that air duct system is sealed as specified in Section 233113 "Metal Ducts."

3.5 PROCEDURES FOR CONSTANT-VOLUME AIR SYSTEMS

A. Adjust fans to deliver total indicated airflows within the maximum allowable fan speed listed by fan manufacturer.

1. Measure total airflow.

 a. Set outside-air, return-air, and relief-air dampers for proper position that simulates minimum outdoor-air conditions.
 b. Where duct conditions allow, measure airflow by Pitot-tube traverse. If necessary, perform multiple Pitot-tube traverses to obtain total airflow.
 c. Where duct conditions are not suitable for Pitot-tube traverse measurements, a coil traverse may be acceptable.
 d. If a reliable Pitot-tube traverse or coil traverse is not possible, measure airflow at terminals and calculate the total airflow.

2. Measure fan static pressures as follows:

 a. Measure static pressure directly at the fan outlet or through the flexible connection.
 b. Measure static pressure directly at the fan inlet or through the flexible connection.
 c. Measure static pressure across each component that makes up the air-handling system.
d. Report artificial loading of filters at the time static pressures are measured.

3. Review Record Documents to determine variations in design static pressures versus actual static pressures. Calculate actual system-effect factors. Recommend adjustments to accommodate actual conditions.

4. Obtain approval from engineer for adjustment of fan speed higher or lower than indicated speed. Comply with requirements in HVAC Sections for air-handling units for adjustment of fans, belts, and pulley sizes to achieve indicated air-handling-unit performance.

5. Do not make fan-speed adjustments that result in motor overload. Consult equipment manufacturers about fan-speed safety factors. Modulate dampers and measure fan-motor amperage to ensure that no overload occurs. Measure amperage in full-cooling, full-heating, economizer, and any other operating mode to determine the maximum required brake horsepower.

B. Adjust volume dampers for main duct, submain ducts, and major branch ducts to indicated airflows.

1. Measure airflow of submain and branch ducts.
2. Adjust submain and branch duct volume dampers for specified airflow.
3. Re-measure each submain and branch duct after all have been adjusted.

C. Adjust air inlets and outlets for each space to indicated airflows.

1. Set airflow patterns of adjustable outlets for proper distribution without drafts.
2. Measure inlets and outlets airflow.
3. Adjust each inlet and outlet for specified airflow.
4. Re-measure each inlet and outlet after they have been adjusted.

D. Verify final system conditions.

1. Re-measure and confirm that minimum outdoor, return, and relief airflows are within design. Readjust to design if necessary.
2. Re-measure and confirm that total airflow is within design.
3. Re-measure all final fan operating data, rpms, volts, amps, and static profile.
4. Mark all final settings.
5. Test system in economizer mode. Verify proper operation and adjust if necessary.
6. Measure and record all operating data.
7. Record final fan-performance data.

3.6 PROCEDURES FOR VARIABLE-AIR-VOLUME SYSTEMS

A. Adjust the variable-air-volume systems as follows:

1. Verify that the system static pressure sensor is located as indicated in documents.
2. Verify that the system is under static pressure control.
3. Select the terminal unit that is most critical to the supply-fan airflow. Measure inlet static pressure, and adjust system static pressure control set point so the entering static pressure for the critical terminal unit is not less than the sum of the terminal-unit manufacturer's

Moffett Library Renovation Phase II
recommended minimum inlet static pressure plus the static pressure needed to overcome terminal-unit discharge system losses.

4. Calibrate and balance each terminal unit for maximum and minimum design airflow as follows:
 a. Adjust controls so that terminal is calling for maximum airflow. Some controllers require starting with minimum airflow. Verify calibration procedure for specific project.
 b. Measure airflow and adjust calibration factor as required for design maximum airflow. Record calibration factor.
 c. When maximum airflow is correct, balance the air outlets downstream from terminal units.
 d. Adjust controls so that terminal is calling for minimum airflow.
 e. Measure airflow and adjust calibration factor as required for design minimum airflow. Record calibration factor. If no minimum calibration is available, note any deviation from design airflow.
 f. When in full cooling or full heating, ensure that there is no mixing of hot-deck and cold-deck airstreams unless so designed.
 g. On constant volume terminals, in critical areas where room pressure is to be maintained, verify that the airflow remains constant over the full range of full cooling to full heating. Note any deviation from design airflow or room pressure.

5. After terminals have been calibrated and balanced, test and adjust system for total airflow. Adjust fans to deliver total design airflows within the maximum allowable fan speed listed by fan manufacturer.
 a. Set outside-air, return-air, and relief-air dampers for proper position that simulates minimum outdoor-air conditions.
 b. Set terminals for maximum airflow. If system design includes diversity, adjust terminals for maximum and minimum airflow so that connected total matches fan selection and simulates actual load in the building.
 c. Where duct conditions allow, measure airflow by Pitot-tube traverse. If necessary, perform multiple Pitot-tube traverses to obtain total airflow.
 d. Where duct conditions are not suitable for Pitot-tube traverse measurements, a coil traverse may be acceptable.
 e. If a reliable Pitot-tube traverse or coil traverse is not possible, measure airflow at terminals and calculate the total airflow.

6. Measure fan static pressures as follows:
 a. Measure static pressure directly at the fan outlet or through the flexible connection.
 b. Measure static pressure directly at the fan inlet or through the flexible connection.
 c. Measure static pressure across each component that makes up the air-handling system.
 d. Report any artificial loading of filters at the time static pressures are measured.

7. Set final return and outside airflow to the fan while operating at maximum return airflow and minimum outdoor airflow.
 a. Balance the return-air ducts and inlets the same as described for constant-volume air systems.
b. Verify that terminal units are meeting design airflow under system maximum flow.

8. Re-measure the inlet static pressure at the most critical terminal unit and adjust the system static pressure set point to the most energy-efficient set point to maintain the optimum system static pressure. Record set point and give to controls contractor.

9. Verify final system conditions as follows:
 a. Re-measure and confirm that minimum outdoor, return, and relief airflows are within design. Readjust to match design if necessary.
 b. Re-measure and confirm that total airflow is within design.
 c. Re-measure final fan operating data, rpms, volts, amps, and static profile.
 d. Mark final settings.
 e. Test system in economizer mode. Verify proper operation and adjust if necessary. Measure and record all operating data.
 f. Verify tracking between supply and return fans.

3.7 GENERAL PROCEDURES FOR HYDRONIC SYSTEMS

A. Prepare test reports for pumps, coils, and heat exchangers. Obtain approved submittals and manufacturer-recommended testing procedures. Crosscheck the summation of required coil and heat exchanger flow rates with pump design flow rate.

B. Prepare schematic diagrams of systems' "as-built" piping layouts.

C. In addition to requirements in "Preparation" Article, prepare hydronic systems for testing and balancing as follows:
 1. Check liquid level in expansion tank.
 2. Check highest vent for adequate pressure.
 3. Check flow-control valves for proper position.
 4. Locate start-stop and disconnect switches, electrical interlocks, and motor starters.
 5. Verify that motor starters are equipped with properly sized thermal protection.
 6. Check that air has been purged from the system.

3.8 PROCEDURES FOR VARIABLE-FLOW HYDRONIC SYSTEMS

A. Balance systems with automatic two- and three-way control valves by setting systems at maximum flow through heat-exchange terminals, and proceed as specified above for hydronic systems.

B. Adjust the variable-flow hydronic system as follows:
 1. Verify that the differential-pressure sensor is located as indicated.
 2. Determine whether there is diversity in the system.

C. For systems with no diversity:
 1. Adjust pumps to deliver total design gpm.
a. Measure total water flow.
 1) Position valves for full flow through coils.
 2) Measure flow by main flow meter, if installed.
 3) If main flow meter is not installed, determine flow by pump TDH or exchanger pressure drop.

b. Measure pump TDH as follows:
 1) Measure discharge pressure directly at the pump outlet flange or in discharge pipe prior to any valves.
 2) Measure inlet pressure directly at the pump inlet flange or in suction pipe prior to any valves or strainers.
 3) Convert pressure to head and correct for differences in gage heights.
 4) Verify pump impeller size by measuring the TDH with the discharge valve closed. Note the point on manufacturer's pump curve at zero flow and verify that the pump has the intended impeller size.
 5) With valves open, read pump TDH. Adjust pump discharge valve until design water flow is achieved.

2. Adjust flow-measuring devices installed in mains and branches to design water flows.
 a. Measure flow in main and branch pipes.
 b. Adjust main and branch balance valves for design flow.
 c. Re-measure each main and branch after all have been adjusted.

3. Adjust flow-measuring devices installed at terminals for each space to design water flows.
 a. Measure flow at terminals.
 b. Adjust each terminal to design flow.
 c. Re-measure each terminal after it is adjusted.
 d. Position control valves to bypass the coil and adjust the bypass valve to maintain design flow.
 e. Perform temperature tests after flows have been balanced.

4. For systems with pressure-independent valves at terminals:
 a. Measure differential pressure and verify that it is within manufacturer's specified range.
 b. Perform temperature tests after flows have been verified.

5. For systems without pressure-independent valves or flow-measuring devices at terminals:
 a. Measure and balance coils by either coil pressure drop or temperature method.
 b. If balanced by coil pressure drop, perform temperature tests after flows have been verified.
6. Prior to verifying final system conditions, determine the system differential-pressure set point.
7. If the pump discharge valve was used to set total system flow with variable-frequency controller at 60 Hz, at completion open discharge valve 100 percent and allow variable-frequency controller to control system differential-pressure set point. Record pump data under both conditions.
8. Mark final settings and verify that all memory stops have been set.
9. Verify final system conditions as follows:
 a. Re-measure and confirm that total water flow is within design.
 b. Re-measure final pumps' operating data, TDH, volts, amps, and static profile.
 c. Mark final settings.
10. Verify that memory stops have been set.

D. For systems with diversity:
 1. Determine diversity factor.
 2. Simulate system diversity by closing required number of control valves, as approved by the design engineer.
 3. Adjust pumps to deliver total design gpm.
 a. Measure total water flow.
 1) Position valves for full flow through coils.
 2) Measure flow by main flow meter, if installed.
 3) If main flow meter is not installed, determine flow by pump TDH or exchanger pressure drop.
 b. Measure pump TDH as follows:
 1) Measure discharge pressure directly at the pump outlet flange or in discharge pipe prior to any valves.
 2) Measure inlet pressure directly at the pump inlet flange or in suction pipe prior to any valves or strainers.
 3) Convert pressure to head and correct for differences in gage heights.
 4) Verify pump impeller size by measuring the TDH with the discharge valve closed. Note the point on manufacturer's pump curve at zero flow and verify that the pump has the intended impeller size.
 5) With valves open, read pump TDH. Adjust pump discharge valve until design water flow is achieved.
 4. Adjust flow-measuring devices installed in mains and branches to design water flows.
 a. Measure flow in main and branch pipes.
 b. Adjust main and branch balance valves for design flow.
 c. Re-measure each main and branch after all have been adjusted.
5. Adjust flow-measuring devices installed at terminals for each space to design water flows.

 a. Measure flow at terminals.
 b. Adjust each terminal to design flow.
 c. Re-measure each terminal after it is adjusted.
 d. Position control valves to bypass the coil, and adjust the bypass valve to maintain design flow.
 e. Perform temperature tests after flows have been balanced.

6. For systems with pressure-independent valves at terminals:

 a. Measure differential pressure, and verify that it is within manufacturer's specified range.
 b. Perform temperature tests after flows have been verified.

7. For systems without pressure-independent valves or flow-measuring devices at terminals:

 a. Measure and balance coils by either coil pressure drop or temperature method.
 b. If balanced by coil pressure drop, perform temperature tests after flows have been verified.

8. Open control valves that were shut. Close a sufficient number of control valves that were previously open to maintain diversity, and balance terminals that were just opened.

9. Prior to verifying final system conditions, determine system differential-pressure set point.

10. If the pump discharge valve was used to set total system flow with variable-frequency controller at 60 Hz, at completion open discharge valve 100 percent and allow variable-frequency controller to control system differential-pressure set point. Record pump data under both conditions.

11. Mark final settings and verify that memory stops have been set.

12. Verify final system conditions as follows:

 a. Re-measure and confirm that total water flow is within design.
 b. Re-measure final pumps' operating data, TDH, volts, amps, and static profile.
 c. Mark final settings.

13. Verify that memory stops have been set.

3.9 PROCEDURES FOR HEAT EXCHANGERS

 A. Adjust water flow to within specified tolerances.

 B. Measure inlet and outlet water temperatures.

3.10 PROCEDURES FOR MOTORS

 A. Motors 1/2 HP and Larger: Test at final balanced conditions and record the following data:
1. Manufacturer's name, model number, and serial number.
4. Phase and hertz.
5. Nameplate and measured voltage, each phase.
6. Nameplate and measured amperage, each phase.
7. Starter size and thermal-protection-element rating.
8. Service factor and frame size.

B. Motors Driven by Variable-Frequency Controllers: Test manual bypass of controller to prove proper operation.

3.11 PROCEDURES FOR CHILLERS

A. Balance water flow through each evaporator to within specified tolerances of indicated flow with all pumps operating. With only one chiller operating in a multiple chiller installation, do not exceed the flow for the maximum tube velocity recommended by the chiller manufacturer. Measure and record the following data with each chiller operating at design conditions:

1. Evaporator-water entering and leaving temperatures, pressure drop, and water flow.
2. For water-cooled chillers, condenser-water entering and leaving temperatures, pressure drop, and water flow.
3. Evaporator and condenser refrigerant temperatures and pressures, using instruments furnished by chiller manufacturer.
4. Power factor if factory-installed instrumentation is furnished for measuring kilowatts.
5. Kilowatt input if factory-installed instrumentation is furnished for measuring kilowatts.
7. For air-cooled chillers, verify condenser-fan rotation and record fan and motor data including number of fans and entering- and leaving-air temperatures.

3.12 PROCEDURES FOR CONDENSING UNITS

A. Verify proper rotation of fans.

B. Measure entering- and leaving-air temperatures.

C. Record fan and motor operating data.

3.13 PROCEDURES FOR BOILERS

A. Hydronic Boilers:

1. Measure and record entering- and leaving-water temperatures.
2. Measure and record water flow.
3. Record relief valve pressure setting.
3.14 PROCEDURES FOR HEAT-TRANSFER COILS

A. Measure, adjust, and record the following data for each water coil:

1. Entering- and leaving-water temperature.
2. Water flow rate.
3. Water pressure drop for major (more than 20 gpm) equipment coils, excluding unitary equipment such as reheat coils, unit heaters, and fan-coil units.
4. Dry-bulb temperature of entering and leaving air.
5. Wet-bulb temperature of entering and leaving air for cooling coils.
6. Airflow.

B. Measure, adjust, and record the following data for each electric heating coil:

1. Nameplate data.
2. Airflow.
3. Entering- and leaving-air temperature at full load.
4. Voltage and amperage input of each phase at full load.
5. Calculated kilowatt at full load.
6. Fuse or circuit-breaker rating for overload protection.

C. Measure, adjust, and record the following data for each refrigerant coil:

1. Dry-bulb temperature of entering and leaving air.
2. Wet-bulb temperature of entering and leaving air.
3. Airflow.

3.15 SOUND TESTS

A. After the systems are balanced and construction is Substantially Complete, measure and record sound levels at [5] [10] [15] <Insert number> locations as designated by the Architect.

B. Instrumentation:

1. The sound-testing meter shall be a portable, general-purpose testing meter consisting of a microphone, processing unit, and readout.
2. The sound-testing meter shall be capable of showing fluctuations at minimum and maximum levels, and measuring the equivalent continuous sound pressure level (LEQ).
3. The sound-testing meter must be capable of using 1/3 octave band filters to measure mid-frequencies from 31.5 Hz to 8000 Hz.
4. The accuracy of the sound-testing meter shall be plus or minus one decibel.

C. Test Procedures:

1. Perform test at quietest background noise period. Note cause of unpreventable sound that affects test outcome.
2. Equipment should be operating at design values.
3. Calibrate the sound-testing meter prior to taking measurements.
4. Use a microphone suitable for the type of noise levels measured that is compatible with meter. Provide a windshield for outside or in-duct measurements.
5. Record a set of background measurements in dBA and sound pressure levels in the eight un-weighted octave bands [63 Hz to 8000 Hz (NC)] [31.5 Hz to 4000 Hz (RC)] with the equipment off.

6. Take sound readings in dBA and sound pressure levels in the eight un-weighted octave bands [63 Hz to 8000 Hz (NC)] [31.5 Hz to 4000 Hz (RC)] with the equipment operating.

7. Take readings no closer than 36 inches (900 mm) from a wall or from the operating equipment and approximately 60 inches (1500 mm) from the floor, with the meter held or mounted on a tripod.

8. For outdoor measurements, move sound-testing meter slowly and scan area that has the most exposure to noise source being tested. Use A-weighted scale for this type of reading.

D. Reporting:
1. Report shall record the following:
 a. Location.
 b. System tested.
 c. BA reading.
 d. Sound pressure level in each octave band with equipment on and off.

2. Plot sound pressure levels on [NC] [RC] worksheet with equipment on and off.

3.16 VIBRATION TESTS

A. After systems are balanced and construction is Substantially Complete, measure and record vibration levels on equipment having motor horsepower equal to or greater than [10] [15] [25]<Insert number>.

B. Instrumentation:
1. Use portable, battery-operated, and microprocessor-controlled vibration meter with or without a built-in printer.
2. The meter shall automatically identify engineering units, filter bandwidth, amplitude, and frequency scale values.
3. The meter shall be able to measure machine vibration displacement in mils of deflection, velocity in inches per second, and acceleration in inches per second squared.
4. Verify calibration date is current for vibration meter before taking readings.

C. Test Procedures:
1. To ensure accurate readings, verify that accelerometer has a clean, flat surface and is mounted properly.
2. With the unit running, set up vibration meter in a safe, secure location. Connect transducer to meter with proper cables. Hold magnetic tip of transducer on top of the bearing, and measure unit in mils of deflection. Record measurement, then move transducer to the side of the bearing and record in mils of deflection. Record an axial reading in mils of deflection by holding nonmagnetic, pointed transducer tip on end of shaft.
3. Change vibration meter to velocity (inches per second) measurements. Repeat and record above measurements.
4. Record CPM or rpm.
5. Read each bearing on motor, fan, and pump as required. Track and record vibration levels from rotating component through casing to base.
D. Reporting:
1. Report shall record location and the system tested.
2. Include horizontal-vertical-axial measurements for tests.
3. Verify that vibration limits follow Specifications, or, if not specified, follow the General Machinery Vibration Severity Chart or Vibration Acceleration General Severity Chart from the AABC National Standards. Acceptable levels of vibration are normally "smooth" to "good."
4. Include in report General Machinery Vibration Severity Chart, with conditions plotted.

3.17 CONTROLS VERIFICATION

A. In conjunction with system balancing, perform the following:
 1. Verify temperature control system is operating within the design limitations.
 2. Confirm that the sequences of operation are in compliance with Contract Documents.
 3. Verify that controllers are calibrated and function as intended.
 4. Verify that controller set points are as indicated.
 5. Verify the operation of lockout or interlock systems.
 6. Verify the operation of valve and damper actuators.
 7. Verify that controlled devices are properly installed and connected to correct controller.
 8. Verify that controlled devices travel freely and are in position indicated by controller: open, closed, or modulating.
 9. Verify location and installation of sensors to ensure that they sense only intended temperature, humidity, or pressure.

B. Reporting: Include a summary of verifications performed, remaining deficiencies, and variations from indicated conditions.

3.18 PROCEDURES FOR TESTING, ADJUSTING, AND BALANCING EXISTING SYSTEMS

A. Perform a preconstruction inspection of existing equipment that is to remain and be reused.
 1. Measure and record the operating speed, airflow, and static pressure of each fan.
 2. Measure motor voltage and amperage. Compare the values to motor nameplate information.
 3. Check the refrigerant charge.
 4. Check the condition of filters.
 5. Check the condition of coils.
 6. Check the operation of the drain pan and condensate-drain trap.
 7. Check bearings and other lubricated parts for proper lubrication.

B. Before performing testing and balancing of existing systems, inspect existing equipment that is to remain and be reused to verify that existing equipment has been cleaned and refurbished. Verify the following:
 1. New filters are installed.
 2. Coils are clean and fins combed.
 3. Drain pans are clean.
 4. Fans are clean.
5. Bearings and other parts are properly lubricated.
6. Deficiencies noted in the preconstruction report are corrected.

C. Perform testing and balancing of existing systems to the extent that existing systems are affected by the renovation work.
 1. Compare the indicated airflow of the renovated work to the measured fan airflows, and determine the new fan speed and the face velocity of filters and coils.
 2. Verify that the indicated airflows of the renovated work result in filter and coil face velocities and fan speeds that are within the acceptable limits defined by equipment manufacturer.
 3. If calculations increase or decrease the airflow rates and water flow rates by more than 5 percent, make equipment adjustments to achieve the calculated rates. If increase or decrease is 5 percent or less, equipment adjustments are not required.
 4. Balance each air outlet.

3.19 TOLERANCES
A. Set HVAC system's airflow rates and water flow rates within the following tolerances:
 1. Supply, Return, and Exhaust Fans and Equipment with Fans: Plus or minus 5 percent.
 2. Air Outlets and Inlets: Plus or minus 5 percent.
 3. Heating-Water Flow Rate: Plus or minus 5 percent.
 4. Cooling-Water Flow Rate: Plus or minus 5 percent.

B. Maintaining pressure relationships as designed shall have priority over the tolerances specified above.

3.20 PROGRESS REPORTING
A. Initial Construction-Phase Report: Based on examination of the Contract Documents as specified in "Examination" Article, prepare a report on the adequacy of design for systems balancing devices. Recommend changes and additions to systems balancing devices to facilitate proper performance measuring and balancing. Recommend changes and additions to HVAC systems and general construction to allow access for performance measuring and balancing devices.

3.21 FINAL REPORT
A. General: Prepare a certified written report; tabulate and divide the report into separate sections for tested systems and balanced systems.
 1. Include a certification sheet at the front of the report's binder, signed and sealed by the certified testing and balancing engineer.
 2. Include a list of instruments used for procedures, along with proof of calibration.
 3. Certify validity and accuracy of field data.

B. Final Report Contents: In addition to certified field-report data, include the following:
1. Pump curves.
2. Fan curves.
3. Manufacturers' test data.
4. Field test reports prepared by system and equipment installers.
5. Other information relative to equipment performance; do not include Shop Drawings and Product Data.

C. General Report Data: In addition to form titles and entries, include the following data:

1. Title page.
2. Name and address of the TAB specialist.
3. Project name.
4. Project location.
5. Architect's name and address.
6. Engineer's name and address.
7. Contractor's name and address.
9. Signature of TAB supervisor who certifies the report.
10. Table of Contents with the total number of pages defined for each section of the report. Number each page in the report.
11. Summary of contents including the following:
 a. Indicated versus final performance.
 b. Notable characteristics of systems.
 c. Description of system operation sequence if it varies from the Contract Documents.

12. Nomenclature sheets for each item of equipment.
13. Data for terminal units, including manufacturer's name, type, size, and fittings.
14. Notes to explain why certain final data in the body of reports vary from indicated values.
15. Test conditions for fans and pump performance forms including the following:
 a. Settings for outdoor-, return-, and exhaust-air dampers.
 b. Conditions of filters.
 c. Cooling coil, wet- and dry-bulb conditions.
 d. Face and bypass damper settings at coils.
 e. Fan drive settings including settings and percentage of maximum pitch diameter.
 f. Inlet vane settings for variable-air-volume systems.
 g. Settings for supply-air, static-pressure controller.
 h. Other system operating conditions that affect performance.

D. System Diagrams: Include schematic layouts of air and hydronic distribution systems. Present each system with single-line diagram and include the following:

1. Quantities of outdoor, supply, return, and exhaust airflows.
2. Water and steam flow rates.
3. Duct, outlet, and inlet sizes.
4. Pipe and valve sizes and locations.
5. Terminal units.
E. Air-Handling-Unit Test Reports: For air-handling units with coils, include the following:

1. Unit Data:
 a. Unit identification.
 b. Location.
 c. Make and type.
 d. Model number and unit size.
 e. Manufacturer's serial number.
 f. Unit arrangement and class.
 g. Discharge arrangement.
 h. Sheave make, size in inches, and bore.
 i. Center-to-center dimensions of sheave and amount of adjustments in inches.
 j. Number, make, and size of belts.
 k. Number, type, and size of filters.

2. Motor Data:
 a. Motor make, and frame type and size.
 b. Horsepower and rpm.
 c. Volts, phase, and hertz.
 d. Full-load amperage and service factor.
 e. Sheave make, size in inches, and bore.
 f. Center-to-center dimensions of sheave and amount of adjustments in inches.

3. Test Data (Indicated and Actual Values):
 a. Total airflow rate in cfm.
 b. Total system static pressure in inches wg.
 c. Fan rpm.
 d. Discharge static pressure in inches wg.
 e. Filter static-pressure differential in inches wg.
 f. Preheat-coil static-pressure differential in inches wg.
 g. Cooling-coil static-pressure differential in inches wg.
 h. Heating-coil static-pressure differential in inches wg.
 i. Outdoor airflow in cfm.
 j. Return airflow in cfm.
 k. Outdoor-air damper position.
 l. Return-air damper position.
 m. Vortex damper position.

F. Apparatus-Coil Test Reports:

1. Coil Data:
 a. System identification.
 b. Location.
 c. Coil type.
 d. Number of rows.
 e. Fin spacing in fins per inch o.c.
 f. Make and model number.
g. Face area in sq. ft.
h. Tube size in NPS.
i. Tube and fin materials.
j. Circuiting arrangement.

2. Test Data (Indicated and Actual Values):

a. Airflow rate in cfm.
b. Average face velocity in fpm.
c. Air pressure drop in inches wg.
d. Outdoor-air, wet- and dry-bulb temperatures in deg F.
e. Return-air, wet- and dry-bulb temperatures in deg F.
f. Entering-air, wet- and dry-bulb temperatures in deg F.
g. Leaving-air, wet- and dry-bulb temperatures in deg F.
h. Water flow rate in gpm.
i. Water pressure differential in feet of head or psig.
j. Entering-water temperature in deg F.
k. Leaving-water temperature in deg F.
l. Refrigerant expansion valve and refrigerant types.
m. Refrigerant suction pressure in psig.
n. Refrigerant suction temperature in deg F.
o. Inlet steam pressure in psig.

G. Gas-Fired Heat Apparatus Test Reports: In addition to manufacturer's factory startup equipment reports, include the following:

1. Unit Data:

a. System identification.
b. Location.
c. Make and type.
d. Model number and unit size.
e. Manufacturer's serial number.
f. Fuel type in input data.
g. Output capacity in Btu/h.
h. Ignition type.
i. Burner-control types.
j. Motor horsepower and rpm.
k. Motor volts, phase, and hertz.
l. Motor full-load amperage and service factor.
m. Sheave make, size in inches, and bore.
n. Center-to-center dimensions of sheave and amount of adjustments in inches.

2. Test Data (Indicated and Actual Values):

a. Total airflow rate in cfm.
b. Entering-air temperature in deg F.
c. Leaving-air temperature in deg F.
d. Air temperature differential in deg F.
e. Entering-air static pressure in inches wg.
f. Leaving-air static pressure in inches wg.
g. Air static-pressure differential in inches wg.

h. Low-fire fuel input in Btu/h.

i. High-fire fuel input in Btu/h.

j. Manifold pressure in psig.

k. High-temperature-limit setting in deg F.

l. Operating set point in Btu/h.

m. Motor voltage at each connection.

n. Motor amperage for each phase.

o. Heating value of fuel in Btu/h.

H. Electric-Coil Test Reports: For electric furnaces, duct coils, and electric coils installed in central-station air-handling units, include the following:

1. Unit Data:
 a. System identification.
 b. Location.
 c. Coil identification.
 d. Capacity in Btu/h.
 e. Number of stages.
 f. Connected volts, phase, and hertz.
 g. Rated amperage.
 h. Airflow rate in cfm.
 i. Face area in sq. ft.
 j. Minimum face velocity in fpm.

2. Test Data (Indicated and Actual Values):
 a. Heat output in Btu/h.
 b. Airflow rate in cfm.
 c. Air velocity in fpm.
 d. Entering-air temperature in deg F.
 e. Leaving-air temperature in deg F.
 f. Voltage at each connection.
 g. Amperage for each phase.

I. Fan Test Reports: For supply, return, and exhaust fans, include the following:

1. Fan Data:
 a. System identification.
 b. Location.
 c. Make and type.
 d. Model number and size.
 e. Manufacturer's serial number.
 f. Arrangement and class.
 g. Sheave make, size in inches, and bore.
 h. Center-to-center dimensions of sheave and amount of adjustments in inches.

2. Motor Data:
a. Motor make, and frame type and size.
b. Horsepower and rpm.
c. Volts, phase, and hertz.
d. Full-load amperage and service factor.
e. Sheave make, size in inches, and bore.
f. Center-to-center dimensions of sheave, and amount of adjustments in inches.
g. Number, make, and size of belts.

3. Test Data (Indicated and Actual Values):

a. Total airflow rate in cfm.
b. Total system static pressure in inches wg.
c. Fan rpm.
d. Discharge static pressure in inches wg.
e. Suction static pressure in inches wg.

J. Round, Flat-Oval, and Rectangular Duct Traverse Reports: Include a diagram with a grid representing the duct cross-section and record the following:

1. Report Data:

a. System and air-handling-unit number.
b. Location and zone.
c. Traverse air temperature in deg F.
d. Duct static pressure in inches wg.
e. Duct size in inches.
f. Duct area in sq. ft.
g. Indicated airflow rate in cfm.
h. Indicated velocity in fpm.
i. Actual airflow rate in cfm.
j. Actual average velocity in fpm.
k. Barometric pressure in psig.

K. Air-Terminal-Device Reports:

1. Unit Data:

a. System and air-handling unit identification.
b. Location and zone.
c. Apparatus used for test.
d. Area served.
e. Make.
f. Number from system diagram.
g. Type and model number.
h. Size.
i. Effective area in sq. ft..

2. Test Data (Indicated and Actual Values):

a. Airflow rate in cfm.
b. Air velocity in fpm.
c. Preliminary airflow rate as needed in cfm.
d. Preliminary velocity as needed in fpm.
e. Final airflow rate in cfm.
f. Final velocity in fpm.
g. Space temperature in deg F.

L. System-Coil Reports: For reheat coils and water coils of terminal units, include the following:

1. Unit Data:
 a. System and air-handling-unit identification.
 b. Location and zone.
 c. Room or riser served.
 d. Coil make and size.
 e. Flowmeter type.

2. Test Data (Indicated and Actual Values):
 a. Airflow rate in cfm.
 b. Entering-water temperature in deg F.
 c. Leaving-water temperature in deg F.
 d. Water pressure drop in feet of head or psig.
 e. Entering-air temperature in deg F.
 f. Leaving-air temperature in deg F.

M. Pump Test Reports: Calculate impeller size by plotting the shutoff head on pump curves and include the following:

1. Unit Data:
 a. Unit identification.
 b. Location.
 c. Service.
 d. Make and size.
 e. Model number and serial number.
 f. Water flow rate in gpm.
 g. Water pressure differential in feet of head or psig.
 h. Required net positive suction head in feet of head or psig.
 i. Pump rpm.
 j. Impeller diameter in inches.
 k. Motor make and frame size.
 l. Motor horsepower and rpm.
 m. Voltage at each connection.
 n. Amperage for each phase.
 o. Full-load amperage and service factor.
 p. Seal type.

2. Test Data (Indicated and Actual Values):
 a. Static head in feet of head or psig.
 b. Pump shutoff pressure in feet of head or psig.
c. Actual impeller size in inches.
d. Full-open flow rate in gpm.
e. Full-open pressure in feet of head or psig.
f. Final discharge pressure in feet of head or psig.
g. Final suction pressure in feet of head or psig.
h. Final total pressure in feet of head or psig.
i. Final water flow rate in gpm.
j. Voltage at each connection.
k. Amperage for each phase.

N. Instrument Calibration Reports:

1. Report Data:
 a. Instrument type and make.
 b. Serial number.
 c. Application.
 d. Dates of use.
 e. Dates of calibration.

3.22 ADDITIONAL TESTS

A. Within 90 days of completing TAB, perform additional TAB to verify that balanced conditions are being maintained throughout and to correct unusual conditions.

B. Seasonal Periods: If initial TAB procedures were not performed during near-peak summer and winter conditions, perform additional TAB during near-peak summer and winter conditions.

END OF SECTION
SECTION 23 07 00

DUCT INSULATION

PART 1 GENERAL

1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary
 Conditions and Division 1 Specification Sections, apply to this Section.

1.2 SUMMARY
A. This Section includes semi-rigid, flexible duct, and plenum insulation; field-applied jackets;
 accessories and attachments; and sealing compounds.
B. All ductwork insulation installations shall comply with the 2000 or 2003 (whichever is applicable
 for the project location) International Energy Conservation Code (including all local
 amendments), and other applicable codes and ordinances.

1.3 SUBMITTALS
A. Product Data: Identify thermal conductivity, thickness, and jackets (both factory and field
 applied, if any), for each type of product indicated. Indicate code compliances.
B. Shop Drawings Show fabrication and installation details for the following:
 1. Removable insulation sections at access panels.
 2. Application of field-applied jackets.
 3. Applications at linkages for control devices.
C. Samples (where requested by Engineer): For each type of insulation and field-applied jacket.
 Identify each Sample, describing product and intended use. Submit 12-inch-square sections of
 each sample material.
 1. Manufacturer's Color Charts: Show the full range of colors available for each type of field-
 applied finish material indicated.
D. Material Test Reports: From a qualified testing agency acceptable to authorities having
 jurisdiction indicating, interpreting, and certifying test results for compliance of insulation
 materials, sealers, attachments, cements, and jackets with requirements indicated. Include dates
 of tests.
E. Installer Certificates: Signed by the Contractor certifying that installers comply with
 requirements.

1.4 QUALITY ASSURANCE
A. Installer Qualifications: Skilled mechanics who have successfully completed an apprenticeship
 program or another craft training program certified by the U.S. Department of Labor, Bureau of
 Apprenticeship and Training.
B. Fire-Test-Response Characteristics: As determined by testing materials identical to those
 specified in this Section according to ASTM E 84, by a testing and inspecting agency acceptable
 to authorities having jurisdiction. Factory label insulation and jacket materials and sealer and
 cement material containers with appropriate markings of applicable testing and inspecting
 agency.
1. Insulation Installed Indoors: Flame-spread rating of 25 or less, and smoke-developed rating of 50 or less.
2. Insulation Installed Outdoors: Flame-spread rating of 75 or less, and smoke-developed rating of 150 or less.

1.5 DELIVERY, STORAGE, AND HANDLING
A. Packaging: Ship insulation materials in containers marked by manufacturer with appropriate ASTM specification designation, type and grade, and maximum use temperature.

1.6 COORDINATION
A. Coordinate clearance requirements with duct Installer for insulation application.

1.7 SCHEDULING
A. Schedule insulation application after testing duct systems. Insulation application may begin on segments of ducts that have satisfactory test results.

PART 2 PRODUCTS

2.1 MANUFACTURERS
A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. Mineral-Fiber Insulation:
 b. Approved equal

2.2 INSULATION MATERIALS
A. Fibrous Glass Blanket Thermal Insulation: Glass fibers bonded with a thermosetting resin. Comply with ASTM C 553-92, Type II, without facing and with all-service jacket manufactured from kraft paper, reinforcing scrim, aluminum foil, and vinyl film. At 1-1/2” thickness the liner shall have an installed R value of 4.5, at 2” the R value shall be 6.0. Material shall be Johns-Manville, Microlite, Type 100 or approved equal.

2.3 FIELD-APPLIED JACKETS
A. General: ASTM C 921, Type 1, unless otherwise indicated.
B. Aluminum Jacket: Deep corrugated sheets manufactured from aluminum alloy complying with ASTM B 209, and having an integrally bonded moisture barrier over entire surface in contact with insulation. Metal thickness and corrugation dimensions are scheduled at the end of this Section.
 1. Finish: Smooth finish.

2.4 ACCESSORIES AND ATTACHMENTS
A. Glass Cloth and Tape: Comply with MIL-C-20079H, Type I for cloth and Type II for tape. Woven glass-fiber fabrics, plain weave, presized a minimum of 8 oz./sq. yd..
 1. Tape Width: 4 inches.
B. Bands: 3/4 inch wide, in one of the following materials compatible with jacket:
 1. Stainless Steel: ASTM A 666, Type 304; 0.020 inch thick.
 2. Adhesive: Recommended by the anchor pin manufacturer as appropriate for surface temperatures of ducts, plenums, and breechings; and to achieve a holding capacity of 100 lb for direct pull perpendicular to the adhered surface.

C. Self-Adhesive Anchor Pins and Speed Washers: Galvanized steel plate, pin, and washer manufactured for attachment to duct and plenum with adhesive. Pin length sufficient for insulation thickness indicated.

2.5 VAPOR RETARDERS

A. Mastics: Materials recommended by insulation material manufacturer that are compatible with insulation materials, jackets, and substrates.

PART 3 EXECUTION

3.1 EXAMINATION

A. Examine substrates and conditions for compliance with requirements for installation and other conditions affecting performance of insulation application.

B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 PREPARATION

A. Surface Preparation: Clean and dry surfaces to receive insulation. Remove materials that will adversely affect insulation application.

3.3 GENERAL APPLICATION REQUIREMENTS

A. Apply insulation materials, accessories, and finishes according to the manufacturer's written instructions; with smooth, straight, and even surfaces; and free of voids throughout the length of ducts and fittings.

B. Refer to schedules at the end of this Section for materials, forms, jackets, and thicknesses required for each duct system.

C. Use accessories compatible with insulation materials and suitable for the service. Use accessories that do not corrode, soften, or otherwise attack insulation or jacket in either wet or dry state.

D. Apply multiple layers of insulation with longitudinal and end seams staggered.

E. Seal joints and seams with vapor-retarder mastic on insulation indicated to receive a vapor retarder.

F. Keep insulation materials dry during application and finishing.

G. Apply insulation with tight longitudinal seams and end joints. Bond seams and joints with adhesive recommended by the insulation material manufacturer.

H. Apply insulation with the least number of joints practical.

I. Apply insulation over fittings and specialties, with continuous thermal and vapor-retarder integrity, unless otherwise indicated.
J. Hangers and Anchors: Where vapor retarder is indicated, seal penetrations in insulation at hangers, supports, anchors, and other projections with vapor-retarder mastic. Apply insulation continuously through hangers and around anchor attachments.

K. Insulation Terminations: For insulation application where vapor retarders are indicated, seal ends with a compound recommended by the insulation material manufacturer to maintain vapor retarder.

L. Apply insulation with integral jackets as follows:
 1. Pull jacket tight and smooth.
 2. Joints and Seams: Cover with tape and vapor retarder as recommended by insulation material manufacturer to maintain vapor seal.
 3. Vapor-Retarder Mastics: Where vapor retarders are indicated, apply mastic on seams and joints and at ends adjacent to duct flanges and fittings. Fiberglass mesh shall be used at elbows and other locations where mastic is required to bridge gaps.

M. Cut insulation according to manufacturer's written instructions to prevent compressing insulation to less than 75 percent of its nominal thickness.

N. Install vapor-retarder mastic on ducts and plenums scheduled to receive vapor retarders.
 1. Ducts with Vapor Retarders: Overlap insulation facing at seams and seal with vapor-retarder mastic. Repair punctures, tears, and penetrations with mastic to maintain vapor-retarder seal. Fiberglass mesh shall be used at elbows and other locations where mastic is required to bridge gaps.
 2. Ducts without Vapor Retarders: Overlap insulation facing at seams and secure with outward clinching staples and pressure-sensitive tape having same facing as insulation.

O. Roof Penetrations: Apply insulation for interior applications to a point even with top of roof flashing.
 1. Seal penetrations with vapor-retarder mastic.
 2. Apply insulation for exterior applications tightly joined to interior insulation ends.
 3. Seal insulation to roof flashing with vapor-retarder mastic.

P. Interior Wall and Partition Penetrations: Apply insulation continuously through walls and partitions, except fire-rated walls and partitions.

Q. Fire-Rated Wall and Partition Penetrations: Terminate insulation at fire/smoke damper sleeves for fire-rated wall and partition penetrations.

R. Floor Penetrations: Terminate insulation at underside of floor assembly and at floor support at top of floor.
 1. For insulation indicated to have vapor retarders, taper termination and seal insulation ends with vapor-retarder mastic.

3.4 FIBROUS GLASS INSULATION APPLICATION

A. Blanket Applications for Ducts and Plenums: Secure blanket insulation with adhesive and anchor pins and speed washers.
 1. Apply adhesives according to manufacturer's recommended coverage rates per square foot, for 100 percent coverage of duct and plenum surfaces.
 2. Apply adhesive to entire circumference of ducts and to all surfaces of fittings and transitions.
3. Install anchor pins and speed washers on sides and bottom of horizontal ducts and sides of vertical ducts as follows:
 a. On duct sides with dimensions 18 inches and smaller, along longitudinal centerline of duct. Space 3 inches maximum from insulation end joints, and 16 inches o.c.
 b. On duct sides with dimensions larger than 18 inches. Space 16 inches o.c. each way, and 3 inches maximum from insulation joints. Apply additional pins and clips to hold insulation tightly against surface at cross bracing.
 c. Anchor pins may be omitted from top surface of horizontal, rectangular ducts and plenums.
 d. Do not overcompress insulation during installation.
4. Impale insulation over anchors and attach speed washers.
5. Cut excess portion of pins extending beyond speed washers or bend parallel with insulation surface. Cover exposed pins and washers with tape matching insulation facing.
6. Create a facing lap for longitudinal seams and end joints with insulation by removing 2 inches from one edge and one end of insulation segment. Secure laps to adjacent insulation segment with 1/2-inch staples, 1 inch o.c., and cover with pressure-sensitive tape having same facing as insulation.
7. Overlap unfaced blankets a minimum of 2 inches on longitudinal seams and end joints. Secure with steel band at end joints and spaced a maximum of 18 inches o.c.
8. Apply insulation on rectangular duct elbows and transitions with a full insulation segment for each surface. Apply insulation on round and flat-oval duct elbows with individually mitered gores cut to fit the elbow.
9. Insulate duct stiffeners, hangers, and flanges that protrude beyond the insulation surface with 6-inch-wide strips of the same material used to insulate duct. Secure on alternating sides of stiffener, hanger, and flange with anchor pins spaced 6 inches o.c.
10. Apply vapor-retarder mastic to open joints, breaks, and punctures for insulation indicated to receive vapor retarder.

3.5 FIELD-APPLIED JACKET APPLICATION
 A. Apply aluminum jacket, where duct insulation may be damaged (i.e. floor penetrations, etc.) or where the ductwork is exposed outdoors.
 1. Apply jacket smooth and tight to surface with 2-inch overlap at seams and joints.
 2. Completely encapsulate insulation with jacket, leaving no exposed raw insulation.

3.6 FINISHES
 A. Color: Paint exposed ductwork per master color chart described in another specification.

3.7 INDOOR DUCT AND PLENUM APPLICATION SCHEDULE
 A. Service: Round, supply-air ducts.
 1. Material: Fibrous glass blanket
 2. Thickness: 2 inch.
 3. Number of Layers: One.
 4. Vapor Retarder Required: Yes.
 B. Service: Rectangular, supply-air ducts.
 1. Material: Fibrous glass blanket.
 2. Thickness: 2 inch.
 3. Number of Layers: One.

Moffett Library Renovation 230700-5 Duct Insulation
Phase II
4. Vapor Retarder Required: Yes.

C. Service: Rectangular, return-air ducts.

1. Material: Fibrous glass blanket.
2. Thickness: 2 inch.
3. Number of Layers: One.
4. Vapor Retarder Required: Yes.

END OF SECTION
SECTION 23 07 20

HVAC PIPE INSULATION

PART 1 GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 1 Specification Sections, apply to this Section.

1.2 SUMMARY

A. This Section includes preformed, rigid and flexible pipe insulation; insulating cements; field-applied jackets; accessories and attachments; and sealing compounds. Paint per other Sections of these specifications. Not all listed systems may be utilized for this project. Use applicable systems, as required.

1.3 SUBMITTALS

A. Product Data: Identify thermal conductivity, thickness, and jackets (both factory and field applied, if any), for each type of product indicated.

B. Shop Drawings: Show fabrication and installation details for the following:
 1. Application of protective shields, saddles, and inserts at pipe hangers for each type of insulation and hanger.
 2. Attachment and covering of heat trace inside insulation.
 3. Insulation application at pipe expansion joints for each type of insulation.
 4. Insulation application at elbows, fittings, flanges, valves, and specialties for each type of insulation.
 5. Removable insulation at piping specialties and equipment connections.
 6. Application of field-applied jackets.

C. Material Test Reports: From a qualified testing agency acceptable to authorities having jurisdiction indicating, interpreting, and certifying test results for compliance of insulation materials, sealers, attachments, cements, and jackets with requirements indicated. Include dates of tests.

1.4 QUALITY ASSURANCE

A. Fire-Test-Response Characteristics: As determined by testing materials identical to those specified in this Section according to ASTM E 84, by a testing and inspecting agency acceptable to authorities having jurisdiction. Factory label insulation and jacket materials and sealer and cement material containers with appropriate markings of applicable testing and inspecting agency.

 1. Insulation Installed Indoors: Flame-spread rating of 25 or less, and smoke-developed rating of 50 or less.
2. Insulation Installed Outdoors: Flame-spread rating of 75 or less, and smoke-developed rating of 150 or less.

1.5 DELIVERY, STORAGE, AND HANDLING

A. Packaging: Ship insulation materials in containers marked by manufacturer with appropriate ASTM specification designation, type and grade, and maximum use temperature.

1.6 COORDINATION

A. Coordinate size and location of supports, hangers, and insulation shields specified.
B. Coordinate clearance requirements with piping Installer for insulation application.
C. Coordinate installation and testing of steam or electric heat tracing.

1.7 SCHEDULING

A. Schedule insulation application after testing piping systems and, where required, after installing and testing heat-trace tape. Insulation application may begin on segments of piping that have satisfactory test results.

PART 2 PRODUCTS

2.1 MANUFACTURERS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. Molded Mineral-Fiber Insulation:
 a. Johns-Manville Insulation, Inc.
 b. Knauf FiberGlass GmbH.
 c. Owens-Corning Fiberglas Corp.
 2. Flexible Elastomeric Thermal Insulation:
 a. Armstrong World Industries, Inc.
 b. Rubatex Corp.
 c. Approved equal by engineer

2.2 INSULATION MATERIALS

A. Molded Mineral-Fiber Insulation: Glass fibers bonded with a thermosetting resin complying with the following:
 1. Preformed Pipe Insulation: Comply with ASTM C 547, Type 1, with factory-applied, all-purpose, vapor-retarder jacket.
 2. Fire-Resistant Adhesive: Comply with MIL-A-3316C in the following classes and grades:
a. Class 1, Grade A for bonding glass cloth and tape to unfaced glass-fiber insulation, for sealing edges of glass-fiber insulation, and for bonding lagging cloth to unfaced glass-fiber insulation.

b. Class 2, Grade A for bonding glass-fiber insulation to metal surfaces.

3. Vapor-Retarder Mastics: Fire- and water-resistant, vapor-retarder mastic for indoor applications. Comply with MIL-C-19565C, Type II.
5. Expanded or Exfoliated Vermiculite Insulating Cements: Comply with ASTM C 196.
7. Thermal Conductivity of 0.23 Btu*in./(Hr*ft2*F)

B. Flexible Elastomeric Thermal Insulation: Closed-cell, sponge- or expanded-rubber materials. Comply with ASTM C 534, Type I for tubular materials and Type II for sheet materials.

1. Adhesive: As recommended by insulation material manufacturer.
2. Ultraviolet-Protective Coating: As recommended by insulation manufacturer.
3. Thermal Conductivity of 0.27 Btu*in./(Hr*ft2*F)

C. Prefabricated Thermal Insulating Fitting Covers: Comply with ASTM C 450 for dimensions used in preforming insulation to cover valves, elbows, tees, and flanges.

2.3 ACCESSORIES AND ATTACHMENTS

A. Provide all service jacket over insulation and where required by specification 230553 MECHANICAL IDENTIFICATION, provide color coded pipe covers.

B. Bands: 3/4 inch wide, in one of the following materials compatible with jacket:

1. Stainless Steel: ASTM A 666, Type 304; 0.020 inch thick.

C. Wire: 0.062-inch, soft-annealed, stainless steel.

2.4 VAPOR RETARDERS

A. Mastics: Materials recommended by insulation material manufacturer that are compatible with insulation materials, jackets, and substrates.

PART 3 EXECUTION

3.1 EXAMINATION

A. Examine substrates and conditions for compliance with requirements for installation and other conditions affecting performance of insulation application.

B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 PREPARATION
A. Surface Preparation: Clean and dry pipe and fitting surfaces. Remove materials that will adversely affect insulation application.

3.3 GENERAL APPLICATION REQUIREMENTS

A. Apply insulation materials, accessories, and finishes according to the manufacturer's written instructions; with smooth, straight, and even surfaces; free of voids throughout the length of piping, including fittings, valves, and specialties.

B. Refer to schedules at the end of this Section for materials, forms, jackets, and thicknesses required for each piping system.

C. Use accessories compatible with insulation materials and suitable for the service. Use accessories that do not corrode, soften, or otherwise attack insulation or jacket in either wet or dry state.

D. Apply insulation with longitudinal seams at top and bottom of horizontal pipe runs.

E. Apply multiple layers of insulation with longitudinal and end seams staggered.

F. Do not weld brackets, clips, or other attachment devices to piping, fittings, and specialties.

G. Seal joints and seams with vapor-retarder mastic on insulation indicated to receive a vapor retarder.

H. Keep insulation materials dry during application and finishing.

I. Apply insulation with tight longitudinal seams and end joints. Bond seams and joints with adhesive recommended by the insulation material manufacturer.

J. Apply insulation with the least number of joints practical.

K. Apply insulation over fittings, valves, and specialties, with continuous thermal and vapor-retarder integrity, unless otherwise indicated. Refer to special instructions for applying insulation over fittings, valves, and specialties.

L. Hangers and Anchors: Where vapor retarder is indicated, seal penetrations in insulation at hangers, supports, anchors, and other projections with vapor-retarder mastic.
 1. Apply insulation continuously through hangers and around anchor attachments.
 2. For insulation application where vapor retarders are indicated, extend insulation on anchor legs at least 12 inches from point of attachment to pipe and taper insulation ends. Seal tapered ends with a compound recommended by the insulation material manufacturer to maintain vapor retarder.
 3. Install insert materials and apply insulation to tightly join the insert. Seal insulation to insulation inserts with adhesive or sealing compound recommended by the insulation material manufacturer.
 4. Cover inserts with jacket material matching adjacent pipe insulation. Install shields over jacket, arranged to protect the jacket from tear or puncture by the hanger, support, and shield.

M. Insulation Terminations: For insulation application where vapor retarders are indicated, taper insulation ends. Seal tapered ends with a compound recommended by the insulation material manufacturer to maintain vapor retarder.

N. Apply adhesives and mastics at the manufacturer's recommended coverage rate.

O. Apply insulation with integral jackets as follows:
1. Pull jacket tight and smooth.

2. Circumferential Joints: Cover with 3-inch-wide strips, of same material as insulation jacket. Secure strips with adhesive and outward clinching staples along both edges of strip and spaced 4 inches o.c.

3. Longitudinal Seams: Overlap jacket seams at least 1-1/2 inches. Apply insulation with longitudinal seams at bottom of pipe. Clean and dry surface to receive self-sealing lap. Staple laps with outward clinching staples along edge at 4 inches o.c.
 a. Exception: Do not staple longitudinal laps on insulation having a vapor retarder.

4. Vapor-Retarder Mastics: Where vapor retarders are indicated, apply mastic on seams and joints and at ends adjacent to flanges, unions, valves, and fittings.

5. At penetrations in jackets for thermometers and pressure gages, fill and seal voids with vapor-retarder mastic.

P. Roof Penetrations: Apply insulation for interior applications to a point even with top of roof flashing.
 1. Seal penetrations with vapor-retarder mastic.
 2. Apply insulation for exterior applications tightly joined to interior insulation ends.
 3. Extend metal jacket of exterior insulation outside roof flashing at least 2 inches below top of roof flashing.
 4. Seal metal jacket to roof flashing with vapor-retarder mastic.

Q. Interior Wall and Partition Penetrations: Apply insulation continuously through walls and floors.

R. Fire-Rated Wall and Partition Penetrations: Apply insulation continuously through penetrations of fire-rated walls and partitions per UL requirements for the construction of the partition/wall.

3.4 MOLDED MINERAL-FIBER INSULATION APPLICATION

A. Apply insulation to straight pipes and tubes as follows:
 1. Secure each layer of preformed pipe insulation to pipe with wire, tape, or bands without deforming insulation materials.
 2. Where vapor retarders are indicated, seal longitudinal seams and end joints with vapor-retarder mastic. Apply vapor retarder to ends of insulation at intervals of 15 to 20 feet to form a vapor retarder between pipe insulation segments.
 3. For insulation with factory-applied jackets, secure laps with outward clinched staples at 6 inches o.c.
 4. For insulation with factory-applied jackets with vapor retarders, do not staple longitudinal tabs but secure tabs with additional adhesive as recommended by the insulation material manufacturer and seal with vapor-retarder mastic.

B. Apply insulation to flanges as follows:
 1. Apply preformed pipe insulation to outer diameter of pipe flange.
 2. Make width of insulation segment the same as overall width of the flange and bolts, plus twice the thickness of the pipe insulation.
 3. Fill voids between inner circumference of flange insulation and outer circumference of adjacent straight pipe segments with mineral-fiber blanket insulation.
 4. Apply canvas jacket material with manufacturer's recommended adhesive, overlapping seams at least 1 inch, and seal joints with vapor-retarder mastic.

C. Apply insulation to fittings and elbows as follows:
1. Apply premolded insulation sections of the same material as straight segments of pipe insulation when available. Secure according to manufacturer's written instructions.

2. When premolded insulation elbows and fittings are not available, apply mitered sections of pipe insulation, or glass-fiber blanket insulation, to a thickness equal to adjoining pipe insulation. Secure insulation materials with wire, tape, or bands.

3. Cover fittings with colored PVC fitting covers.

D. Apply insulation to valves and specialties as follows:

1. Apply premolded insulation sections of the same material as straight segments of pipe insulation when available. Secure according to manufacturer's written instructions.

2. When premolded insulation sections are not available, apply glass-fiber blanket insulation to valve body. Arrange insulation to permit access to packing and to allow valve operation without disturbing insulation. For check valves, arrange insulation for access to stainer basket without disturbing insulation.

3. Apply insulation to flanges as specified for flange insulation application.

4. Use preformed standard PVC fitting covers for valve sizes where available, fabricate custom covers of the same material and color if needed. Secure fitting covers with manufacturer's attachments and accessories. Seal seams with tape and vapor-retarder mastic.

3.5 FLEXIBLE ELASTOMERIC THERMAL INSULATION APPLICATION

A. Apply insulation to straight pipes and tubes as follows:

1. Follow manufacturer's written instructions for applying insulation.

2. Seal longitudinal seams and end joints with manufacturer's recommended adhesive. Cement to avoid openings in insulation that will allow passage of air to the pipe surface.

B. Apply insulation to flanges as follows:

1. Apply pipe insulation to outer diameter of pipe flange.

2. Make width of insulation segment the same as overall width of the flange and bolts, plus twice the thickness of the pipe insulation.

3. Fill voids between inner circumference of flange insulation and outer circumference of adjacent straight pipe segments with cut sections of sheet insulation of the same thickness as pipe insulation.

4. Secure insulation to flanges and seal seams with manufacturer's recommended adhesive. Cement to avoid openings in insulation that will allow passage of air to the pipe surface.

C. Apply insulation to fittings and elbows as follows:

1. Apply mitered sections of pipe insulation.

2. Secure insulation materials and seal seams with manufacturer's recommended adhesive. Cement to avoid openings in insulation that will allow passage of air to the pipe surface.

D. Apply insulation to valves and specialties as follows:

1. Apply preformed valve covers manufactured of the same material as pipe insulation and attached according to the manufacturer's written instructions.

2. Apply cut segments of pipe and sheet insulation to valve body. Arrange insulation to permit access to packing and to allow valve operation without disturbing insulation. For check valves, fabricate removable sections of insulation arranged to allow access to strainer basket.

3. Apply insulation to flanges as specified for flange insulation application.
4. Secure insulation to valves and specialties and seal seams with manufacturer's recommended adhesive. Cement to avoid openings in insulation that will allow passage of air to the pipe surface.

3.6 FIELD-APPLIED JACKET APPLICATION

A. Apply PVC jacket where indicated, with 1-inch overlap at longitudinal seams and end joints. Seal with manufacturer's recommended adhesive.
B. Apply metal jacket where indicated, with 2-inch overlap at longitudinal seams and end joints. Overlap longitudinal seams arranged to shed water. Seal end joints with weatherproof sealant recommended by insulation manufacturer. Secure jacket with stainless-steel bands 12 inches o.c. and at end joints.

3.7 FINISHES

A. Flexible Elastomeric Thermal Insulation: After adhesive has fully cured, apply two coats of the insulation manufacturer's recommended protective coating.

3.8 PIPING SYSTEM APPLICATIONS

A. Insulation materials and thicknesses are specified in schedules at the end of this Section.
B. Items Not Insulated: Unless otherwise indicated, do not apply insulation to the following systems, materials, and equipment:
 1. Flexible connectors.
 2. Vibration-control devices.
 3. Fire-suppression piping.
 4. Drainage piping located in crawl spaces, unless otherwise indicated.
 5. Below-grade piping, unless otherwise indicated.
 6. Chrome-plated pipes and fittings, unless potential for personnel injury.
 7. Air chambers, unions, strainers, check valves, plug valves, and flow regulators.

3.9 INSULATION APPLICATION SCHEDULE, GENERAL

A. Refer to insulation application schedules for required insulation materials, vapor retarders, and field-applied jackets.
B. Application schedules identify piping system and indicate pipe size ranges and material, thickness, and jacket requirements. Refer to section 230553 – Mechanical Identification for jacket color requirements and pipe painting requirements.

3.10 PIPING INSULATION SCHEDULE, GENERAL
A. Acceptable preformed pipe and tubular insulation materials and thicknesses are identified for each piping system and pipe size range. Items Not Insulated: Unless otherwise indicated, do not install insulation on the following:

1. Drainage piping located in crawl spaces.
2. Underground piping.
3. Chrome-plated pipes and fittings unless there is a potential for personnel injury.

3.11 INDOOR PIPING INSULATION SCHEDULE

A. Chilled Water, 40 and above Deg F:

1. 3” and Smaller: Insulation shall be the following:
 a. Mineral-Fiber - Preformed Pipe, Type I: 1-1/2 inches thick.
2. 4” and Larger: Insulation shall be the following:
 a. Mineral-Fiber Preformed Pipe, Type I: 2 inches thick.
4. Vapor Retarder Required: Yes

B. Heating-Hot-Water Supply and Return, Pool Heat Water Supply and Return 200 Deg F and below:

1. 1-1/2” and Smaller: Insulation shall be the following:
 a. Mineral-Fiber, Preformed Pipe, Type I: 1 inch thick.
2. 2”- 4”: Insulation shall be the following:
 a. Mineral-Fiber, Preformed Pipe, Type I: 2 inch thick.
3. Over 4”: Insulation shall be the following:
 a. Mineral-Fiber, Preformed Pipe, Type I: 3 inch thick.

C. Refrigerant Suction and Hot-Gas Piping:

1. All Pipe Sizes: Insulation shall be the following:
 a. Flexible Elastomeric: 2 inch thick
2. Field-Applied Jacket: Aluminum when located outdoors exposed to ambient conditions.

3.12 OUTDOOR, UNDERGROUND PIPING INSULATION SCHEDULE

A. All below ground insulating system shall be inclusive of the insulating material and a jacket. Install jacket over elbows and other fittings in accordance with the manufacturer’s recommendations.

B. Chilled Water: Molded mineral fiber, see thicknesses for pipe sizes below

a. Up through 3” pipe – 1 ½” insulation.
b. Over 3” pipe – 2” insulation.

END OF SECTION
SECTION 23 21 13
HYDRONIC PIPING

PART 1 GENERAL

1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 1 Specification Sections, apply to this Section.

1.2 SUMMARY
A. This Section includes piping, special-duty valves, and hydronic specialties for hot-water heating, chilled-water cooling; makeup water for these systems; blowdown drain lines; and condensate drain piping.

1.3 SUBMITTALS
A. Product Data: For each type of special-duty valve indicated. Include flow and pressure drop curves based on manufacturer's testing for diverting fittings, calibrated balancing valves, and automatic flow-control valves.
B. Shop Drawings: Detail fabrication of pipe anchors, hangers, special pipe support assemblies, alignment guides, expansion joints and loops, and their attachment to the building structure. Detail location of anchors, alignment guides, and expansion joints and loops.
C. Maintenance Data: For hydronic specialties and special-duty valves to include in maintenance manuals specified in Division 1.

1.4 QUALITY ASSURANCE
A. ASME Compliance: Comply with ASME B31.9, "Building Services Piping," for materials, products, and installation. Safety valves and pressure vessels shall bear the appropriate ASME label. Fabricate and stamp air separators and expansion tanks to comply with the ASME Boiler and Pressure Vessel Code, Section VIII, Division 1.

1.5 COORDINATION
A. Coordinate layout and installation of hydronic piping and suspension system components with other construction, including light fixtures, HVAC equipment, fire-suppression-system components, and partition assemblies.
B. Coordinate pipe sleeve installations for foundation wall penetrations.
C. Coordinate piping installation with roof curbs, equipment supports, and roof penetrations. Roof specialties are specified in Division 7 Sections.
D. Coordinate pipe fitting pressure classes with products specified in related Sections.
E. Coordinate size and location of concrete bases. Cast anchor-bolt inserts into base.
F. Coordinate installation of pipe sleeves for penetrations through exterior walls and floor assemblies. Coordinate with requirements for firestopping specified in Division 7 for fire and smoke wall and floor assemblies.

1.6 EXTRA MATERIALS
A. Water Treatment Chemicals: Furnish sufficient chemicals for initial system startup.
PART 2 PRODUCTS

2.1 MANUFACTURERS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. Calibrated Balancing Valves:
 a. Griswold Controls.
 b. Flow Design Inc
 c. ITT Bell & Gossett; ITT Fluid Technology Corp.
 d. Taco, Inc.

2. Pressure-Reducing Valves:
 a. Amtrol, Inc.
 b. Armstrong Pumps, Inc.
 c. Conbraco Industries, Inc.
 d. Bell & Gossett; ITT Fluid Technology Corp.
 e. Watts Industries, Inc.; Watts Regulators.

3. Safety Valves:
 a. Amtrol, Inc.
 b. Armstrong Pumps, Inc.
 c. Conbraco Industries, Inc.
 d. ITT McDonnell & Miller Div.; ITT Fluid Technology Corp.

4. Automatic Flow-Control Valves:
 b. Griswold Controls.

5. Expansion Tanks:
 a. Amtrol, Inc.
 b. Armstrong Pumps, Inc.
 c. Bell & Gossett; ITT Fluid Technology Corp.
 d. Taco, Inc.

2.2 PIPING MATERIALS

A. General: Refer to Part 3 "Piping Applications" Article for applications of pipe and fitting materials.

2.3 COPPER TUBE AND FITTINGS

A. Drawn-Temper Copper Tubing: ASTM B 88, Type L
B. Annealed-Temper Copper Tubing: ASTM B 88, Type K
C. Wrought-Copper Fittings: ASME B16.22.
D. Wrought-Copper Unions: ASME B16.22.
F. Brazing Filler Metals: AWS A5.8, Classification BAg-1 (silver).
2.4 STEEL PIPE AND FITTINGS

A. Steel Pipe, NPS 2 and Smaller: ASTM A 53, Type S (seamless) or Type F (furnace-butt welded), Grade A, Schedule 40, black steel, plain ends.

B. Steel Pipe, NPS 2-1/2 through NPS 12: ASTM A 53, Type E (electric-resistance welded), Grade A, Schedule 40, black steel, plain ends.

C. Cast-Iron Threaded Fittings: ASME B16.4; Classes 125 and 250.

E. Malleable-Iron Unions: ASME B16.39; Classes 150, 250, and 300.

F. Cast-Iron Pipe Flanges and Flanged Fittings: ASME B16.1, Classes 25, 125, and 250; raised ground face, and bolt holes spot faced.

G. Wrought-Steel Fittings: ASTM A 234/A 234M, wall thickness to match adjoining pipe.

H. Wrought Cast- and Forged-Steel Flanges and Flanged Fittings: ASME B16.5, including bolts, nuts, and gaskets of the following material group, end connections, and facings:
 2. End Connections: Butt welding.
 3. Facings: Raised face.

I. Spherical, Rubber, Flexible Connectors: Fiber-reinforced rubber body with steel flanges drilled to align with Classes 150 and 300 steel flanges; operating temperatures up to 250 deg F and pressures up to 150 psig.

J. Packed, Slip, Expansion Joints: 150-psig minimum working pressure, steel pipe fitting consisting of telescoping body and slip-pipe sections, packing ring, packing, limit rods, flanged ends, and chrome-plated finish on slip-pipe telescoping section.

K. Welding Materials: Comply with Section II, Part C, of the ASME Boiler and Pressure Vessel Code for welding materials appropriate for wall thickness and for chemical analysis of pipe being welded.

L. Gasket Material: Thickness, material, and type suitable for fluid to be handled; and design temperatures and pressures.

2.5 VALVES

A. Gate, globe, check, ball, and butterfly valves are specified in Division 23 Section "Valves."

2.6 HYDRONIC SPECIALTIES

A. Manual Air Vent: Bronze body and nonferrous internal parts; 150-psig working pressure; 225 deg F operating temperature; manually operated with screwdriver or thumbscrew; with NPS 1/8 discharge connection and NPS 1/2 inlet connection.

B. Expansion Tanks: Welded carbon steel, rated for 125-psig working pressure and 375 deg F maximum operating temperature. Separate air charge from system water to maintain design expansion capacity by a flexible diaphragm securely sealed into tank. Include drain fitting and taps for
pressure gage and air-charging fitting. Support vertical tanks with steel legs or base; support horizontal tanks with steel saddles. Factory fabricate and test tank with taps and supports installed and labeled according to the ASME Boiler and Pressure Vessel Code, Section VIII, Division 1.

C. Y-Pattern Strainers: 125-psig working pressure; cast-iron body (ASTM A 126, Class B), flanged ends for NPS 2-1/2 and larger, threaded connections for NPS 2 and smaller, bolted cover, perforated stainless-steel basket, and bottom drain connection.

D. Spherical, Rubber, Flexible Connectors: Fiber-reinforced rubber body with steel flanges drilled to align with Classes 150 and 300 steel flanges; operating temperatures up to 250 deg F and pressures up to 150 psig.

PART 3 EXECUTION

3.1 PIPING APPLICATIONS

 1. Joints NPS 2 and smaller, soldered with ASTM B 32, grade Sb5 tin-antimony alloy (lead free) with ASTM B 813 solder flux.
 2. Joints NPS 2 ½, brazed using AWS A5.8, Type Bag-5 with AWS A5.31 flux, except Type BCuP-5 or BCuP-6 may be used for brazing copper-to-copper joints.
 3. Fittings NPS 2 ½ and smaller, wrought copper and bronze fittings conforming to ASME B16.22 or cast bronze fittings conforming to ASME B16.18.

 1. Joints NPS 2 and smaller, threaded in accordance with ASME B1.20.1 or socket welded.
 2. Joints NPS 2 ½ and larger, butt welded.
 3. Fittings NPS 2 and smaller, ASTM A 105/A 105M, in accordance with ASME B16.11.
 5. Flanged connections: Flanges in accordance with ASME B16.1, Class 150, with non-asbestos compressed material in accordance with ASME B16.21, 1/16-inch thickness, full face or self-centering flat ring type. Bolts, nuts, and bolt patterns in accordance with ASME B16.1.

C. Condensate Drain Lines: Type L drawn-temper copper tubing with soldered joints.

3.2 VALVE APPLICATIONS

A. General-Duty Valve Applications: Unless otherwise indicated, use the following valve types:
 1. Shutoff Duty: Gate, ball, and butterfly valves.
B. Install shutoff duty valves at each branch connection to supply mains, at supply connection to each piece of equipment, unless only one piece of equipment is connected in the branch line. Install throttling duty valves at each branch connection to return mains, at return connections to each piece of equipment, and elsewhere as indicated.

C. Install calibrated balancing valves in the return water line of each heating or cooling element and elsewhere as required to facilitate system balancing.

D. Install check valves at each pump discharge and elsewhere as required to control flow direction.

E. Install safety valves on hot-water generators and elsewhere as required by the ASME Boiler and Pressure Vessel Code. Install safety-valve discharge piping, without valves, to floor. Comply with the ASME Boiler and Pressure Vessel Code, Section VIII, Division 1, for installation requirements.

F. Install pressure-reducing valves as required to regulate system pressure.

3.3 PIPING INSTALLATIONS

A. Install groups of pipes parallel to each other, spaced to permit applying insulation and servicing of valves.

B. Install drains, consisting of a tee fitting, NPS 3/4 ball valve, and short NPS 3/4 threaded nipple with cap, at low points in piping system mains and elsewhere as required for system drainage.

C. Install piping at a uniform grade of 0.2 percent upward in direction of flow.

D. Reduce pipe sizes using eccentric reducer fitting installed with level side up.

E. Unless otherwise indicated, install branch connections to mains using tee fittings in main pipe, with the takeoff coming out the bottom of the main pipe. For up-feed risers, install the takeoff coming out the top of the main pipe.

F. Install strainers on supply side of each control valve, pressure-reducing valve, solenoid valve, in-line pump, and elsewhere as indicated. Install NPS 3/4 nipple and ball valve in blowdown connection of strainers NPS 2 and larger. Match size of strainer blowoff connection for strainers smaller than NPS 2.

G. Anchor piping for proper direction of expansion and contraction.

H. When installing direct buried piping, use non-rising stem gate valves with 2 inch square operating nut actuators accessible from the ground level via valve box for isolation service in direct bury piping only. Provide valve box consisting of ductile iron pipe and valve box cover for direct buried valves. Coat pipe with asphalt dip and provide case iron covers stamped to indicate valve service.

I. Bury underground piping in a trench not less than 3 feet deeper than the top of pipe and not less than 36 inches wider than the combined outside diameter of all piping systems. Provide a mini-
mum thickness of 36 inches of compacted backfill placed over the top of the pipe to meet H-20 highway loading. Provide trench bottom with a minimum of 6 inches of sand fill material as a cushion for the piping. Cover the top of the pipe a minimum of 12 inches.

3.4 HYDRONIC SPECIALTIES INSTALLATION

A. Install manual air vents at high points in piping, at heat-transfer coils, and elsewhere as required for system air venting.

B. Install automatic air vents in mechanical equipment rooms only at high points of system piping, at heat-transfer coils, and elsewhere as required for system air venting.

C. Install expansion tanks on floor. Vent and purge air from hydronic system, and ensure tank is properly charged with air to suit system design requirements.

3.5 TERMINAL EQUIPMENT CONNECTIONS

A. Size for supply and return piping connections shall be same as for equipment connections.

B. Install control valves in accessible locations close to connected equipment.

C. Install bypass piping with globe valve around control valve. If multiple, parallel control valves are installed, only one bypass is required.

D. Install ports for pressure and temperature gages at coil inlet connections.

3.6 CHEMICAL TREATMENT

A. Perform an analysis of supply water to determine the type and quantities of chemical treatment needed to keep system free of scale, corrosion, and fouling.

B. Fill system and perform initial chemical treatment.

3.7 FIELD QUALITY CONTROL

A. Prepare hydronic piping according to ASME B31.9 and as follows:
 1. Leave joints, including welds, uninsulated and exposed for examination during test.
 2. Provide temporary restraints for expansion joints that cannot sustain reactions due to test pressure. If temporary restraints are impractical, isolate expansion joints from testing.
 3. Keep interior of all pipe, fittings, valves, and accessories free from dirt and foreign material. Use suitable bulkheads to block or plug the ends of piping during construction. Should dirt, mud, concrete, paint or other foreign materials be allowed to enter the piping, immediately clean prior to continuation.
4. Flush system with clean water. Clean strainers.
5. Isolate equipment from piping. If a valve is used to isolate equipment, its closure shall be capable of sealing against test pressure without damage to valve. Install blinds in flanged joints to isolate equipment.
6. Install safety valve, set at a pressure no more than one-third higher than test pressure, to protect against damage by expanding liquid or other source of overpressure during test.

B. Perform the following tests on hydronic piping:
 1. Use ambient temperature water as a testing medium unless there is risk of damage due to freezing. Another liquid that is safe for workers and compatible with piping may be used.
 2. While filling system, use vents installed at high points of system to release trapped air. Use drains installed at low points for complete draining of liquid.
 3. Check expansion tanks to determine that they are not air bound and that system is full of water.
 4. Subject piping system to hydrostatic test pressure that is not less than 1.5 times the design pressure. Test pressure shall not exceed maximum pressure for any vessel, pump, valve, or other component in system under test. Verify that stress due to pressure at bottom of vertical runs does not exceed either 90 percent of specified minimum yield strength or 1.7 times "SE" value in Appendix A of ASME B31.9, "Building Services Piping."
 5. After hydrostatic test pressure has been applied for at least 10 minutes, examine piping, joints, and connections for leakage. Eliminate leaks by tightening, repairing, or replacing components, and repeat hydrostatic test until there are no leaks.
 6. Prepare written report of testing.

3.8 ADJUSTING

A. Mark calibrated nameplates of pump discharge valves after hydronic system balancing has been completed, to permanently indicate final balanced position.

B. Perform these adjustments before operating the system:
 1. Open valves to fully open position. Close coil bypass valves.
 2. Check pump for proper direction of rotation.
 3. Set automatic fill valves for required system pressure.
 4. Check air vents at high points of system and determine if all are installed and operating freely (automatic type), and bleed air completely (manual type).
 5. Set temperature controls so all coils are calling for full flow.
 6. Check operation of automatic bypass valves.
 7. Check and set operating temperatures of boilers, chillers, and cooling towers to design requirements.
 8. Lubricate motors and bearings.

3.9 CLEANING

A. Flush hydronic piping systems with clean water. Remove and clean or replace strainer screens. After cleaning and flushing hydronic piping systems, but before balancing, remove disposable fine-mesh strainers in pump suction diffusers.

Moffett Library Renovation 232113-7 Hydronic Piping Phase II
SECTION 23 31 13
METAL DUCTS

PART 1 GENERAL

1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
A. Section Includes:
 1. Single-wall rectangular ducts and fittings.
 2. Single-wall round ducts and fittings.
 4. Sealants and gaskets.
 5. Hangers and supports.

1.3 PERFORMANCE REQUIREMENTS
A. Delegated Duct Design: Duct construction, including sheet metal thicknesses, seam and joint construction, reinforcements, and hangers and supports, shall comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible" and performance requirements and design criteria indicated in "Duct Schedule" Article.

B. Structural Performance: Duct hangers and supports shall withstand the effects of gravity loads and stresses within limits and under conditions described in SMACNA's "HVAC Duct Construction Standards - Metal and Flexible".

C. Airstream Surfaces: Surfaces in contact with the airstream shall comply with requirements in ASHRAE 62.1.

1.4 ACTION SUBMITTALS
A. Product Data: For each type of the following products:
 1. Liners and adhesives.
 2. Sealants and gaskets.

B. Shop Drawings:
 1. Fabrication, assembly, and installation, including plans, elevations, sections, components, and attachments to other work.
 2. Factory- and shop-fabricated ducts and fittings.
 3. Duct layout indicating sizes, configuration, liner material, and static-pressure classes.
 4. Elevation of top of ducts.
 5. Dimensions of main duct runs from building grid lines.
6. Fittings.
7. Reinforcement and spacing.
8. Seam and joint construction.
9. Penetrations through fire-rated and other partitions.
10. Equipment installation based on equipment being used on Project.
11. Locations for duct accessories, including dampers, turning vanes, and access doors and panels.
12. Hangers and supports, including methods for duct and building attachment and vibration isolation.

C. Delegated-Design Submittal:

1. Sheet metal thicknesses.
2. Joint and seam construction and sealing.
3. Reinforcement details and spacing.
4. Materials, fabrication, assembly, and spacing of hangers and supports.
5. Design Calculations: Calculations for selecting hangers and supports.

1.5 INFORMATIONAL SUBMITTALS

A. Coordination Drawings: Plans, drawn to scale, on which the following items are shown and coordinated with each other, using input from installers of the items involved:

1. Duct installation in congested spaces, indicating coordination with general construction, building components, and other building services. Indicate proposed changes to duct layout.
2. Suspended ceiling components.
3. Structural members to which duct will be attached.
4. Size and location of initial access modules for acoustical tile.
5. Penetrations of smoke barriers and fire-rated construction.
6. Items penetrating finished ceiling including the following:
 a. Lighting fixtures.
 b. Air outlets and inlets.
 c. Speakers.
 d. Sprinklers.
 e. Access panels.
 f. Perimeter moldings.

B. Welding certificates.

C. Field quality-control reports.

1.6 QUALITY ASSURANCE

PART 2 PRODUCTS

2.1 SINGLE-WALL RECTANGULAR DUCTS AND FITTINGS

A. General Fabrication Requirements: Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible" based on indicated static-pressure class unless otherwise indicated.

B. Transverse Joints: Select joint types and fabricate according to SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Figure 2-1, "Rectangular Duct/Transverse Joints," for static-pressure class, applicable sealing requirements, materials involved, duct-support intervals, and other provisions in SMACNA's "HVAC Duct Construction Standards - Metal and Flexible."

C. Longitudinal Seams: Select seam types and fabricate according to SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Figure 2-2, "Rectangular Duct/Longitudinal Seams," for static-pressure class, applicable sealing requirements, materials involved, duct-support intervals, and other provisions in SMACNA's "HVAC Duct Construction Standards - Metal and Flexible."

D. Elbows, Transitions, Offsets, Branch Connections, and Other Duct Construction: Select types and fabricate according to SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Chapter 4, "Fittings and Other Construction," for static-pressure class, applicable sealing requirements, materials involved, duct-support intervals, and other provisions in SMACNA's "HVAC Duct Construction Standards - Metal and Flexible."

2.2 SINGLE-WALL ROUND DUCTS AND FITTINGS

A. General Fabrication Requirements: Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Chapter 3, "Round, Oval, and Flexible Duct," based on indicated static-pressure class unless otherwise indicated.

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

 a. Lindab Inc.
 b. McGill AirFlow LLC.
 c. SEMCO Incorporated.
 d. Sheet Metal Connectors, Inc.
 e. Spiral Manufacturing Co., Inc.

B. Transverse Joints: Select joint types and fabricate according to SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Figure 3-1, "Round Duct Transverse Joints," for static-pressure class, applicable sealing requirements, materials involved, duct-support intervals, and other provisions in SMACNA's "HVAC Duct Construction Standards - Metal and Flexible."

C. Longitudinal Seams: Select seam types and fabricate according to SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Figure 3-2, "Round Duct Longitudinal Seams," for static-pressure class, applicable sealing requirements, materials involved, duct-support...
intervals, and other provisions in SMACNA's "HVAC Duct Construction Standards - Metal and Flexible."

D. Tees and Laterals: Select types and fabricate according to SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Figure 3-5, "90 Degree Tees and Laterals," and Figure 3-6, "Conical Tees," for static-pressure class, applicable sealing requirements, materials involved, duct-support intervals, and other provisions in SMACNA's "HVAC Duct Construction Standards - Metal and Flexible."

2.3 SHEET METAL MATERIALS

A. General Material Requirements: Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible" for acceptable materials, material thicknesses, and duct construction methods unless otherwise indicated. Sheet metal materials shall be free of pitting, seam marks, roller marks, stains, discolorations, and other imperfections.

B. Galvanized Sheet Steel: Comply with ASTM A 653/A 653M.
 1. Galvanized Coating Designation: G60.
 2. Finishes for Surfaces Exposed to View: Mill phosphatized.

C. Carbon-Steel Sheets: Comply with ASTM A 1008/A 1008M, with oiled, matte finish for exposed ducts.

D. Stainless-Steel Sheets: Comply with ASTM A 480/A 480M, Type 304 or 316, as indicated in the "Duct Schedule" Article; cold rolled, annealed, sheet. Exposed surface finish shall be No. 2B, No. 2D, No. 3, or No. 4 as indicated in the "Duct Schedule" Article.

E. Aluminum Sheets: Comply with ASTM B 209 Alloy 3003, H14 temper; with mill finish for concealed ducts, and standard, one-side bright finish for duct surfaces exposed to view.

F. Reinforcement Shapes and Plates: ASTM A 36/A 36M, steel plates, shapes, and bars; black and galvanized.
 1. Where black- and galvanized-steel shapes and plates are used to reinforce aluminum ducts, isolate the different metals with butyl rubber, neoprene, or EPDM gasket materials.

G. Tie Rods: Galvanized steel, 1/4-inch minimum diameter for lengths 36 inches or less; 3/8-inch minimum diameter for lengths longer than 36 inches.

2.4 SEALANT AND GASKETS

A. General Sealant and Gasket Requirements: Surface-burning characteristics for sealants and gaskets shall be a maximum flame-spread index of 25 and a maximum smoke-developed index of 50 when tested according to UL 723; certified by an NRTL.

B. Two-Part Tape Sealing System:
 1. Tape: Woven cotton fiber impregnated with mineral gypsum and modified acrylic/silicone activator to react exothermically with tape to form hard, durable, airtight seal.
2. Tape Width: 3 inches.
5. Mold and mildew resistant.
6. Maximum Static-Pressure Class: 10-inch wg, positive and negative.
7. Service: Indoor and outdoor.
8. Service Temperature: Minus 40 to plus 200 deg F.
9. Substrate: Compatible with galvanized sheet steel (both PVC coated and bare), stainless steel, or aluminum.
10. For indoor applications, sealant shall have a VOC content of 250 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
11. Sealant shall comply with the testing and product requirements of the California Department of Health Services' "Standard Practice for the Testing of Volatile Organic Emissions from Various Sources Using Small-Scale Environmental Chambers."

C. Water-Based Joint and Seam Sealant:

1. Application Method: Brush on.
2. Solids Content: Minimum 65 percent.
5. Mold and mildew resistant.
6. VOC: Maximum 75 g/L (less water).
7. Maximum Static-Pressure Class: 10-inch wg, positive and negative.
8. Service: Indoor or outdoor.
9. Substrate: Compatible with galvanized sheet steel (both PVC coated and bare), stainless steel, or aluminum sheets.

D. Solvent-Based Joint and Seam Sealant:

1. Application Method: Brush on.
2. Base: Synthetic rubber resin.
4. Solids Content: Minimum 60 percent.
5. Shore A Hardness: Minimum 60.
7. Mold and mildew resistant.
8. For indoor applications, sealant shall have a VOC content of 250 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
9. VOC: Maximum 395 g/L.
10. Sealant shall comply with the testing and product requirements of the California Department of Health Services' "Standard Practice for the Testing of Volatile Organic Emissions from Various Sources Using Small-Scale Environmental Chambers."
11. Maximum Static-Pressure Class: 10-inch wg, positive or negative.
12. Service: Indoor or outdoor.
13. Substrate: Compatible with galvanized sheet steel (both PVC coated and bare), stainless steel, or aluminum sheets.

E. Flanged Joint Sealant: Comply with ASTM C 920.

2. Type: S.
3. Grade: NS.
5. Use: O.
6. For indoor applications, sealant shall have a VOC content of 250 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
7. Sealant shall comply with the testing and product requirements of the California Department of Health Services' "Standard Practice for the Testing of Volatile Organic Emissions from Various Sources Using Small-Scale Environmental Chambers."

F. Flange Gaskets: Butyl rubber, neoprene, or EPDM polymer with polyisobutylene plasticizer.

G. Round Duct Joint O-Ring Seals:
 1. Seal shall provide maximum leakage class of 3 cfm/100 sq. ft. at 1-inch wg and shall be rated for 10-inch wg static-pressure class, positive or negative.
 2. EPDM O-ring to seal in concave bead in coupling or fitting spigot.
 3. Double-lipped, EPDM O-ring seal, mechanically fastened to factory-fabricated couplings and fitting spigots.

2.5 HANGERS AND SUPPORTS

A. Hanger Rods for Noncorrosive Environments: Cadmium-plated steel rods and nuts.

B. Hanger Rods for Corrosive Environments: Electrogalvanized, all-thread rods or galvanized rods with threads painted with zinc-chromate primer after installation.

C. Strap and Rod Sizes: Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Table 5-1, "Rectangular Duct Hangers Minimum Size," and Table 5-2, "Minimum Hanger Sizes for Round Duct."

D. Steel Cables for Galvanized-Steel Ducts: Galvanized steel complying with ASTM A 603.

E. Steel Cables for Stainless-Steel Ducts: Stainless steel complying with ASTM A 492.

F. Steel Cable End Connections: Cadmium-plated steel assemblies with brackets, swivel, and bolts designed for duct hanger service; with an automatic-locking and clamping device.

G. Duct Attachments: Sheet metal screws, blind rivets, or self-tapping metal screws; compatible with duct materials.

H. Trapeze and Riser Supports:
 3. Supports for Aluminum Ducts: Aluminum or galvanized steel coated with zinc chromate.
3.1 DUCT INSTALLATION

A. Drawing plans, schematics, and diagrams indicate general location and arrangement of duct system. Indicated duct locations, configurations, and arrangements were used to size ducts and calculate friction loss for air-handling equipment sizing and for other design considerations. Install duct systems as indicated unless deviations to layout are approved on Shop Drawings and Coordination Drawings.

B. Install ducts according to SMACNA's "HVAC Duct Construction Standards - Metal and Flexible" unless otherwise indicated.

C. Install round ducts in maximum practical lengths.

D. Install ducts with fewest possible joints.

E. Install factory- or shop-fabricated fittings for changes in direction, size, and shape and for branch connections.

F. Unless otherwise indicated, install ducts vertically and horizontally, and parallel and perpendicular to building lines.

G. Install ducts close to walls, overhead construction, columns, and other structural and permanent enclosure elements of building.

H. Install ducts with a clearance of 1 inch, plus allowance for insulation thickness.

I. Route ducts to avoid passing through transformer vaults and electrical equipment rooms and enclosures.

J. Where ducts pass through non-fire-rated interior partitions and exterior walls and are exposed to view, cover the opening between the partition and duct or duct insulation with sheet metal flanges of same metal thickness as the duct. Overlap openings on four sides by at least 1-1/2 inches.

K. Where ducts pass through fire-rated interior partitions and exterior walls, install fire dampers. Contractor shall coordinate with the architectural drawings and provide fire dampers in walls that are fire rated.

L. Protect duct interiors from moisture, construction debris and dust, and other foreign materials.

3.2 DUCT SEALING

A. Seal ducts for duct static-pressure, seal classes, and leakage classes specified in "Duct Schedule" Article according to SMACNA's "HVAC Duct Construction Standards - Metal and Flexible."

B. Seal ducts to the following seal classes according to SMACNA's "HVAC Duct Construction Standards - Metal and Flexible":

Moffett Library Renovation Phase II
1. Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible."
2. Conditioned Space, Supply-Air Ducts in Pressure Classes 2-Inch wg and Lower: Seal Class C.
3. Conditioned Space, Return-Air Ducts: Seal Class C.

3.3 HANGER AND SUPPORT INSTALLATION

A. Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Chapter 5, "Hangers and Supports."

B. Building Attachments: Concrete inserts, powder-actuated fasteners, or structural-steel fasteners appropriate for construction materials to which hangers are being attached.

1. Where practical, install concrete inserts before placing concrete.
2. Install powder-actuated concrete fasteners after concrete is placed and completely cured.
3. Use powder-actuated concrete fasteners for standard-weight aggregate concretes or for slabs more than 4 inches thick.
4. Do not use powder-actuated concrete fasteners for lightweight-aggregate concretes or for slabs less than 4 inches thick.
5. Do not use powder-actuated concrete fasteners for seismic restraints.

C. Hanger Spacing: Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Table 5-1, "Rectangular Duct Hangers Minimum Size," and Table 5-2, "Minimum Hanger Sizes for Round Duct," for maximum hanger spacing; install hangers and supports within 24 inches of each elbow and within 48 inches of each branch intersection.

D. Hangers Exposed to View: Threaded rod and angle or channel supports.

E. Support vertical ducts with steel angles or channel secured to the sides of the duct with welds, bolts, sheet metal screws, or blind rivets; support at each floor and at a maximum intervals of 16 feet (5 m).

F. Install upper attachments to structures. Select and size upper attachments with pull-out, tension, and shear capacities appropriate for supported loads and building materials where used.

3.4 CONNECTIONS

A. Make connections to equipment with flexible.

B. Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible" for branch, outlet and inlet, and terminal unit connections.

3.5 PAINTING

A. Paint interior of metal ducts that are visible through registers and grilles and that do not have duct liner. Apply one coat of flat, black, latex paint over a compatible galvanized-steel primer.

3.6 FIELD QUALITY CONTROL

A. Perform tests and inspections.
B. Duct System Cleanliness Tests:

1. Visually inspect duct system to ensure that no visible contaminants are present.

3.7 DUCT SCHEDULE

A. Fabricate ducts with galvanized sheet steel except as otherwise indicated and as follows:

B. Supply, Return, Exhaust and Transfer Air Ducts:

1. Ducts Connected to air moving equipment (external static pressure at or below 1” w.g.):
 a. Pressure Class: Positive 1-inch wg.
 b. Minimum SMACNA Seal Class: C.
 c. SMACNA Leakage Class for Rectangular: 12.
 d. SMACNA Leakage Class for Round and Flat Oval: 12.

C. Intermediate Reinforcement:

D. Elbow Configuration:

1. Rectangular Duct: Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Figure 4-2, "Rectangular Elbows."

 a. Velocity 1000 fpm or Lower:
 1) Radius Type RE 1 with minimum 0.5 radius-to-diameter ratio.
 2) Mitered Type RE 4 without vanes.

 b. Velocity 1000 to 1500 fpm:
 1) Radius Type RE 1 with minimum 1.0 radius-to-diameter ratio.
 2) Radius Type RE 3 with minimum 0.5 radius-to-diameter ratio and two vanes.
 3) Mitered Type RE 2 with vanes complying with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Figure 4-3, "Vanes and Vane Runners," and Figure 4-4, "Vane Support in Elbows."

 c. Velocity 1500 fpm or Higher:
 1) Radius Type RE 1 with minimum 1.5 radius-to-diameter ratio.
 2) Radius Type RE 3 with minimum 1.0 radius-to-diameter ratio and two vanes.
 3) Mitered Type RE 2 with vanes complying with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Figure 4-3, "Vanes and Vane Runners," and Figure 4-4, "Vane Support in Elbows."

2. Rectangular Duct: Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Figure 4-2, "Rectangular Elbows."
a. Radius Type RE 1 with minimum 1.5 radius-to-diameter ratio.
b. Radius Type RE 3 with minimum 1.0 radius-to-diameter ratio and two vanes.
c. Mitered Type RE 2 with vanes complying with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Figure 4-3, "Vanes and Vane Runners," and Figure 4-4, "Vane Support in Elbows."

3. Round Duct: Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Figure 3-4, "Round Duct Elbows."

a. Minimum Radius-to-Diameter Ratio and Elbow Segments: Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Table 3-1, "Mitered Elbows." Elbows with less than 90-degree change of direction have proportionately fewer segments.

1) Velocity 1000 fpm or Lower: 0.5 radius-to-diameter ratio and three segments for 90-degree elbow.
2) Velocity 1000 to 1500 fpm: 1.0 radius-to-diameter ratio and four segments for 90-degree elbow.
3) Velocity 1500 fpm or Higher: 1.5 radius-to-diameter ratio and five segments for 90-degree elbow.
4) Radius-to-Diameter Ratio: 1.5.

b. Round Elbows, 12 Inches and Smaller in Diameter: Stamped or pleated.
c. Round Elbows, 14 Inches and Larger in Diameter: Welded.

E. Branch Configuration:

1. Rectangular Duct: Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Figure 4-6, "Branch Connection."

a. Rectangular Main to Rectangular Branch: 45-degree entry.
b. Rectangular Main to Round Branch: Spin in.

2. Round and Flat Oval: Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Figure 3-5, "90 Degree Tees and Laterals," and Figure 3-6, "Conical Tees." Saddle taps are permitted in existing duct.

a. Velocity 1000 fpm or Lower: 90-degree tap.
b. Velocity 1000 to 1500 fpm: Conical tap.
c. Velocity 1500 fpm or Higher: 45-degree lateral.

END OF SECTION
SECTION 23 33 00
AIR DUCT ACCESSORIES

PART 1 GENERAL

1.1 RELATED DOCUMENTS
 A. Drawings and general provisions of the Contract, including General and Supplementary
 Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
 A. Section Includes:
 2. Fire dampers.
 3. Control dampers.
 4. Flange connectors.
 5. Turning vanes.
 6. Duct-mounted access doors.
 7. Flexible connectors.
 8. Flexible ducts.
 9. Duct accessory hardware.

1.3 SUBMITTALS
 A. Shop Drawings: For duct accessories. Include plans, elevations, sections, details and
 attachments to other work.
 1. Detail duct accessories fabrication and installation in ducts and other construction.
 Include dimensions, weights, loads, and required clearances; and method of field
 assembly into duct systems and other construction. Include the following:
 a. Special fittings.
 c. Control damper installations.
 B. Coordination Drawings: Reflected ceiling plans, drawn to scale, on which ceiling-mounted
 access panels and access doors required for access to duct accessories are shown and
 coordinated with each other, using input from Installers of the items involved.
 C. Source quality-control reports.
 D. Operation and Maintenance Data: For air duct accessories to include in operation and
 maintenance manuals.
1.4 QUALITY ASSURANCE

B. Comply with AMCA 500-D testing for damper rating.

PART 2 PRODUCTS

2.1 MATERIALS

A. Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible" for acceptable materials, material thicknesses, and duct construction methods unless otherwise indicated. Sheet metal materials shall be free of pitting, seam marks, roller marks, stains, discolorations, and other imperfections.

B. Galvanized Sheet Steel: Comply with ASTM A 653/A 653M.
 1. Galvanized Coating Designation: G60.
 2. Exposed-Surface Finish: Mill phosphatized.

C. Reinforcement Shapes and Plates: Galvanized-steel reinforcement where installed on galvanized sheet metal ducts; compatible materials for aluminum and stainless-steel ducts.

D. Tie Rods: Galvanized steel, 1/4-inch minimum diameter for lengths 36 inches or less; 3/8-inch minimum diameter for lengths longer than 36 inches.

2.2 MANUAL VOLUME DAMPERS

A. Standard, Steel, Manual Volume Dampers:
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. McGill AirFlow LLC.
 b. METALAIRE, Inc.
 c. Nailor Industries Inc.
 d. Pottorff; a division of PCI Industries, Inc.
 e. Ruskin Company.
 2. Standard leakage rating, with linkage outside airstream.
 3. Suitable for horizontal or vertical applications.
 4. Frames:
 a. Hat-shaped, galvanized-steel channels, 0.064-inch minimum thickness.
 b. Mitered and welded corners.
 c. Flanges for attaching to walls and flangeless frames for installing in ducts.
 5. Blades:
a. Multiple or single blade.
b. Parallel- or opposed-blade design.
c. Stiffen damper blades for stability.
d. Galvanized-steel, 0.064 inch thick.

7. Bearings:
 a. Molded synthetic.
 b. Dampers in ducts with pressure classes of 3-inch wg or less shall have axles the full length of damper blades and bearings at both ends of operating shaft.

8. Tie Bars and Brackets: Galvanized steel.

B. Low-Leakage, Steel, Manual Volume Dampers:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. McGill AirFlow LLC.
 b. METALAIRE, Inc.
 c. Nailor Industries Inc.
 d. Pottorff; a division of PCI Industries, Inc.
 e. Ruskin Company.

2. Low-leakage rating, with linkage outside airstream, and bearing AMCA's Certified Ratings Seal for both air performance and air leakage.
3. Suitable for horizontal or vertical applications.
4. Frames:
 a. Hat shaped.
 b. Galvanized-steel channels, 0.064 inch thick.
 c. Mitered and welded corners.
 d. Flanges for attaching to walls and flangeless frames for installing in ducts.

5. Blades:
 a. Multiple or single blade.
 b. Parallel- or opposed-blade design.
 c. Stiffen damper blades for stability.
 d. Galvanized, roll-formed steel, 0.064 inch thick.

7. Bearings:
 a. Molded synthetic.
 b. Dampers in ducts with pressure classes of 3-inch wg or less shall have axles full length of damper blades and bearings at both ends of operating shaft.

10. Tie Bars and Brackets: Aluminum.
11. Accessories:
 a. Include locking device to hold single-blade dampers in a fixed position without vibration.

C. Jackshaft:
 2. Material: Galvanized-steel pipe rotating within pipe-bearing assembly mounted on supports at each mullion and at each end of multiple-damper assemblies.
 3. Length and Number of Mountings: As required to connect linkage of each damper in multiple-damper assembly.

D. Damper Hardware:
 2. Include center hole to suit damper operating-rod size.
 3. Include elevated platform for insulated duct mounting.

2.3 FIRE DAMPERS

A. Manufacturers: Subject to compliance with requirements, provide products by the following:
 2. Nailor Industries Inc.
 3. Pottorff.
 4. Ruskin Company.

B. Type: Static; rated and labeled according to UL 555 by an NRTL.

C. Closing rating in ducts up to 4-inch wg static pressure class and minimum 2000-fpm velocity.

D. Fire Rating: 1-1/2 hours.

E. Frame: Curtain type with blades outside airstream; fabricated with roll-formed, 0.034-inch-thick galvanized steel; with mitered and interlocking corners.

F. Mounting Sleeve: Factory- or field-installed, galvanized sheet steel.
 1. Minimum Thickness: 0.138 inch thick, as indicated, and of length to suit application.
 2. Exception: Omit sleeve where damper-frame width permits direct attachment of perimeter mounting angles on each side of wall or floor; thickness of damper frame must comply with sleeve requirements.

G. Mounting Orientation: Vertical or horizontal as indicated.

H. Blades: Roll-formed, interlocking, 0.024-inch-thick, galvanized sheet steel. In place of interlocking blades, use full-length, 0.034-inch-thick, galvanized-steel blade connectors.
I. Horizontal Dampers: Include blade lock and stainless-steel closure spring.

2.4 FLANGE CONNECTORS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. Ductmate Industries, Inc.
 2. Nexus PDQ; Division of Shilco Holdings Inc.

B. Description: Add-on or roll-formed, factory-fabricated, slide-on transverse flange connectors, gaskets, and components.

C. Material: Galvanized steel.

D. Gage and Shape: Match connecting ductwork.

2.5 TURNING VANES

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. Ductmate Industries, Inc.
 2. Duro Dyne Inc.
 3. METALAIRE, Inc.
 4. SEMCO Incorporated.

B. Manufactured Turning Vanes for Metal Ducts: Curved blades of galvanized sheet steel; support with bars perpendicular to blades set; set into vane runners suitable for duct mounting.

C. General Requirements: Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible"; Figures 4-3, "Vanes and Vane Runners," and 4-4, "Vane Support in Elbows."

D. Vane Construction: Single wall.

E. Vane Construction: Single wall for ducts up to 48 inches wide and double wall for larger dimensions.

2.6 FLEXIBLE CONNECTORS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. Ductmate Industries, Inc.
2. Duro Dyne Inc.
3. Ventfabs, Inc.

B. Materials: Flame-retardant or noncombustible fabrics.

C. Coatings and Adhesives: Comply with UL 181, Class 1.

D. Metal-Edged Connectors: Factory fabricated with a fabric strip 3-1/2 inches wide attached to 2 strips of 2-3/4-inch wide, 0.028-inch thick, galvanized sheet steel or 0.032-inch thick aluminum sheets. Provide metal compatible with connected ducts.

 1. Minimum Weight: 26 oz./sq. yd.
 2. Tensile Strength: 480 lbf/inch in the warp and 360 lbf/inch in the filling.
 3. Service Temperature: Minus 40 to plus 200 deg F.

 1. Minimum Weight: 24 oz./sq. yd.
 2. Tensile Strength: 530 lbf/inch in the warp and 440 lbf/inch in the filling.
 3. Service Temperature: Minus 50 to plus 250 deg F.

G. Thrust Limits: Combination coil spring and elastomeric insert with spring and insert in compression, and with a load stop. Include rod and angle-iron brackets for attaching to fan discharge and duct.

 1. Frame: Steel, fabricated for connection to threaded rods and to allow for a maximum of 30 degrees of angular rod misalignment without binding or reducing isolation efficiency.
 2. Outdoor Spring Diameter: Not less than 80 percent of the compressed height of the spring at rated load.
 3. Minimum Additional Travel: 50 percent of the required deflection at rated load.
 4. Lateral Stiffness: More than 80 percent of rated vertical stiffness.
 5. Overload Capacity: Support 200 percent of rated load, fully compressed, without deformation or failure.
 6. Elastomeric Element: Molded, oil-resistant rubber or neoprene.
 7. Coil Spring: Factory set and field adjustable for a maximum of 1/4-inch movement at start and stop.

2.7 FLEXIBLE DUCTS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

 1. Flexmaster U.S.A., Inc.
 2. McGill AirFlow LLC.
B. Insulated, Flexible Duct: UL 181, Class 0, interlocking spiral of aluminum foil; fibrous-glass insulation; polyethylene vapor-barrier film.

1. Pressure Rating: 8-inch wg positive or negative.
3. Temperature Range: Minus 20 to plus 250 deg F.
4. Insulation R-value: Comply with ASHRAE/IESNA 90.1.

C. Flexible Duct Connectors:

1. Clamps: Stainless-steel band with cadmium-plated hex screw to tighten band with a worm-gear action in sizes 3 through 18 inches, to suit duct size.

2.8 DUCT ACCESSORY HARDWARE

A. Instrument Test Holes: Cast iron or cast aluminum to suit duct material, including screw cap and gasket. Size to allow insertion of pitot tube and other testing instruments and of length to suit duct-insulation thickness.

B. Adhesives: High strength, quick setting, neoprene based, waterproof, and resistant to gasoline and grease.

PART 3 EXECUTION

2.9 INSTALLATION

A. Install duct accessories according to applicable details in SMACNA's "HVAC Duct Construction Standards - Metal and Flexible" for metal ducts.

B. Install duct accessories of materials suited to duct materials; use galvanized-steel accessories in galvanized-steel and fibrous-glass ducts, stainless-steel accessories in stainless-steel ducts, and aluminum accessories in aluminum ducts.

C. Install volume dampers at points on supply, return, and exhaust systems where branches extend from larger ducts. Where dampers are installed in ducts having duct liner, install dampers with hat channels of same depth as liner, and terminate liner with nosing at hat channel.

1. Install steel volume dampers in steel ducts.

D. Set dampers to fully open position before testing, adjusting, and balancing.

E. Install test holes at fan inlets and outlets and elsewhere as indicated.

F. Install flexible connectors to connect ducts to equipment.

G. For fans developing static pressures of 5-inch wg and more, cover flexible connectors with loaded vinyl sheet held in place with metal straps.
H. Connect terminal units to supply ducts directly or with maximum 12-inch lengths of flexible duct. Do not use flexible ducts to change directions.

I. Connect diffusers to ducts directly or with maximum 60-inch lengths of flexible duct clamped or strapped in place.

J. Connect flexible ducts to metal ducts with adhesive plus sheet metal screws.

K. Install duct test holes where required for testing and balancing purposes.

L. Install thrust limits at centerline of thrust, symmetrical on both sides of equipment. Attach thrust limits at centerline of thrust and adjust to a maximum of 1/4-inch movement during start and stop of fans.

2.10 FIELD QUALITY CONTROL

A. Tests and Inspections:

1. Operate dampers to verify full range of movement.
2. Inspect locations of access doors and verify that purpose of access door can be performed.
3. Inspect turning vanes for proper and secure installation.
4. Operate remote damper operators to verify full range of movement of operator and damper.

END OF SECTION
SECTION 23 82 19
FAN COIL UNITS

PART 1 GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Perform all Work required to provide and install fan coil units for indoor applications, including factory installed fans, dampers, coils, motors, and any specialty equipment as indicated or noted in the Contract Documents with supplementary items necessary for proper installation and operation. Section Includes:

1. Ducted fan coil units and accessories.

B. This section includes factory-assembled variable volume modular air handling units (AHU) that include, but is not limited to the following:

1. Casing.
2. Fans.
3. Coils.
4. Filter sections.
5. Dampers.
6. Additional sections.
7. Accessories.

1.3 PERFORMANCE REQUIREMENTS

A. Unit shall meet or exceed the schedule performance listed on the drawings within the parameters listed in this specification.

1.4 REFERENCE STANDARDS

A. All materials, installation and workmanship shall comply with the applicable requirements and standards addressed within the following references:

2. AMCA 210 - Laboratory Methods of Testing Fans for Rating Purposes.
5. AMCA 500 - Test Methods for Louver, Dampers, and Shutters.
6. ARI 260 - Sound Rating of Ducted Air Moving and Conditioning Equipment
8. ARI 430 – Standard for Central Station Air-Handling Units.
9. ARI 435 – Application for Central Station Air-Handling Units.
10. ARI 610 - Central System Humidifiers.
11. NEMA MG1 - Motors and Generators.
15. SMACNA - HVAC Duct Construction Standards - Metal and Flexible.
16. UL 900 - Test Performance of Air Filter Units.

1.5 ACTION SUBMITTALS

A. Submit in writing and so delineated at the beginning of each submittal, known substitutions and deviations from requirements of Contract Documents. Deviation from Contract Documents must be approved by engineer prior to submittal.

B. Product Data: For each fan coil unit indicated.
 1. Unit dimensions and weight.
 2. Cabinet material, metal thickness, finishes, insulation, and accessories.
 3. Fans:
 a. Certified fan-performance curves with system operating conditions indicated.
 b. Certified fan-sound power ratings.
 c. Fan construction and accessories.
 d. Motor ratings, electrical characteristics, and motor accessories.
 4. Certified coil-performance ratings with system operating conditions indicated.
 5. Pressure loss of unit by section, include dirty filter loss.
 6. Filters with performance characteristics(clean and dirty).
 7. Submit sound power level data for both fan outlet and casing radiation at rated capacity, as tested and certified per AMCA and ARI 260 standards. All fan data shall be generated from specified testing. The fan shall compare favorably with the scheduled data listed in the Drawings.

C. Units shall fit into the space available with adequate clearances meeting manufacturer’s requirements for service and as determined by the Engineer. Submitted units, which do not meet these criteria, shall be rejected. The Contractor shall not assume that all of the manufacturers listed as acceptable manufacturers will provide a unit that will fit in the space allocated for the unit(s). If any system modifications are required to accommodate submitted equipment the contractor shall be responsible for all material, labor, and engineering cost.
1.6 CLOSEOUT SUBMITTALS
 A. Operation and Maintenance Data: For fan coil units to include in emergency, operation, and maintenance manuals.
 1. In addition to items specified in Section 017823 "Operation and Maintenance Data," include the following:
 a. Maintenance schedules and repair part lists for motors, coils, integral controls, and filters.

1.7 MAINTENANCE MATERIAL SUBMITTALS
 A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
 1. Fan Coil Unit Filters: Furnish 1 spare filters for each filter installed.
 2. Fan Belts: Furnish 1 spare fan belts for each unit installed.

1.8 QUALITY ASSURANCE
 A. Comply with NFPA 70.
 B. ASHRAE Compliance: Applicable requirements in ASHRAE 62.1, Section 5 - "Systems and Equipment" and Section 7 - "Construction and Startup."
 C. ASHRAE/IES 90.1 Compliance: Applicable requirements in ASHRAE/IES 90.1, Section 6 - "Heating, Ventilating, and Air-Conditioning."

1.9 COORDINATION
 A. Coordinate layout and installation of fan coil units and suspenion system components with other construction that penetrates or is supported by ceilings, including light fixtures, HVAC equipment, fire-suppression-system components, and partition assemblies.
 B. Coordinate size and location of wall sleeves for outdoor-air intake.

1.10 WARRANTY
 A. Special Warranty: Manufacturer agrees to repair or replace components of condensing units that fail in materials or workmanship within specified warranty period.
 1. Failures include, but are not limited to, the following:
 a. Chilled water coil.
 b. Electric heat.
 2. Warranty Period: One years from date of Substantial Completion.
PART 2 PRODUCTS

2.1 SYSTEM DESCRIPTION

B. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

C. Factory-packaged and -tested units rated according to AHRI 440, ASHRAE 33, and UL 1995.

2.2 HORIZONTAL FAN COIL UNITS

A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:

1. Enviro-Tec
2. Trane
3. Carrier
4. JCI

B. General Fabrication Requirements for Casings:

1. General Fabrication Requirements for Casings: Formed and reinforced double wall insulated panels, fabricated to allow removal for access to internal parts and components.
2. Casing Joints: Sheet metal screws.
3. Sealing: Seal all joints with gasket and water-resistant sealant.
4. Exterior and Interior Casing Material: Galvanized steel with knockouts with grommet seals for electrical and piping connections.
5. Factory Finish for Galvanized-Steel Casings: Apply baked on polyurethane based powder coated finish.

1. Surface-Burning Characteristics: Insulation and adhesive shall have a combined maximum flame-spread index of 25 and smoke-developed index of 50 when tested according to ASTM E 84 by a qualified testing agency.
2. Airstream Surfaces: Surfaces in contact with the airstream shall comply with requirements in ASHRAE 62.1.

D. Drain Pans: Stainless steel. Fabricate pans and drain connections to comply with ASHRAE 62.1. Drain pans shall be removable.

E. Filters: Minimum arrestance and a minimum efficiency reporting value (MERV) according to ASHRAE 52.2 and all addendums.

1. 2” Pleated Cotton-Polyester Media: 90 percent arrestance and MERV 8.
F. Hydronic Coils: Copper tube, with mechanically bonded aluminum fins spaced no closer than 0.1 inch, rated for a minimum working pressure of 200 psig and a maximum entering-water temperature of 200 deg F. Include manual air vent and drain valve.

H. Fan and Motor Board: Removable.
 1. Fan: Forward curved, double width, centrifugal; directly connected to motor. Thermoplastic or painted-steel wheels, and aluminum, painted-steel, or galvanized-steel fan scrolls.
 3. Wiring Termination: Connect motor to chassis wiring with plug connection.

I. Control devices and operational sequences are specified in Section 230923 "Direct Digital Control (DDC) System for HVAC" and sequence of operations as detailed on drawings.

J. Electrical Connection: Factory wire motors and controls for a single electrical connection.

K. Accessories:
 a. Toolless filter rack

L. Smoke Detectors: (For units over 2000 cfm)
 1. General Requirements for System Smoke Detectors:
 a. Comply with UL 268; operating at 24-V dc, nominal.
 b. Detectors shall be four-wire type.
 c. Integral Addressable Module: Arranged to communicate detector status (normal, alarm, or trouble) to fire-alarm control unit.
 d. Base Mounting: Detector and associated electronic components shall be mounted in a twist-lock module that connects to a fixed base. Provide terminals in the fixed base for connection to building wiring.
 e. Integral Visual-Indicating Light: LED type, indicating detector has operated and power-on status.
 f. Remote Control: Unless otherwise indicated, detectors shall be digital-addressable type, individually monitored at fire-alarm control unit for calibration, sensitivity, and alarm condition and individually adjustable for sensitivity by fire-alarm control unit.
 1) Number of settable levels in fire-alarm control unit varies among manufacturers and between detector types. Indicate specific number of levels on Drawings or in "Remarks" column of a detector schedule.
 2) Multiple levels of detection sensitivity for each sensor.
 3) Sensitivity levels based on time of day.
2. Duct Smoke Detectors: Photoelectric type complying with UL 268A.

a. Detector address shall be accessible from fire-alarm control unit and shall be able to identify the detector's location within the system and its sensitivity setting.

b. An operator at fire-alarm control unit, having the designated access level, shall be able to manually access the following for each detector:

 1) Primary status.
 2) Device type.
 3) Present average value.
 4) Present sensitivity selected.
 5) Sensor range (normal, dirty, etc.).

c. Weatherproof Duct Housing Enclosure: NEMA 250, Type 4X; NRTL listed for use with the supplied detector for smoke detection in HVAC system ducts.

d. Number of settable levels in fire-alarm control unit varies among manufacturers and between detector types. Indicate specific number of levels on Drawings or in "Remarks" column of a detector schedule.

e. Each sensor shall have multiple levels of detection sensitivity.

f. Sampling Tubes: Design and dimensions as recommended by manufacturer for specific duct size, air velocity, and installation conditions where applied.

g. Retain "Relay Fan Shutdown" Subparagraph below if required for direct shutdown of the fan associated with detector.

h. Relay Fan Shutdown: Fully programmable relay rated to interrupt fan motor-control circuit.

M. Capacities and Characteristics:

a. Refer to equipment schedule on drawings.

2.3 VERTICAL FAN COIL UNITS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. Enviro-Tec
2. Trane
3. Carrier
4. JCI

B. General Fabrication Requirements for Casings:

1. General Fabrication Requirements for Casings: Formed and reinforced insulated panels, fabricated to allow removal for access to internal parts and components.
2. Casing Joints: Sheet metal screws.
3. Sealing: Seal all joints with gasket and water-resistant sealant.
4. Exterior Casing Material: Galvanized steel with knockouts with grommet seals for electrical and piping connections.
5. Factory Finish for Galvanized-Steel Casings: Apply manufacturer's standard primer immediately after cleaning and pretreating.
 1. Surface-Burning Characteristics: Insulation and adhesive shall have a combined maximum flame-spread index of 25 and smoke-developed index of 50 when tested according to ASTM E 84 by a qualified testing agency.
 2. Airstream Surfaces: Surfaces in contact with the airstream shall comply with requirements in ASHRAE 62.1.

D. Drain Pans: Stainless steel. Fabricate pans and drain connections to comply with ASHRAE 62.1. Drain pans shall be removable.

E. Filters: Minimum arrestance and a minimum efficiency reporting value (MERV) according to ASHRAE 52.2 and all addendums.
 1. 2” Pleated Cotton-Polyester Media: 90 percent arrestance and MERV 8.

F. Hydronic Coils: Copper tube, with mechanically bonded aluminum fins spaced no closer than 0.1 inch, rated for a minimum working pressure of 200 psig and a maximum entering-water temperature of 200 deg F. Include manual air vent and drain valve.

H. Fan and Motor Board: Removable.
 1. Fan: Forward curved, double width, centrifugal; directly connected to motor. Thermoplastic or painted-steel wheels, and aluminum, painted-steel, or galvanized-steel fan scrolls.
 3. Wiring Termination: Connect motor to chassis wiring with plug connection.

I. Control devices and operational sequences are specified in Section 230923 "Direct Digital Control (DDC) System for HVAC" and sequence of operations as detailed on drawings.

J. Electrical Connection: Factory wire motors and controls for a single electrical connection.

K. Accessories:
 a. Tooless filter rack

L. Smoke Detectors: (For units over 2000 cfm)
 1. General Requirements for System Smoke Detectors:
 a. Comply with UL 268; operating at 24-V dc, nominal.
 b. Detectors shall be four-wire type.
 c. Integral Addressable Module: Arranged to communicate detector status (normal, alarm, or trouble) to fire-alarm control unit.
d. Base Mounting: Detector and associated electronic components shall be mounted in a twist-lock module that connects to a fixed base. Provide terminals in the fixed base for connection to building wiring.

e. Integral Visual-Indicating Light: LED type, indicating detector has operated and power-on status.

f. Remote Control: Unless otherwise indicated, detectors shall be digital-addressable type, individually monitored at fire-alarm control unit for calibration, sensitivity, and alarm condition and individually adjustable for sensitivity by fire-alarm control unit.

1) Number of settable levels in fire-alarm control unit varies among manufacturers and between detector types. Indicate specific number of levels on Drawings or in "Remarks" column of a detector schedule.

2) Multiple levels of detection sensitivity for each sensor.

3) Sensitivity levels based on time of day.

2. Duct Smoke Detectors: Photoelectric type complying with UL 268A.

a. Detector address shall be accessible from fire-alarm control unit and shall be able to identify the detector's location within the system and its sensitivity setting.

b. An operator at fire-alarm control unit, having the designated access level, shall be able to manually access the following for each detector:

 1) Primary status.
 2) Device type.
 3) Present average value.
 4) Present sensitivity selected.
 5) Sensor range (normal, dirty, etc.).

c. Weatherproof Duct Housing Enclosure: NEMA 250, Type 4X; NRTL listed for use with the supplied detector for smoke detection in HVAC system ducts.

d. Number of settable levels in fire-alarm control unit varies among manufacturers and between detector types. Indicate specific number of levels on Drawings or in "Remarks" column of a detector schedule.

e. Each sensor shall have multiple levels of detection sensitivity.

f. Sampling Tubes: Design and dimensions as recommended by manufacturer for specific duct size, air velocity, and installation conditions where applied.

g. Retain "Relay Fan Shutdown" Subparagraph below if required for direct shutdown of the fan associated with detector.

h. Relay Fan Shutdown: Fully programmable relay rated to interrupt fan motor-control circuit.

M. Capacities and Characteristics:

a. Refer to equipment schedule on drawings.
PART 3 EXECUTION

3.1 EXAMINATION
A. Examine areas, with Installer present, to receive fan coil units for compliance with requirements for installation tolerances and other conditions affecting performance of the Work.
B. Examine roughing-in for piping and electrical connections to verify actual locations before fan coil unit installation.
C. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION
A. Install fan coil units level and plumb.
B. Install fan coil units to comply with NFPA 90A.
C. Suspend horizontal fan coil units from structure with spring hangers.
D. Mount vertical fan coils units on uni-strut structure minimum 18” above finished floor.
E. Verify locations of sensors, and other exposed control sensors with Drawings and room details before installation. Install devices 48 inches above finished floor.
F. Install new filters in each fan coil unit within two weeks after Substantial Completion.

3.3 CONNECTIONS
A. Piping installation requirements are specified in other Sections. Drawings indicate general arrangement of piping, fittings, and specialties. Specific connection requirements are as follows:
 1. Install piping adjacent to machine to allow service and maintenance.
 2. Connect piping to fan coil unit factory hydronic piping package. Install piping package if shipped loose.
 3. Connect condensate drain to indirect waste.
 a. Install condensate trap of adequate depth to seal against fan pressure. Install cleanouts in piping at changes of direction.
 B. Connect supply-air and return-air ducts to fan coil units with flexible duct connectors specified in Section 233300 "Air Duct Accessories." Comply with safety requirements in UL 1995 for duct connections.
 C. Ground equipment according to Section 260526 "Grounding and Bonding for Electrical Systems."
 D. Connect wiring according to Section 260519 "Low-Voltage Electrical Power Conductors and Cables."
3.4 FIELD QUALITY CONTROL

A. Testing Agency: Engage a qualified testing agency to perform tests and inspections.

B. Manufacturer's Field Service: Engage a factory-authorized service representative to test and inspect components, assemblies, and equipment installations, including connections.

C. Perform the following tests and inspections with the assistance of a factory-authorized service representative:
 1. Operational Test: After electrical circuitry has been energized, start units to confirm proper motor rotation and unit operation.
 2. Operate electric heating elements through each stage to verify proper operation and electrical connections.
 3. Test and adjust controls and safety devices. Replace damaged and malfunctioning controls and equipment.

D. Remove and replace malfunctioning units and retest as specified above.

E. Prepare test and inspection reports.

3.5 ADJUSTING

A. Adjust initial temperature and humidity set points.

B. Occupancy Adjustments: When requested within 12 months of date of Substantial Completion, provide on-site assistance in adjusting system to suit actual occupied conditions. Provide up to two visits to Project during other-than-normal occupancy hours for this purpose.

3.6 DEMONSTRATION

A. Engage a factory-authorized service representative to train Owner's maintenance personnel to adjust, operate, and maintain fan coil units.

END OF SECTION
SECTION 260500
COMMON WORK RESULTS FOR ELECTRICAL

PART 1 - GENERAL

1.1 SUMMARY
A. Any changes or additional costs to other trades or to the project caused by a substitution, even if approved, shall be borne by the trade making the substitution.
B. Section Includes:
 1. Sleeves for raceways and cables.
 2. Sleeve seals.
 4. Common electrical installation requirements.

1.2 SUBMITTALS
A. Any equipment or material submitted which is not in accordance with the specification requirements because of standard shop practice or other reasons, shall be specifically noted in the letter of transmittal including all points of variance. If the submittals are not marked in this way, the Contractor remains responsible to execute his work in accordance with the contract documents even if such submittals are approved.
B. The Architect's approval of submittals indicates general compliance with the design concept, but shall not be considered as permitting any departure from the contract documents. Nor shall it relieve the Contractor's responsibility for any errors in the submittal, such as in details, dimensions, materials, etc.
C. If requested, the Contractor shall provide samples of materials or equipment he proposes to furnish. Such samples shall remain the property of the Contractor and will be returned before contract closeout.
D. Contractor shall submit dimensioned shop drawings of all electrical and telephone room layouts, and any other locations where electrical equipment is grouped. Shop drawings shall show relationship of electrical equipment with the building structure and equipment of other trades. Shop drawings shall also be provided for the following systems:
 1. Telephone and data systems
 2. Fire alarm system
 3. Public address and sound systems
 4. Lightning protection system
5. Lighting control systems

PART 2 - PRODUCTS

2.1 SLEEVES FOR RACEWAYS AND CABLES

A. Steel Pipe Sleeves: ASTM A 53/A 53M, Type E, Grade B, Schedule 40, galvanized steel, plain ends.

B. Cast-Iron Pipe Sleeves: Cast or fabricated "wall pipe," equivalent to ductile-iron pressure pipe, with plain ends and integral waterstop, unless otherwise indicated.

C. Sleeves for Rectangular Openings: Galvanized sheet steel.

1. Minimum Metal Thickness:
 a. For sleeve cross-section rectangle perimeter less than 50 inches and no side more than 16 inches, thickness shall be 0.052 inch.
 b. For sleeve cross-section rectangle perimeter equal to, or more than, 50 inches and 1 or more sides equal to, or more than, 16 inches, thickness shall be 0.138 inch.

2.2 SLEEVE SEALS

A. Description: Modular sealing device, designed for field assembly, to fill annular space between sleeve and raceway or cable.

1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:

2. Basis-of-Design Product: Subject to compliance with requirements, provide product by one of the following:

 a. Advance Products & Systems, Inc.
 b. Calpico, Inc.
 c. Metraflex Co.
 d. Pipeline Seal and Insulator, Inc.

3. Sealing Elements: EPDM interlocking links shaped to fit surface of cable or conduit. Include type and number required for material and size of raceway or cable.

4. Pressure Plates: Plastic or Carbon Steel. Include two for each sealing element.

5. Connecting Bolts and Nuts: Carbon steel with corrosion-resistant coating of length required to secure pressure plates to sealing elements. Include one for each sealing element.
2.3 GROUT

A. Nonmetallic, Shrinkage-Resistant Grout: ASTM C 1107, factory-packaged, nonmetallic aggregate grout, noncorrosive, nonstaining, mixed with water to consistency suitable for application and a 30-minute working time.

PART 3 - EXECUTION

3.1 COMMON REQUIREMENTS FOR ELECTRICAL INSTALLATION

A. Comply with NECA 1.

B. Measure indicated mounting heights to bottom of unit for suspended items and to center of unit for wall-mounting items.

C. Headroom Maintenance: If mounting heights or other location criteria are not indicated, arrange and install components and equipment to provide maximum possible headroom consistent with these requirements.

D. Equipment: Install to facilitate service, maintenance, and repair or replacement of components of both electrical equipment and other nearby installations. Connect in such a way as to facilitate future disconnecting with minimum interference with other items in the vicinity.

E. Right of Way: Give to piping systems installed at a required slope.

3.2 SLEEVE INSTALLATION FOR ELECTRICAL PENETRATIONS

A. Electrical penetrations occur when raceways, cables, wireways, cable trays, or busways penetrate concrete slabs, concrete or masonry walls, or fire-rated floor and wall assemblies.

B. Concrete Slabs and Walls: Install sleeves for penetrations unless core-drilled holes or formed openings are used. Install sleeves during erection of slabs and walls.

C. Use pipe sleeves unless penetration arrangement requires rectangular sleeved opening.

D. Fire-Rated Assemblies: Install sleeves for penetrations of fire-rated floor and wall assemblies unless openings compatible with firestop system used are fabricated during construction of floor or wall.

E. Cut sleeves to length for mounting flush with both surfaces of walls.

F. Extend sleeves installed in floors 2 inches above finished floor level.

G. Size pipe sleeves to provide 1/4-inch annular clear space between sleeve and raceway or cable, unless indicated otherwise.

H. Seal space outside of sleeves with grout for penetrations of concrete and masonry
1. Promptly pack grout solidly between sleeve and wall so no voids remain. Tool exposed surfaces smooth; protect grout while curing.

I. Interior Penetrations of Non-Fire-Rated Walls and Floors: Seal annular space between sleeve and raceway or cable, using joint sealant appropriate for size, depth, and location of joint. Comply with requirements in Division 07 Section "Joint Sealants."

J. Fire-Rated-Assembly Penetrations: Maintain indicated fire rating of walls, partitions, ceilings, and floors at raceway and cable penetrations. Install sleeves and seal raceway and cable penetration sleeves with firestop materials. Comply with requirements in Division 07 Section "Penetration Firestopping."

K. Roof-Penetration Sleeves: Seal penetration of individual raceways and cables with flexible boot-type flashing units applied in coordination with roofing work.

L. Aboveground, Exterior-Wall Penetrations: Seal penetrations using steel pipe sleeves and mechanical sleeve seals. Select sleeve size to allow for 1-inch annular clear space between pipe and sleeve for installing mechanical sleeve seals.

M. Underground, Exterior-Wall Penetrations: Install cast-iron pipe sleeves. Size sleeves to allow for 1-inch annular clear space between raceway or cable and sleeve for installing mechanical sleeve seals.

3.3 SLEEVE-SEAL INSTALLATION

A. Install to seal exterior wall penetrations.

B. Use type and number of sealing elements recommended by manufacturer for raceway or cable material and size. Position raceway or cable in center of sleeve. Assemble mechanical sleeve seals and install in annular space between raceway or cable and sleeve. Tighten bolts against pressure plates that cause sealing elements to expand and make watertight seal.

3.4 FIRESTOPPING

A. Apply firestopping to penetrations of fire-rated floor and wall assemblies for electrical installations to restore original fire-resistance rating of assembly. Firestopping materials and installation requirements are specified in Division 07 Section "Penetration Firestopping."

END OF SECTION 260500
SECTION 260519

LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
 A. Drawings and general provisions of the Contract, including General and Supplementary
 Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
 A. Section Includes:
 1. Building wires and cables rated 2000 V and less.
 2. Wires and cables for PV systems rated 2000 V and less.
 3. Connectors, splices, and terminations rated 2000 V and less.
 B. Related Requirements:
 1. Section 260513 "Medium-Voltage Cables" for single-conductor and multiconductor
 cables, cable splices, and terminations for electrical distribution systems with 2001 to
 35,000 V.
 2. Section 260523 "Control-Voltage Electrical Power Cables" for control systems
 communications cables and Classes 1, 2, and 3 control cables.
 3. Section 271500 "Communications Horizontal Cabling" for cabling used for voice and
 data circuits.

1.3 DEFINITIONS
 A. VFC: Variable-frequency controller.

1.4 ACTION SUBMITTALS
 A. Product Data: For each type of product.
 B. Product Schedule: Indicate type, use, location, and termination locations.

1.5 INFORMATIONAL SUBMITTALS
 A. Qualification Data: For testing agency.
 B. Field quality-control reports.
1.6 QUALITY ASSURANCE

A. Testing Agency Qualifications: Member company of NETA.
 1. Testing Agency's Field Supervisor: Certified by NETA to supervise on-site testing.

PART 2 - PRODUCTS

2.1 CONDUCTORS AND CABLES

A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

B. Conductor and Cable Marking: Comply with wire and cable marking according to UL's "Wire and Cable Marking and Application Guide."

C. Comply with UL 1277, UL 1685, and NFPA 70 for Type TC-ER cable used in VFC circuits.

D. Conductors: Copper, complying with NEMA WC 70/ICEA S-95-658.
 1. Conductor Insulation: Comply with NEMA WC 70/ICEA S-95-658 for Type THW Type THW-2 Type THHN/THWN-2 Type XHHW-2 Type UF Type USE and Type SO.

E. Cable: Comply with NEMA WC 70/ICEA S-95-658 for armored cable, Type AC metal-clad cable, Type MC mineral-insulated, metal-sheathed cable, Type MI nonmetallic-sheathed cable, Type NM Type SE Type SO and Type USE with ground wire.

2.2 CONNECTORS AND SPLICES

A. Description: Factory-fabricated connectors and splices of size, ampacity rating, material, type, and class for application and service indicated; listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

PART 3 - EXECUTION

3.1 CONDUCTOR MATERIAL APPLICATIONS

A. Feeders: Copper; solid for No. 10 AWG and smaller; stranded for No. 8 AWG and larger.

B. Feeders: Copper for feeders smaller than No. 4 AWG. Conductors shall be solid for No. 10 AWG and smaller; stranded for No. 8 AWG and larger. Aluminum is not allowed unless specifically stated on the plans.

C. Branch Circuits: Copper. Solid for No. 10 AWG and smaller; stranded for No. 8 AWG and larger.

D. Branch Circuits: Copper. Solid for No. 12 AWG and smaller; stranded for No. 10 AWG and larger.
E. VFC Output Circuits Cable: Extra-flexible stranded for all sizes.

3.2 CONDUCTOR INSULATION AND MULTICONDUCTOR CABLE APPLICATIONS AND WIRING METHODS

A. Service Entrance: Type XHHW-2, single conductors in raceway.

B. Exposed Feeders: Type THHN/THWN-2, single conductors in raceway.

C. Feeders Concealed in Ceilings, Walls, Partitions, and Crawlspace: Type THHN/THWN-2, single conductors in raceway.

D. Feeders Concealed in Concrete, below Slabs-on-Grade, and Underground: Type XHHW-2, single conductors in raceway.

E. Feeders Installed below Raised Flooring: Type THHN/THWN-2, single conductors in raceway.

F. Exposed Branch Circuits, Including in Crawlspace: Type THHN/THWN-2, single conductors in raceway.

G. Branch Circuits Concealed in Ceilings, Walls, and Partitions: Type THHN/THWN-2, single conductors in raceway.

H. Branch Circuits Concealed in Concrete, below Slabs-on-Grade, and Underground: Type XHHW-2, single conductors in raceway.

I. Cord Drops and Portable Appliance Connections: Type SO, hard service cord with stainless-steel, wire-mesh, strain relief device at terminations to suit application.

3.3 INSTALLATION OF CONDUCTORS AND CABLES

A. Conceal cables in finished walls, ceilings, and floors unless otherwise indicated.

B. Complete raceway installation between conductor and cable termination points according to Section 260533 ”Raceways and Boxes for Electrical Systems” prior to pulling conductors and cables.

C. Use manufacturer-approved pulling compound or lubricant where necessary; compound used must not deteriorate conductor or insulation. Do not exceed manufacturer's recommended maximum pulling tensions and sidewall pressure values.

D. Use pulling means, including fish tape, cable, rope, and basket-weave wire/cable grips, that will not damage cables or raceway.

E. Install exposed cables parallel and perpendicular to surfaces of exposed structural members, and follow surface contours where possible.

F. Support cables according to Section 260529 ”Hangers and Supports for Electrical Systems.”
G. Complete cable tray systems installation according to Section 260536 "Cable Trays for Electrical Systems" prior to installing conductors and cables.

3.4 CONNECTIONS
A. Tighten electrical connectors and terminals according to manufacturer's published torque-tightening values. If manufacturer's torque values are not indicated, use those specified in UL 486A-486B.

B. Make splices, terminations, and taps that are compatible with conductor material and that possess equivalent or better mechanical strength and insulation ratings than unspliced conductors.
 1. Use oxide inhibitor in each splice, termination, and tap for aluminum conductors.

C. Wiring at Outlets: Install conductor at each outlet, with at least 6 inches of slack.

3.5 IDENTIFICATION
A. Identify and color-code conductors and cables according to Section 260553 "Identification for Electrical Systems."

B. Identify each spare conductor at each end with identity number and location of other end of conductor, and identify as spare conductor.

3.6 SLEEVE AND SLEEVE-SEAL INSTALLATION FOR ELECTRICAL PENETRATIONS
A. Install sleeves and sleeve seals at penetrations of exterior floor and wall assemblies. Comply with requirements in Section 260544 "Sleeves and Sleeve Seals for Electrical Raceways and Cabling."

3.7 FIRESTOPPING
A. Apply firestopping to electrical penetrations of fire-rated floor and wall assemblies to restore original fire-resistance rating of assembly according to Section 078413 "Penetration Firestopping."

3.8 FIELD QUALITY CONTROL
1. Perform each of the following visual and electrical tests:
 a. Inspect exposed sections of conductor and cable for physical damage and correct connection according to the single-line diagram.
 b. Test bolted connections for high resistance using one of the following:
 1) A low-resistance ohmmeter.
 2) Calibrated torque wrench.
 3) Thermographic survey.
 c. Inspect compression applied connectors for correct cable match and indentation.
 d. Inspect for correct identification.
 e. Inspect cable jacket and condition.
f. Insulation-resistance test on each conductor with respect to ground and adjacent conductors. Apply a potential of 500-V dc for 300-V rated cable and 1000-V dc for 600-V rated cable for a one-minute duration.
g. Continuity test on each conductor and cable.
h. Uniform resistance of parallel conductors.

2. Consider the cost and benefit of infrared scanning of cable and conductor splices before retaining "Initial Infrared Scanning" Subparagraph below.

3. Initial Infrared Scanning: After Substantial Completion, but before Final Acceptance, perform an infrared scan of each splice in conductors No. 3 AWG and larger. Remove box and equipment covers so splices are accessible to portable scanner. Correct deficiencies determined during the scan.
 a. Instrument: Use an infrared scanning device designed to measure temperature or to detect significant deviations from normal values. Provide calibration record for device.
 b. Record of Infrared Scanning: Prepare a certified report that identifies switches checked and that describes scanning results. Include notation of deficiencies detected, remedial action taken, and observations after remedial action.

B. Cables will be considered defective if they do not pass tests and inspections.

C. Prepare test and inspection reports to record the following:
 1. Procedures used.
 2. Results that comply with requirements.
 3. Results that do not comply with requirements and corrective action taken to achieve compliance with requirements.

END OF SECTION 260519
SECTION 260526
GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
A. Section includes grounding and bonding systems and equipment.
B. Section includes grounding and bonding systems and equipment, plus the following special applications:
 1. Underground distribution grounding.
 2. Ground bonding common with lightning protection system.
 3. Foundation steel electrodes.

1.3 ACTION SUBMITTALS
A. Product Data: For each type of product indicated.

1.4 INFORMATIONAL SUBMITTALS
A. As-Built Data: Plans showing dimensioned as-built locations of grounding features specified in "Field Quality Control" Article, including the following:
 1. Test wells.
 2. Ground rods.
 3. Ground rings.
 4. Grounding arrangements and connections for separately derived systems.
B. Qualification Data: For testing agency and testing agency's field supervisor.
C. Field quality-control reports.

1.5 CLOSEOUT SUBMITTALS
A. Operation and Maintenance Data: For grounding to include in emergency, operation, and maintenance manuals.
1.6 QUALITY ASSURANCE

A. Testing Agency Qualifications: Certified by NETA.

PART 2 - PRODUCTS

2.1 SYSTEM DESCRIPTION

A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

B. Comply with UL 467 for grounding and bonding materials and equipment.

2.2 CONDUCTORS

A. Insulated Conductors: Copper or tinned-copper wire or cable insulated for 600 V unless otherwise required by applicable Code or authorities having jurisdiction.

B. Bare Copper Conductors:

4. Bonding Cable: 28 kcmil, 14 strands of No. 17 AWG conductor, 1/4 inch in diameter.
5. Bonding Conductor: No. 4 or No. 6 AWG, stranded conductor.
6. Bonding Jumper: Copper tape, braided conductors terminated with copper ferrules; 1-5/8 inches wide and 1/16 inch thick.
7. Tinned Bonding Jumper: Tinned-copper tape, braided conductors terminated with copper ferrules; 1-5/8 inches wide and 1/16 inch thick.

C. Grounding Bus: Predrilled rectangular bars of annealed copper, 1/4 by 4 inches in cross section, with 9/32-inch holes spaced 1-1/8 inches apart. Stand-off insulators for mounting shall comply with UL 891 for use in switchboards, 600 V and shall be Lexan or PVC, impulse tested at 5000 V.

2.3 CONNECTORS

A. Listed and labeled by an NRTL acceptable to authorities having jurisdiction for applications in which used and for specific types, sizes, and combinations of conductors and other items connected.

B. Welded Connectors: Exothermic-welding kits of types recommended by kit manufacturer for materials being joined and installation conditions.

C. Bus-Bar Connectors: Mechanical type, cast silicon bronze, solderless compression-type wire terminals, and long-barrel, two-bolt connection to ground bus bar.

D. Bus-Bar Connectors: Compression type, copper or copper alloy, with two wire terminals.
E. Beam Clamps: Mechanical type, terminal, ground wire access from four directions, with dual, tin-plated or silicon bronze bolts.

F. Cable-to-Cable Connectors: Compression type, copper or copper alloy.

G. Cable Tray Ground Clamp: Mechanical type, zinc-plated malleable iron.

H. Conduit Hubs: Mechanical type, terminal with threaded hub.

I. Ground Rod Clamps: Mechanical type, copper or copper alloy, terminal with hex head bolt.

J. Ground Rod Clamps: Mechanical type, copper or copper alloy, terminal with hex head bolt.

K. Lay-in Lug Connector: Mechanical type, copper rated for direct burial terminal with set screw.

L. Service Post Connectors: Mechanical type, bronze alloy terminal, in short- and long-stud lengths, capable of single and double conductor connections.

M. Signal Reference Grid Clamp: Mechanical type, stamped-steel terminal with hex head screw.

N. Straps: Solid copper, cast-bronze clamp. Rated for 600 A.

O. Tower Ground Clamps: Mechanical type, copper or copper alloy, terminal one-piece clamp.

P. U-Bolt Clamps: Mechanical type, copper or copper alloy, terminal listed for direct burial.

Q. Water Pipe Clamps:
 1. Mechanical type, two pieces with zinc-plated bolts.
 b. Listed for direct burial.
 2. U-bolt type with malleable-iron clamp and copper ground connector rated for direct burial.

2.4 GROUNDING ELECTRODES

A. Ground Rods: Copper-clad steel; 3/4 inch by 10 feet.

B. Chemical-Enhanced Grounding Electrodes: Copper tube, straight or L-shaped, charged with nonhazardous electrolytic chemical salts.
 1. Termination: Factory-attached No. 4/0 AWG bare conductor at least 48 inches long.
 2. Backfill Material: Electrode manufacturer's recommended material.

C. Ground Plates: 1/4 inch thick, hot-dip galvanized.
PART 3 - EXECUTION

3.1 APPLICATIONS

A. Conductors: Install solid conductor for No. 8 AWG and smaller, and stranded conductors for No. 6 AWG and larger unless otherwise indicated.

B. Underground Grounding Conductors: Install bare tinned-copper conductor, No. 2/0 AWG minimum.
 1. Bury at least 24 inches below grade.
 2. Duct-Bank Grounding Conductor: Bury 12 inches above duct bank when indicated as part of duct-bank installation.

C. Isolated Grounding Conductors: Green-colored insulation with continuous yellow stripe. On feeders with isolated ground, identify grounding conductor where visible to normal inspection, with alternating bands of green and yellow tape, with at least three bands of green and two bands of yellow.

D. Grounding Bus: Install in electrical equipment rooms, in rooms housing service equipment, and elsewhere as indicated.
 1. Install bus horizontally, on insulated spacers 2 inches minimum from wall, 6 inches above finished floor unless otherwise indicated.
 2. Where indicated on both sides of doorways, route bus up to top of door frame, across top of doorway, and down; connect to horizontal bus.

E. Conductor Terminations and Connections:
 1. Pipe and Equipment Grounding Conductor Termination: Bolted connectors.
 2. Underground Connections: Welded connectors except at test wells and as otherwise indicated.
 3. Connections to Ground Rods at Test Wells: Bolted connectors.

3.2 GROUNDING AT THE SERVICE

A. Equipment grounding conductors and grounding electrode conductors shall be connected to the ground bus. Install a main bonding jumper between the neutral and ground buses.

3.3 GROUNDING SEPARATELY DERIVED SYSTEMS

A. Generator: Install grounding electrode(s) at the generator location. The electrode shall be connected to the equipment grounding conductor and to the frame of the generator.

3.4 GROUNDING UNDERGROUND DISTRIBUTION SYSTEM COMPONENTS

A. Comply with IEEE C2 grounding requirements.
B. **Grounding Manholes and Handholes:** Install a driven ground rod through manhole or handhole floor, close to wall, and set rod depth so 4 inches will extend above finished floor. If necessary, install ground rod before manhole is placed and provide No. 1/0 AWG bare, tinned-copper conductor from ground rod into manhole through a waterproof sleeve in manhole wall. Protect ground rods passing through concrete floor with a double wrapping of pressure-sensitive insulating tape or heat-shrunk insulating sleeve from 2 inches above to 6 inches below concrete. Seal floor opening with waterproof, nonshrink grout.

C. **Grounding Connections to Manhole Components:** Bond exposed-metal parts such as inserts, cable racks, pulling irons, ladders, and cable shields within each manhole or handhole, to ground rod or grounding conductor. Make connections with No. 4 AWG minimum, stranded, hard-drawn copper bonding conductor. Train conductors level or plumb around corners and fasten to manhole walls. Connect to cable armor and cable shields according to written instructions by manufacturer of splicing and termination kits.

D. **Pad-Mounted Transformers and Switches:** Install two ground rods and ground ring around the pad. Ground pad-mounted equipment and noncurrent-carrying metal items associated with substations by connecting them to underground cable and grounding electrodes. Install tinned-copper conductor not less than No. 2 AWG for ground ring and for taps to equipment grounding terminals. Bury ground ring not less than 6 inches from the foundation.

3.5 **EQUIPMENT GROUNDING**

A. Install insulated equipment grounding conductors with all feeders and branch circuits.

B. Install insulated equipment grounding conductors with the following items, in addition to those required by NFPA 70:

1. Feeders and branch circuits.
2. Lighting circuits.
3. Receptacle circuits.
5. Three-phase motor and appliance branch circuits.
6. Flexible raceway runs.
7. Armored and metal-clad cable runs.
8. **Busway Supply Circuits:** Install insulated equipment grounding conductor from grounding bus in the switchgear, switchboard, or distribution panel to equipment grounding bar terminal on busway.
9. **X-Ray Equipment Circuits:** Install insulated equipment grounding conductor in circuits supplying x-ray equipment.

C. **Air-Duct Equipment Circuits:** Install insulated equipment grounding conductor to duct-mounted electrical devices operating at 120 V and more, including air cleaners, heaters, dampers, humidifiers, and other duct electrical equipment. Bond conductor to each unit and to air duct and connected metallic piping.

D. **Water Heater, Heat-Tracing, and Antifrost Heating Cables:** Install a separate insulated equipment grounding conductor to each electric water heater and heat-tracing cable. Bond conductor to heater units, piping, connected equipment, and components.
E. Isolated Grounding Receptacle Circuits: Install an insulated equipment grounding conductor connected to the receptacle grounding terminal. Isolate conductor from raceway and from panelboard grounding terminals. Terminate at equipment grounding conductor terminal of the applicable derived system or service unless otherwise indicated.

F. Isolated Equipment Enclosure Circuits: For designated equipment supplied by a branch circuit or feeder, isolate equipment enclosure from supply circuit raceway with a nonmetallic raceway fitting listed for the purpose. Install fitting where raceway enters enclosure, and install a separate insulated equipment grounding conductor. Isolate conductor from raceway and from panelboard grounding terminals. Terminate at equipment grounding conductor terminal of the applicable derived system or service unless otherwise indicated.

G. Poles Supporting Outdoor Lighting Fixtures: Install grounding electrode and a separate insulated equipment grounding conductor in addition to grounding conductor installed with branch-circuit conductors.

H. Metallic Fences: Comply with requirements of IEEE C2.
 1. Grounding Conductor: Bare copper, not less than No. 8 AWG.
 2. Gates: Shall be bonded to the grounding conductor with a flexible bonding jumper.
 3. Barbed Wire: Strands shall be bonded to the grounding conductor.

3.6 INSTALLATION

A. Grounding Conductors: Route along shortest and straightest paths possible unless otherwise indicated or required by Code. Avoid obstructing access or placing conductors where they may be subjected to strain, impact, or damage.

B. Ground Bonding Common with Lightning Protection System: Comply with NFPA 780 and UL 96 when interconnecting with lightning protection system. Bond electrical power system ground directly to lightning protection system grounding conductor at closest point to electrical service grounding electrode. Use bonding conductor sized same as system grounding electrode conductor, and install in conduit.
 1. Ground Ring: If lightning protection system is specified, install a grounding conductor, electrically connected to each building structure ground rod and to each steel column, extending around the perimeter of building.
 a. Install tinned-copper conductor not less than No. 2/0 AWG for ground ring and for taps to building steel.
 b. Bury ground ring not less than 24 inches from building's foundation.

C. Ground Rods: Drive rods until tops are 2 inches below finished floor or final grade unless otherwise indicated.
 1. Interconnect ground rods with grounding electrode conductor below grade and as otherwise indicated. Make connections without exposing steel or damaging coating if any.
 2. For grounding electrode system, install at least three rods spaced at least one-rod length from each other and located at least the same distance from other grounding electrodes, and connect to the service grounding electrode conductor.
D. Test Wells: Ground rod driven through drilled hole in bottom of handhole. Handholes are specified in Section 260543 "Underground Ducts and Raceways for Electrical Systems," and shall be at least 12 inches deep, with cover.

1. Install at least one test well for each service unless otherwise indicated. Install at the ground rod electrically closest to service entrance. Set top of test well flush with finished grade or floor.

E. Bonding Straps and Jumpers: Install in locations accessible for inspection and maintenance except where routed through short lengths of conduit.

1. Bonding to Structure: Bond straps directly to basic structure, taking care not to penetrate any adjacent parts.
2. Bonding to Equipment Mounted on Vibration Isolation Hangers and Supports: Install bonding so vibration is not transmitted to rigidly mounted equipment.
3. Use exothermic-welded connectors for outdoor locations; if a disconnect-type connection is required, use a bolted clamp.

F. Grounding and Bonding for Piping:

1. Metal Water Service Pipe: Install insulated copper grounding conductors, in conduit, from building's main service equipment, or grounding bus, to main metal water service entrances to building. Connect grounding conductors to main metal water service pipes; use a bolted clamp connector or bolt a lug-type connector to a pipe flange by using one of the lug bolts of the flange. Where a dielectric main water fitting is installed, connect grounding conductor on street side of fitting. Bond metal grounding conductor conduit or sleeve to conductor at each end.
2. Water Meter Piping: Use braided-type bonding jumpers to electrically bypass water meters. Connect to pipe with a bolted connector.
3. Bond each aboveground portion of gas piping system downstream from equipment shutoff valve.

G. Bonding Interior Metal Ducts: Bond metal air ducts to equipment grounding conductors of associated fans, blowers, electric heaters, and air cleaners. Install bonding jumper to bond across flexible duct connections to achieve continuity.

H. Grounding for Steel Building Structure: Install a driven ground rod at base of each corner column and at intermediate exterior columns at distances not more than 60 feet apart.

I. Concrete-Encased Grounding Electrode (Ufer Ground): Fabricate according to NFPA 70; use a minimum of 20 feet of bare copper conductor not smaller than required by section 250 of the NEC.

1. If concrete foundation is less than 20 feet long, coil excess conductor within base of foundation.
2. Bond grounding conductor to reinforcing steel in at least four locations and to anchor bolts. Extend grounding conductor below grade and connect to building's grounding grid or to grounding electrode external to concrete.

J. Concrete-Encased Grounding Electrode (Ufer Ground): Fabricate according to NFPA 70; using electrically conductive coated steel reinforcing bars or rods, at least 20 feet long. If reinforcing
is in multiple pieces, connect together by the usual steel tie wires or exothermic welding to create the required length.

3.7 FIELD QUALITY CONTROL

A. Testing Agency: Owner will engage a qualified testing agency to perform tests and inspections.

B. Testing Agency: Engage a qualified testing agency to perform tests and inspections.

C. Manufacturer's Field Service: Engage a factory-authorized service representative to test and inspect components, assemblies, and equipment installations, including connections.

D. Perform tests and inspections.

E. Tests and Inspections:

1. After installing grounding system but before permanent electrical circuits have been energized, test for compliance with requirements.
2. Inspect physical and mechanical condition. Verify tightness of accessible, bolted, electrical connections with a calibrated torque wrench according to manufacturer's written instructions.
3. Test completed grounding system at each location where a maximum ground-resistance level is specified, at service disconnect enclosure grounding terminal, at ground test wells. Make tests at ground rods before any conductors are connected.
 a. Measure ground resistance no fewer than two full days after last trace of precipitation and without soil being moistened by any means other than natural drainage or seepage and without chemical treatment or other artificial means of reducing natural ground resistance.
 b. Perform tests by fall-of-potential method according to IEEE 81.
4. Prepare dimensioned Drawings locating each test well, ground rod and ground-rod assembly, and other grounding electrodes. Identify each by letter in alphabetical order, and key to the record of tests and observations. Include the number of rods driven and their depth at each location, and include observations of weather and other phenomena that may affect test results. Describe measures taken to improve test results.

F. Grounding system will be considered defective if it does not pass tests and inspections.

G. Prepare test and inspection reports.

H. Report measured ground resistances that exceed the following values:

1. Power and Lighting Equipment or System with Capacity of 500 kVA and Less: 10 ohms.
2. Power and Lighting Equipment or System with Capacity of 500 to 1000 kVA: 5 ohms.
3. Power and Lighting Equipment or System with Capacity More Than 1000 kVA: 3 ohms.
4. Power Distribution Units or Panelboards Serving Electronic Equipment: 3 ohm(s).
I. Excessive Ground Resistance: If resistance to ground exceeds specified values, notify Architect promptly and include recommendations to reduce ground resistance.

END OF SECTION 260526
This page intentionally left blank
PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:
 1. Hangers and supports for electrical equipment and systems.
 2. Construction requirements for concrete bases.

B. Related Requirements:
 1. Section 260548.16 "Seismic Controls for Electrical Systems" for products and installation requirements necessary for compliance with seismic criteria.

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product.
 1. Include construction details, material descriptions, dimensions of individual components and profiles, and finishes for the following:
 a. Hangers.
 b. Steel slotted support systems.
 c. Nonmetallic support systems.
 d. Trapeze hangers.
 e. Clamps.
 f. Turnbuckles.
 g. Sockets.
 h. Eye nuts.
 i. Saddles.
 j. Brackets.
 2. Include rated capacities and furnished specialties and accessories.

B. Shop Drawings: For fabrication and installation details for electrical hangers and support systems.
 1. Trapeze hangers. Include product data for components.
2. Steel slotted-channel systems.
3. Nonmetallic slotted-channel systems.
4. Equipment supports.
5. Vibration Isolation Base Details: Detail fabrication, including anchorages and attachments to structure and to supported equipment. Include adjustable motor bases, rails, and frames for equipment mounting.

C. Delegated-Design Submittal: For hangers and supports for electrical systems.
 1. Include design calculations and details of trapeze hangers.
 2. Include design calculations for seismic restraints.

1.4 INFORMATIONAL SUBMITTALS

A. Coordination Drawings: Reflected ceiling plan(s) and other details, drawn to scale, on which the following items are shown and coordinated with each other, using input from installers of the items involved:
 1. Suspended ceiling components.
 2. Structural members to which hangers and supports will be attached.
 3. Size and location of initial access modules for acoustical tile.
 4. Items penetrating finished ceiling, including the following:
 a. Lighting fixtures.
 b. Air outlets and inlets.
 c. Speakers.
 d. Sprinklers.
 e. Access panels.
 f. Projectors.

B. Seismic Qualification Certificates: For hangers and supports for electrical equipment and systems, accessories, and components, from manufacturer.
 1. Basis for Certification: Indicate whether withstand certification is based on actual test of assembled components or on calculation.
 2. Dimensioned Outline Drawings of Equipment Unit: Identify center of gravity and locate and describe mounting and anchorage provisions.
 3. Detailed description of equipment anchorage devices on which the certification is based and their installation requirements.

C. Welding certificates.

1.5 QUALITY ASSURANCE

A. Welding Qualifications: Qualify procedures and personnel according to the following:
 1. AWS D1.1/D1.1M.
 2. AWS D1.2/D1.2M.
PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

A. Delegated Design: Engage a qualified professional engineer, as defined in Section 014000 "Quality Requirements," to design hanger and support system.

B. Seismic Performance: Hangers and supports shall withstand the effects of earthquake motions determined according to ASCE/SEI 7.
 1. The term "withstand" means "the supported equipment and systems will remain in place without separation of any parts when subjected to the seismic forces specified and the system will be fully operational after the seismic event."
 2. Component Importance Factor: 1.5.

C. Surface-Burning Characteristics: Comply with ASTM E 84; testing by a qualified testing agency. Identify products with appropriate markings of applicable testing agency.
 1. Flame Rating: Class 1.
 2. Self-extinguishing according to ASTM D 635.

2.2 SUPPORT, ANCHORAGE, AND ATTACHMENT COMPONENTS

A. Steel Slotted Support Systems: Comply with MFMA-4 factory-fabricated components for field assembly.
 1. Material: Plain steel.
 2. Metallic Coatings: Hot-dip galvanized after fabrication and applied according to MFMA-4.
 3. Nonmetallic Coatings: Manufacturer's standard PVC, polyurethane, or polyester coating applied according to MFMA-4.
 4. Painted Coatings: Manufacturer's standard painted coating applied according to MFMA-4.
 5. Protect finishes on exposed surfaces from damage by applying a strippable, temporary protective covering before shipping.
 6. Channel Dimensions: Selected for applicable load criteria.
 7. Nonmetallic Coatings: Manufacturer's standard PVC, polyurethane, or polyester coating applied according to MFMA-4.
 8. Painted Coatings: Manufacturer's standard painted coating applied according to MFMA-4.
 9. Protect finishes on exposed surfaces from damage by applying a strippable, temporary protective covering before shipping.
 10. Channel Dimensions: Selected for applicable load criteria.

B. Conduit and Cable Support Devices: Steel hangers, clamps, and associated fittings, designed for types and sizes of raceway or cable to be supported.

C. Support for Conductors in Vertical Conduit: Factory-fabricated assembly consisting of threaded body and insulating wedging plug or plugs for nonarmored electrical conductors or cables in riser conduits. Plugs shall have number, size, and shape of conductor gripping pieces as
required to suit individual conductors or cables supported. Body shall be made of malleable iron.

D. Structural Steel for Fabricated Supports and Restraints: ASTM A 36/A 36M steel plates, shapes, and bars; black and galvanized.

E. Mounting, Anchoring, and Attachment Components: Items for fastening electrical items or their supports to building surfaces include the following:

1. Powder-Actuated Fasteners: Threaded-steel stud, for use in hardened portland cement concrete, steel, or wood, with tension, shear, and pullout capacities appropriate for supported loads and building materials where used.

2. Mechanical-Expansion Anchors: Insert-wedge-type, zinc-coated steel, for use in hardened portland cement concrete, with tension, shear, and pullout capacities appropriate for supported loads and building materials where used.

3. Concrete Inserts: Steel or malleable-iron, slotted support system units are similar to MSS Type 18 units and comply with MFMA-4 or MSS SP-58.

4. Clamps for Attachment to Steel Structural Elements: MSS SP-58 units are suitable for attached structural element.

5. Through Bolts: Structural type, hex head, and high strength. Comply with ASTM A 325.

6. Toggle Bolts: All-steel springhead type.

2.3 FABRICATED METAL EQUIPMENT SUPPORT ASSEMBLIES

A. Description: Welded or bolted structural-steel shapes, shop or field fabricated to fit dimensions of supported equipment.

B. Materials: Comply with requirements in Section 055000 "Metal Fabrications" for steel shapes and plates.

PART 3 - EXECUTION

3.1 APPLICATION

A. Comply with NECA 1 and NECA 101 for application of hangers and supports for electrical equipment and systems unless requirements in this Section are stricter.

B. Comply with requirements for raceways and boxes specified in Section 260533 "Raceways and Boxes for Electrical Systems."

C. Maximum Support Spacing and Minimum Hanger Rod Size for Raceway: Space supports for EMTs, IMCs, and RMCs as required by NFPA 70. Minimum rod size shall be 1/4 inch in diameter.
D. Multiple Raceways or Cables: Install trapeze-type supports fabricated with steel slotted support system, sized so capacity can be increased by at least 25 percent in future without exceeding specified design load limits.

1. Secure raceways and cables to these supports with two-bolt conduit clamps.

E. Spring-steel clamps designed for supporting single conduits without bolts may be used for 1-1/2-inch and smaller raceways serving branch circuits and communication systems above suspended ceilings and for fastening raceways to trapeze supports.

3.2 SUPPORT INSTALLATION

A. Comply with NECA 1 and NECA 101 for installation requirements except as specified in this article.

B. Raceway Support Methods: In addition to methods described in NECA 1, EMTs, IMCs, and RMCs may be supported by openings through structure members, according to NFPA 70.

C. Strength of Support Assemblies: Where not indicated, select sizes of components so strength will be adequate to carry present and future static loads within specified loading limits. Minimum static design load used for strength determination shall be weight of supported components plus 200 lb.

D. Mounting and Anchorage of Surface-Mounted Equipment and Components: Anchor and fasten electrical items and their supports to building structural elements by the following methods unless otherwise indicated by code:

1. To Wood: Fasten with lag screws or through bolts.
2. To New Concrete: Bolt to concrete inserts.
3. To Masonry: Approved toggle-type bolts on hollow masonry units and expansion anchor fasteners on solid masonry units.
4. To Existing Concrete: Expansion anchor fasteners.
5. Instead of expansion anchors, powder-actuated driven threaded studs provided with lock washers and nuts may be used in existing standard-weight concrete 4 inches thick or greater. Do not use for anchorage to lightweight-aggregate concrete or for slabs less than 4 inches thick.
6. To Steel: Welded threaded studs complying with AWS D1.1/D1.1M, with lock washers and nuts.
7. To Light Steel: Sheet metal screws.
8. Items Mounted on Hollow Walls and Nonstructural Building Surfaces: Mount cabinets, panelboards, disconnect switches, control enclosures, pull and junction boxes, transformers, and other devices on slotted-channel racks attached to substrate by means that comply with seismic-restraint strength and anchorage requirements.

E. Drill holes for expansion anchors in concrete at locations and to depths that avoid the need for reinforcing bars.
3.3 INSTALLATION OF FABRICATED METAL SUPPORTS

A. Comply with installation requirements in Section 055000 "Metal Fabrications" for site-fabricated metal supports.

B. Cut, fit, and place miscellaneous metal supports accurately in location, alignment, and elevation to support and anchor electrical materials and equipment.

C. Field Welding: Comply with AWS D1.1/D1.1M.

3.4 CONCRETE BASES

A. Construct concrete bases of dimensions indicated but not less than 4 inches larger in both directions than supported unit, and so anchors will be a minimum of 10 bolt diameters from edge of the base.

B. Use 3000-psi, 28-day compressive-strength concrete.

C. Anchor equipment to concrete base as follows:
 1. Place and secure anchorage devices. Use supported equipment manufacturer’s setting drawings, templates, diagrams, instructions, and directions furnished with items to be embedded.
 2. Install anchor bolts to elevations required for proper attachment to supported equipment.
 3. Install anchor bolts according to anchor-bolt manufacturer’s written instructions.

3.5 PAINTING

A. Touchup: Clean field welds and abraded areas of shop paint. Paint exposed areas immediately after erecting hangers and supports. Use same materials as used for shop painting. Comply with SSPC-PA 1 requirements for touching up field-painted surfaces.
 1. Apply paint by brush or spray to provide minimum dry film thickness of 2.0 mils.

B. Touchup: Comply with requirements in Section 099123 "Interior Painting" for cleaning and touchup painting of field welds, bolted connections, and abraded areas of shop paint on miscellaneous metal.

C. Galvanized Surfaces: Clean welds, bolted connections, and abraded areas and apply galvanizing-repair paint to comply with ASTM A 780.

END OF SECTION 260529
PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:
 1. Metal conduits, tubing, and fittings.
 2. Nonmetal conduits, tubing, and fittings.
 3. Metal wireways and auxiliary gutters.
 4. Nonmetal wireways and auxiliary gutters.
 5. Surface raceways.
 7. Handholes and boxes for exterior underground cabling.
 8. Floorboxes

1.3 DEFINITIONS

A. ARC: Aluminum rigid conduit.

B. GRC: Galvanized rigid steel conduit.

C. IMC: Intermediate metal conduit.

1.4 ACTION SUBMITTALS

A. Product Data: For surface raceways, wireways and fittings, floor boxes, hinged-cover enclosures, and cabinets.

B. Shop Drawings: For custom enclosures and cabinets. Include plans, elevations, sections, and attachment details.

1.5 INFORMATIONAL SUBMITTALS

A. Coordination Drawings: Conduit routing plans, drawn to scale, on which the following items are shown and coordinated with each other, using input from installers of items involved:
 1. Structural members in paths of conduit groups with common supports.
2. HVAC and plumbing items and architectural features in paths of conduit groups with common supports.

B. Qualification Data: For professional engineer.

C. Seismic Qualification Certificates: For enclosures, cabinets, and conduit racks and their mounting provisions, including those for internal components, from manufacturer.
 1. Basis for Certification: Indicate whether withstand certification is based on actual test of assembled components or on calculation.
 2. Dimensioned Outline Drawings of Equipment Unit: Identify center of gravity and locate and describe mounting and anchorage provisions.
 3. Detailed description of equipment anchorage devices on which the certification is based and their installation requirements.
 4. Detailed description of conduit support devices and interconnections on which the certification is based and their installation requirements.

D. Source quality-control reports.

PART 2 - PRODUCTS

2.1 METAL CONDUITS, TUBING, AND FITTINGS

A. Listing and Labeling: Metal conduits, tubing, and fittings shall be listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

B. GRC: Comply with ANSI C80.1 and UL 6.

C. ARC: Comply with ANSI C80.5 and UL 6A.

D. IMC: Comply with ANSI C80.6 and UL 1242.

E. PVC-Coated Steel Conduit: PVC-coated rigid steel conduit.
 1. Comply with NEMA RN 1.
 2. Coating Thickness: 0.040 inch, minimum.

F. EMT: Comply with ANSI C80.3 and UL 797.

G. FMC: Comply with UL 1; zinc-coated steel.

H. LFMC: Flexible steel conduit with PVC jacket and complying with UL 360.

I. Fittings for Metal Conduit: Comply with NEMA FB 1 and UL 514B.
 1. Conduit Fittings for Hazardous (Classified) Locations: Comply with UL 886 and NFPA 70.
 2. Fittings for EMT:
 a. Material: Steel.
 b. Type: compression.
 3. Expansion Fittings: PVC or steel to match conduit type, complying with UL 651, rated for environmental conditions where installed, and including flexible external bonding jumper.
4. Coating for Fittings for PVC-Coated Conduit: Minimum thickness of 0.040 inch, with overlapping sleeves protecting threaded joints.

J. Joint Compound for IMC, GRC, or ARC: Approved, as defined in NFPA 70, by authorities having jurisdiction for use in conduit assemblies, and compounded for use to lubricate and protect threaded conduit joints from corrosion and to enhance their conductivity.

2.2 NONMETALLIC CONDUITS, TUBING, AND FITTINGS

A. Listing and Labeling: Nonmetallic conduits, tubing, and fittings shall be listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

B. ENT: Comply with NEMA TC 13 and UL 1653.

C. RNC: Type EPC-40-PVC, complying with NEMA TC 2 and UL 651 unless otherwise indicated.

D. LFNC: Comply with UL 1660.

E. Rigid HDPE: Comply with UL 651A.

F. Continuous HDPE: Comply with UL 651B.

G. Coilable HDPE: Preassembled with conductors or cables, and complying with ASTM D 3485.

H. RTRC: Comply with UL 1684A and NEMA TC 14.

I. Fittings for ENT and RNC: Comply with NEMA TC 3; match to conduit or tubing type and material.

J. Fittings for LFNC: Comply with UL 514B.

K. Solvents and Adhesives: As recommended by conduit manufacturer.

2.3 METAL WIREWAYS AND AUXILIARY GUTTERS

A. Description: Sheet metal, complying with UL 870 and NEMA 250, Type 1 unless otherwise indicated, and sized according to NFPA 70. Provide NEMA 3R for exterior locations.

1. Metal wireways installed outdoors shall be listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

B. Fittings and Accessories: Include covers, couplings, offsets, elbows, expansion joints, adapters, hold-down straps, end caps, and other fittings to match and mate with wireways as required for complete system.

C. Wireway Covers: Screw-cover type unless otherwise indicated.

D. Finish: Manufacturer's standard enamel finish.
2.4 NONMETALLIC WIREWAYS AND AUXILIARY GUTTERS

A. Listing and Labeling: Nonmetallic wireways and auxiliary gutters shall be listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

B. Description: Fiberglass polyester, extruded and fabricated to required size and shape, without holes or knockouts. Cover shall be gasketed with oil-resistant gasket material and fastened with captive screws treated for corrosion resistance. Connections shall be flanged and have stainless-steel screws and oil-resistant gaskets.

C. Description: PVC, extruded and fabricated to required size and shape, and having snap-on cover, mechanically coupled connections, and plastic fasteners.

D. Fittings and Accessories: Couplings, offsets, elbows, expansion joints, adapters, hold-down straps, end caps, and other fittings shall match and mate with wireways as required for complete system.

E. Solvents and Adhesives: As recommended by conduit manufacturer.

2.5 SURFACE RACEWAYS

A. Listing and Labeling: Surface raceways and tele-power poles shall be listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

B. Surface Metal Raceways: Galvanized steel with snap-on covers complying with UL 5. Manufacturer's standard enamel finish in color selected by Architect.

C. Surface Nonmetallic Raceways: Two- or three-piece construction, complying with UL 5A, and manufactured of rigid PVC with texture and color selected by Architect from manufacturer's standard colors. Product shall comply with UL 94 V-0 requirements for self-extinguishing characteristics.

D. Verify color of surface raceways with architect unless color is specifically noted on drawings.

E. Where power receptacles and data/communications devices are located side by side, the surface raceway shall be Wiremold dual compartment V2400D Base and Blank Cover or approved equal.

F. Conduit shall not be used for surface raceways except in unfinished spaces, unless specifically noted otherwise on plans.

2.6 FLOORBOXES

A. Boxes in slab on-grade concrete floors:
 1. Floor boxes shall be multiservice steel boxes designed for use in concrete floor slabs.
 2. (FP) Floor Plug floor box for Power and Communications: Provide Wiremold RFB4E six-compartment multi-service recessed floor box including appropriate plates for four voice/data jacks and two duplex NEMA 5-20 receptacles.
Route a minimum of one ¾” conduit for power and two 1-1/4” conduits for data to each floorbox unless noted otherwise.

3. (AV) Power, Data and Audio/Visual Floorbox: Provide Wiremold RFB6 Series equivalent floorbox. Route a minimum of one ¾” conduit for power and three 1-1/4” conduits to each AV floorbox for communications cabling.

4. (FF) Furniture Feed Floorbox: Provide Wiremold floorbox with separate conduits for power and data. Conduit shall be a minimum of ¾” for power and two 1-1/4” for communications routed to accessible area. Conductors for modular furniture will be provided by others, and terminated in floor box by electrical contractor. Provide Furniture Feed Cover Assembly.

B. Floor boxes in all floors not on grade:
 1. Electrical contractor shall core-drill slab for poke-through floorboxes. All floorboxes shall maintain the fire rating of the floor.
 2. (FP) Power and Data Floorbox: Provide Wiremold 6ATC Fire Rated Poke-Through, or approved equivalent with inserts for communications and two duplex NEMA 5-20 receptacles.
 4. (FF) Furniture Feed Floorbox: Provide Wiremold 6ATCFF Fire Rated Poke-Through floorbox with separate conduits for power and data. Conduit shall be a minimum of one ¾” for power and two 1-1/4” empty conduits for communications routed to accessible area. Provide Furniture Feed Cover Assembly.

C. All floorboxes shall include all internal barriers, covers, device plates and other components necessary for a complete installation.

2.7 BOXES, ENCLOSURES, AND CABINETS

A. General Requirements for Boxes, Enclosures, and Cabinets: Boxes, enclosures, and cabinets installed in wet locations shall be listed for use in wet locations.

B. Sheet Metal Outlet and Device Boxes: Comply with NEMA OS 1 and UL 514A.

C. Cast-Metal Outlet and Device Boxes: Comply with NEMA FB 1, aluminum, Type FD, with gasketed cover.

D. Nonmetallic Outlet and Device Boxes: Comply with NEMA OS 2 and UL 514C.

E. Metal Floor Boxes:
 1. Listing and Labeling: Metal floor boxes shall be listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

F. Luminaire Outlet Boxes: Nonadjustable, designed for attachment of luminaire weighing 50 lb. Outlet boxes designed for attachment of luminaires weighing more than 50 lb shall be listed and marked for the maximum allowable weight.
G. Paddle Fan Outlet Boxes: Nonadjustable, designed for attachment of paddle fan weighing 70 lb.
 1. Listing and Labeling: Paddle fan outlet boxes shall be listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

H. Small Sheet Metal Pull and Junction Boxes: NEMA OS 1.

I. Cast-Metal Access, Pull, and Junction Boxes: Comply with NEMA FB 1 and UL 1773, galvanized, cast iron with gasketed cover.

J. Box extensions used to accommodate new building finishes shall be of same material as recessed box.

K. Device Box Dimensions: 4 inches square by 2-1/8 inches deep.

L. Hinged-Cover Enclosures: Comply with UL 50 and NEMA 250, Type 1 or Type 3R as appropriate for the application with continuous-hinge cover with flush latch unless otherwise indicated.
 1. Metal Enclosures: Steel, finished inside and out with manufacturer's standard enamel.
 2. Interior Panels: Steel; all sides finished with manufacturer's standard enamel.

M. Cabinets:
 1. NEMA 250, galvanized-steel box with removable interior panel and removable front, finished inside and out with manufacturer's standard enamel.
 2. Hinged door in front cover with flush latch and concealed hinge.
 3. Key latch to match panelboards.
 4. Metal barriers to separate wiring of different systems and voltage.
 5. Accessory feet where required for freestanding equipment.
 6. Nonmetallic cabinets shall be listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

2.8 HANDHOLES AND BOXES FOR EXTERIOR UNDERGROUND WIRING

A. General Requirements for Handholes and Boxes:
 1. Boxes and handholes for use in underground systems shall be designed and identified as defined in NFPA 70, for intended location and application.
 2. Boxes installed in wet areas shall be listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

B. Polymer-Concrete Handholes and Boxes with Polymer-Concrete Cover: Molded of sand and aggregate, bound together with polymer resin, and reinforced with steel, fiberglass, or a combination of the two.
 1. Standard: Comply with SCTE 77.
 2. Configuration: Designed for flush burial with closed bottom unless otherwise indicated.
 3. Cover: Weatherproof, secured by tamper-resistant locking devices and having structural load rating consistent with enclosure and handhole location.
 4. Cover Finish: Nonskid finish shall have a minimum coefficient of friction of 0.50.
 5. Cover Legend: Molded lettering, "ELECTRIC."
 6. Conduit Entrance Provisions: Conduit-terminating fittings shall mate with entering ducts for secure, fixed installation in enclosure wall.

C. Fiberglass Handholes and Boxes: Molded of fiberglass-reinforced polyester resin, with frame and covers of polymer concrete.
 1. Standard: Comply with SCTE 77.
 2. Configuration: Designed for flush burial with integral closed bottom unless otherwise indicated.
 3. Cover: Weatherproof, secured by tamper-resistant locking devices and having structural load rating consistent with enclosure and handhole location.
 4. Cover Finish: Nonskid finish shall have a minimum coefficient of friction of 0.50.
 5. Cover Legend: Molded lettering, "ELECTRIC."
 6. Conduit Entrance Provisions: Conduit-terminating fittings shall mate with entering ducts for secure, fixed installation in enclosure wall.

2.9 SOURCE QUALITY CONTROL FOR UNDERGROUND ENCLOSURES

A. Handhole and Pull-Box Prototype Test: Test prototypes of handholes and boxes for compliance with SCTE 77. Strength tests shall be for specified tier ratings of products supplied.
 1. Tests of materials shall be performed by an independent testing agency.
 2. Strength tests of complete boxes and covers shall be by either an independent testing agency or manufacturer. A qualified registered professional engineer shall certify tests by manufacturer.
 3. Testing machine pressure gages shall have current calibration certification complying with ISO 9000 and ISO 10012 and traceable to NIST standards.

PART 3 - EXECUTION

3.1 RACEWAY APPLICATION

A. Outdoors: Apply raceway products as specified below unless otherwise indicated:
 1. Exposed Conduit: GRC.
 2. Concealed Conduit, Aboveground: GRC.
 3. Underground Conduit: RNC, Type EPC-40-PVC.
 4. Connection to Vibrating Equipment (Including Transformers and Hydraulic, Pneumatic, Electric Solenoid, or Motor-Driven Equipment): LFMC.
 5. Boxes and Enclosures, Aboveground: NEMA 250, Type 3R.

B. Indoors: Apply raceway products as specified below unless otherwise indicated:
 1. Exposed, Not Subject to Physical Damage: EMT.
 2. Exposed and Subject to Severe Physical Damage: GRC. Raceway locations include the following:
 a. Loading dock.
 b. Corridors used for traffic of mechanized carts, forklifts, and pallet-handling units.
 c. Mechanical rooms.
 3. Concealed in Ceilings and Interior Walls and Partitions: EMT.
4. Connection to Vibrating Equipment (Including Transformers and Hydraulic, Pneumatic, Electric Solenoid, or Motor-Driven Equipment): FMC, except use LFMC in damp or wet locations.
5. Damp or Wet Locations: IMC.
6. Boxes and Enclosures: NEMA 250, Type 1, except use NEMA 250, Type 4 stainless steel in institutional and commercial kitchens and damp or wet locations.

C. Minimum Raceway Size: 3/4-inch trade size.

D. Raceway Fittings: Compatible with raceways and suitable for use and location.
1. Rigid and Intermediate Steel Conduit: Use threaded rigid steel conduit fittings unless otherwise indicated. Comply with NEMA FB 2.10.
2. PVC Externally Coated, Rigid Steel Conduits: Use only fittings listed for use with this type of conduit. Patch and seal all joints, nicks, and scrapes in PVC coating after installing conduits and fittings. Use sealant recommended by fitting manufacturer and apply in thickness and number of coats recommended by manufacturer.
4. Flexible Conduit: Use only fittings listed for use with flexible conduit. Comply with NEMA FB 2.20.

E. Install nonferrous conduit or tubing for circuits operating above 60 Hz. Where aluminum raceways are installed for such circuits and pass through concrete, install in nonmetallic sleeve.

F. Do not install aluminum conduits, boxes, or fittings in contact with concrete or earth.

G. Surface raceway shall only be used on existing walls where construction type prohibits installation of EMT or MC cable inside wall (concrete or brick walls, for example).

H. Do not install nonmetallic conduit where ambient temperature exceeds 120 deg F.

3.2 INSTALLATION

A. Comply with NECA 1 and NECA 101 for installation requirements except where requirements on Drawings or in this article are stricter. Comply with NECA 102 for aluminum conduits. Comply with NFPA 70 limitations for types of raceways allowed in specific occupancies and number of floors.

B. Keep raceways at least 6 inches away from parallel runs of flues and steam or hot-water pipes. Install horizontal raceway runs above water and steam piping.

C. Complete raceway installation before starting conductor installation.

D. Comply with requirements in Section 260529 "Hangers and Supports for Electrical Systems" for hangers and supports.

E. Arrange stub-ups so curved portions of bends are not visible above finished slab.

F. Install no more than the equivalent of three 90-degree bends in any conduit run except for control wiring conduits, for which fewer bends are allowed. Support within 12 inches of changes in direction.
G. Conceal conduit and EMT within finished walls, ceilings, and floors unless otherwise indicated. Install conduits parallel or perpendicular to building lines.

H. Support conduit within 12 inches of enclosures to which attached.

I. Raceways Embedded in Slabs:
 1. Run conduit larger than 1-inch trade size, parallel or at right angles to main reinforcement. Where at right angles to reinforcement, place conduit close to slab support. Secure raceways to reinforcement at maximum 10-foot intervals.
 2. Arrange raceways to cross building expansion joints at right angles with expansion fittings.
 3. Arrange raceways to keep a minimum of 2 inches of concrete cover in all directions.
 4. Do not embed threadless fittings in concrete unless specifically approved by Architect for each specific location.
 5. Change from ENT to RNC, Type EPC-40-PVC, before rising above floor.

J. Stub-ups to Above Recessed Ceilings:
 1. Use EMT, IMC, or RMC for raceways.
 2. Use a conduit bushing or insulated fitting to terminate stub-ups not terminated in hubs or in an enclosure.

K. Threaded Conduit Joints, Exposed to Wet, Damp, Corrosive, or Outdoor Conditions: Apply listed compound to threads of raceway and fittings before making up joints. Follow compound manufacturer's written instructions.

L. Coat field-cut threads on PVC-coated raceway with a corrosion-preventing conductive compound prior to assembly.

M. Raceway Terminations at Locations Subject to Moisture or Vibration: Use insulating bushings to protect conductors including conductors smaller than No. 4 AWG.

N. Terminate threaded conduits into threaded hubs or with locknuts on inside and outside of boxes or cabinets. Install bushings on conduits up to 1-1/4-inch trade size and insulated throat metal bushings on 1-1/2-inch trade size and larger conduits terminated with locknuts. Install insulated throat metal grounding bushings on service conduits.

O. Install raceways square to the enclosure and terminate at enclosures with locknuts. Install locknuts hand tight plus 1/4 turn more.

P. Do not rely on locknuts to penetrate nonconductive coatings on enclosures. Remove coatings in the locknut area prior to assembling conduit to enclosure to assure a continuous ground path.

Q. Cut conduit perpendicular to the length. For conduits 2-inch trade size and larger, use roll cutter or a guide to make cut straight and perpendicular to the length.

R. Install pull wires in empty raceways. Use polypropylene or monofilament plastic line with not less than 200-lb tensile strength. Leave at least 24 inches of slack at each end of pull wire. Cap underground raceways designated as spare above grade alongside raceways in use.

S. Install raceway sealing fittings at accessible locations according to NFPA 70 and fill them with listed sealing compound. For concealed raceways, install each fitting in a flush steel box with a
blank cover plate having a finish similar to that of adjacent plates or surfaces. Install raceway sealing fittings according to NFPA 70.

T. Install devices to seal raceway interiors at accessible locations. Locate seals so no fittings or boxes are between the seal and the following changes of environments. Seal the interior of all raceways at the following points:
1. Where conduits pass from warm to cold locations, such as boundaries of refrigerated spaces.
2. Where an underground service raceway enters a building or structure.
3. Where otherwise required by NFPA 70.

U. Comply with manufacturer's written instructions for solvent welding RNC and fittings.

V. Expansion-Joint Fittings:
1. Install in each run of aboveground RNC that is located where environmental temperature change may exceed 30 deg F and that has straight-run length that exceeds 25 feet. Install in each run of aboveground RMC and EMT conduit that is located where environmental temperature change may exceed 100 deg F and that has straight-run length that exceeds 100 feet.
2. Install type and quantity of fittings that accommodate temperature change listed for each of the following locations:
 a. Outdoor Locations Not Exposed to Direct Sunlight: 125 deg F temperature change.
 b. Outdoor Locations Exposed to Direct Sunlight: 155 deg F temperature change.
 c. Indoor Spaces Connected with Outdoors without Physical Separation: 125 deg F temperature change.
 d. Attics: 135 deg F temperature change.
3. Install fitting(s) that provide expansion and contraction for at least 0.00041 inch per foot of length of straight run per deg F of temperature change for PVC conduits. Install fitting(s) that provide expansion and contraction for at least 0.000078 inch per foot of length of straight run per deg F of temperature change for metal conduits.
4. Install expansion fittings at all locations where conduits cross building or structure expansion joints.
5. Install each expansion-joint fitting with position, mounting, and piston setting selected according to manufacturer's written instructions for conditions at specific location at time of installation. Install conduit supports to allow for expansion movement.

W. Flexible Conduit Connections: Comply with NEMA RV 3. Use a maximum of 72 inches of flexible conduit for recessed and semirecessed luminaires, equipment subject to vibration, noise transmission, or movement; and for transformers and motors.
1. Use LFMC in damp or wet locations subject to severe physical damage.
2. Use LFMC or LFNC in damp or wet locations not subject to severe physical damage.

X. Mount boxes at heights indicated on Drawings. If mounting heights of boxes are not individually indicated, give priority to ADA requirements. Install boxes with height measured to center of box unless otherwise indicated.

Y. Recessed Boxes in Masonry Walls: Saw-cut opening for box in center of cell of masonry block, and install box flush with surface of wall. Prepare block surfaces to provide a flat surface for a raintight connection between box and cover plate or supported equipment and box.
Z. Horizontally separate boxes mounted on opposite sides of walls so they are not in the same vertical channel.

AA. Locate boxes so that cover or plate will not span different building finishes.

BB. Support boxes of three gangs or more from more than one side by spanning two framing members or mounting on brackets specifically designed for the purpose.

CC. Fasten junction and pull boxes to or support from building structure. Do not support boxes by conduits.

DD. Set metal floor boxes level and flush with finished floor surface.

EE. Set nonmetallic floor boxes level. Trim after installation to fit flush with finished floor surface.

3.3 INSTALLATION OF UNDERGROUND CONDUIT

A. Direct-Buried Conduit:
 1. Excavate trench bottom to provide firm and uniform support for conduit. Prepare trench bottom as specified in Section 312000 "Earth Moving" for pipe less than 6 inches in nominal diameter.
 2. Install backfill as specified in Section 312000 "Earth Moving."
 3. After installing conduit, backfill and compact. Start at tie-in point, and work toward end of conduit run, leaving conduit at end of run free to move with expansion and contraction as temperature changes during this process. Firmly hand tamp backfill around conduit to provide maximum supporting strength. After placing controlled backfill to within 12 inches of finished grade, make final conduit connection at end of run and complete backfilling with normal compaction as specified in Section 312000 "Earth Moving."
 4. Install manufactured duct elbows for stub-ups at poles and equipment and at building entrances through floor unless otherwise indicated. Encase elbows for stub-up ducts throughout length of elbow.
 5. Install manufactured rigid steel conduit elbows for stub-ups at poles and equipment and at building entrances through floor.
 a. Couple steel conduits to ducts with adapters designed for this purpose, and encase coupling with 3 inches of concrete for a minimum of 12 inches on each side of the coupling.
 b. For stub-ups at equipment mounted on outdoor concrete bases and where conduits penetrate building foundations, extend steel conduit horizontally a minimum of 60 inches from edge of foundation or equipment base. Install insulated grounding bushings on terminations at equipment.
 6. Warning Planks: Bury warning planks approximately 12 inches above direct-buried conduits but a minimum of 6 inches below grade. Align planks along centerline of conduit.
 7. Underground Warning Tape: Comply with requirements in Section 260553 "Identification for Electrical Systems."
3.4 INSTALLATION OF UNDERGROUND HANDHOLES AND BOXES

A. Install handholes and boxes level and plumb and with orientation and depth coordinated with connecting conduits to minimize bends and deflections required for proper entrances.

B. Unless otherwise indicated, support units on a level bed of crushed stone or gravel, graded from 1/2-inch sieve to No. 4 sieve and compacted to same density as adjacent undisturbed earth.

C. Elevation: In paved areas, set so cover surface will be flush with finished grade. Set covers of other enclosures 1 inch above finished grade.

D. Install handholes with bottom below frost line.

E. Install removable hardware, including pulling eyes, cable stanchions, cable arms, and insulators, as required for installation and support of cables and conductors and as indicated. Select arm lengths to be long enough to provide spare space for future cables but short enough to preserve adequate working clearances in enclosure.

F. Field-cut openings for conduits according to enclosure manufacturer's written instructions. Cut wall of enclosure with a tool designed for material to be cut. Size holes for terminating fittings to be used, and seal around penetrations after fittings are installed.

3.5 SLEEVE AND SLEEVE-SEAL INSTALLATION FOR ELECTRICAL PENETRATIONS

A. Install sleeves and sleeve seals at penetrations of exterior floor and wall assemblies. Comply with requirements in Section 260544 "Sleeves and Sleeve Seals for Electrical Raceways and Cabling."

3.6 FIRESTOPPING

A. Install firestopping at penetrations of fire-rated floor and wall assemblies. Comply with requirements in Section 078413 "Penetration Firestopping."

3.7 PROTECTION

A. Protect coatings, finishes, and cabinets from damage and deterioration.
 1. Repair damage to galvanized finishes with zinc-rich paint recommended by manufacturer.
 2. Repair damage to PVC coatings or paint finishes with matching touchup coating recommended by manufacturer.

END OF SECTION 260533
SECTION 260543
UNDERGROUND DUCTS AND RACEWAYS FOR ELECTRICAL SYSTEMS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary
 Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
A. Section Includes:
 1. Direct-buried conduit, ducts, and duct accessories.
 2. Concrete-encased conduit, ducts, and duct accessories.
 3. Handholes and boxes.

1.3 DEFINITIONS
A. Trafficways: Locations where vehicular or pedestrian traffic is a normal course of events.

1.4 ACTION SUBMITTALS
A. Product Data: For each type of product.
 1. Include duct-bank materials, including separators and miscellaneous components.
 2. Include ducts and conduits and their accessories, including elbows, end bells, bends,
 fittings, and solvent cement.
 3. Include accessories for manholes, handholes, boxes, and other utility structures.
 4. Include warning tape.
 5. Include warning planks.

B. Shop Drawings:
 1. Precast or Factory-Fabricated Underground Utility Structures:
 a. Include plans, elevations, sections, details, attachments to other work, and
 accessories.
 b. Include duct entry provisions, including locations and duct sizes.
 c. Include reinforcement details.
 d. Include frame and cover design and manhole frame support rings.
 e. Include Ladder details.
 f. Include grounding details.
 g. Include dimensioned locations of cable rack inserts, pulling-in and lifting irons,
 and sumps.
 h. Include joint details.
 2. Factory-Fabricated Handholes and Boxes Other Than Precast Concrete:
a. Include dimensioned plans, sections, and elevations, and fabrication and installation details.
b. Include duct entry provisions, including locations and duct sizes.
c. Include cover design.
d. Include grounding details.
e. Include dimensioned locations of cable rack inserts, and pulling-in and lifting irons.

1.5 INFORMATIONAL SUBMITTALS

A. Duct-Bank Coordination Drawings: Show duct profiles and coordination with other utilities and underground structures.
 1. Include plans and sections, drawn to scale, and show bends and locations of expansion fittings.
 2. Drawings shall be signed and sealed by a qualified professional engineer.

B. Product Certificates: For concrete and steel used in precast concrete manholes and handholes, as required by ASTM C 858.

C. Qualification Data: For professional engineer and testing agency responsible for testing nonconcrete handholes and boxes.

D. Source quality-control reports.

E. Field quality-control reports.

1.6 QUALITY ASSURANCE

A. Testing Agency Qualifications: Qualified according to ASTM E 329 for testing indicated.

1.7 FIELD CONDITIONS

A. Interruption of Existing Electrical Service: Do not interrupt electrical service to facilities occupied by Owner or others unless permitted under the following conditions, and then only after arranging to provide temporary electrical service according to requirements indicated:
 1. Notify Architect no fewer than 10 days in advance of proposed interruption of electrical service.
 2. Do not proceed with interruption of electrical service without Architect's written permission.

B. Ground Water: Assume ground-water level is at grade level unless a lower water table is noted on Drawings.
PART 2 - PRODUCTS

2.1 GENERAL REQUIREMENTS FOR DUCTS AND RACEWAYS

A. Comply with ANSI C2.

2.2 CONDUIT

B. RNC: NEMA TC 2, Type EPC-40-PVC, UL 651, with matching fittings by same manufacturer as the conduit, complying with NEMA TC 3 and UL 514B.

2.3 NONMETALLIC DUCTS AND DUCT ACCESSORIES

A. Underground Plastic Utilities Duct: NEMA TC 2, UL 651, ASTM F 512, Type EPC-40, with matching fittings complying with NEMA TC 3 by same manufacturer as the duct.

B. Solvents and Adhesives: As recommended by conduit manufacturer.

C. Duct Accessories:
 1. Duct Separators: Factory-fabricated rigid PVC interlocking spacers, sized for type and size of ducts with which used, and selected to provide minimum duct spacing indicated while supporting ducts during concreting or backfilling.
 3. Concrete Warning Planks: Nominal 12 by 24 by 3 inches in size, manufactured from 6000-psi concrete.
 b. Mark each plank with "ELECTRIC" in 2-inch-high, 3/8-inch-deep letters.

2.4 PRECAST CONCRETE HANDHOLES AND BOXES

A. Comply with ASTM C 858 for design and manufacturing processes.

B. Description: Factory-fabricated, reinforced-concrete, monolithically poured walls and bottom unless open-bottom enclosures are indicated. Frame and cover shall form top of enclosure and shall have load rating consistent with that of handhole or box.
 1. Frame and Cover: Weatherproof cast-iron frame, with cast-iron cover with recessed cover hook eyes and tamper-resistant, captive, cover-securing bolts.
 2. Frame and Cover: Weatherproof steel frame, with steel cover with recessed cover hook eyes and tamper-resistant, captive, cover-securing bolts.
 3. Frame and Cover: Weatherproof steel frame, with hinged steel access door assembly with tamper-resistant, captive, cover-securing bolts.
 a. Cover Hinges: Concealed, with hold-open ratchet assembly.
 b. Cover Handle: Recessed.
 4. Frame and Cover: Weatherproof aluminum frame with hinged aluminum access door assembly with tamper-resistant, captive, cover-securing bolts.
a. Cover Hinges: Concealed, with hold-open ratchet assembly.
b. Cover Handle: Recessed.
5. Cover Finish: Nonskid finish shall have a minimum coefficient of friction of 0.50.
6. Cover Legend: Molded lettering, "ELECTRIC."
7. Configuration: Units shall be designed for flush burial and have closed bottom unless otherwise indicated.
8. Extensions and Slabs: Designed to mate with bottom of enclosure. Same material as enclosure.
a. Extension shall provide increased depth of 12 inches.
b. Slab: Same dimensions as bottom of enclosure, and arranged to provide closure.
9. Joint Sealant: Asphaltic-butyl material with adhesion, cohesion, flexibility, and durability properties necessary to withstand maximum hydrostatic pressures at the installation location with the ground-water level at grade.
10. Windows: Precast openings in walls, arranged to match dimensions and elevations of approaching ducts and duct banks, plus an additional 12 inches vertically and horizontally to accommodate alignment variations.
a. Windows shall be located no less than 6 inches from interior surfaces of walls, floors, or frames and covers of handholes, but close enough to corners to facilitate racking of cables on walls.
b. Window opening shall have cast-in-place, welded-wire fabric reinforcement for field cutting and bending to tie in to concrete envelopes of duct banks.
c. Window openings shall be framed with at least two additional No. 3 steel reinforcing bars in concrete around each opening.
11. Duct Entrances in Handhole Walls: Cast end-bell or duct-terminating fitting in wall for each entering duct.
a. Type and size shall match fittings to duct or conduit to be terminated.
b. Fittings shall align with elevations of approaching ducts and be located near interior corners of handholes to facilitate racking of cable.
12. Handholes 12 inches wide by 24 inches long and larger shall have inserts for cable racks and pulling-in irons installed before concrete is poured.

2.5 HANDHOLES AND BOXES OTHER THAN PRECAST CONCRETE

A. General Requirements for Handholes and Boxes: Comply with SCTE 77. Comply with tier requirements in "Underground Enclosure Application" Article.
1. Color: Gray if in concrete, green if in grass.
2. Configuration: Units shall be designed for flush burial and have closed bottom unless otherwise indicated.
3. Cover: Weatherproof, secured by tamper-resistant locking devices and having structural load rating consistent with enclosure.
4. Cover Finish: Nonskid finish shall have a minimum coefficient of friction of 0.50.
5. Cover Legend: Molded lettering, "ELECTRIC."
6. Direct-Buried Wiring Entrance Provisions: Knockouts equipped with insulated bushings or end-bell fittings, selected to suit box material, sized for wiring indicated, and arranged for secure, fixed installation in enclosure wall.
8. Handholes 12 inches wide by 24 inches long and larger shall have factory-installed inserts for cable racks and pulling-in irons.
B. Polymer Concrete Handholes and Boxes with Polymer Concrete Cover: Molded of sand and aggregate, bound together with a polymer resin, and reinforced with steel or fiberglass or a combination of the two.

C. Fiberglass Handholes and Boxes with Polymer Concrete Frame and Cover: Sheet-molded, fiberglass-reinforced, polyester resin enclosure joined to polymer concrete top ring or frame.

D. Fiberglass Handholes and Boxes: Molded of fiberglass-reinforced polyester resin, with covers made of polymer concrete.

E. High-Density Plastic Boxes: Injection molded of high-density polyethylene or copolymer-polypropylene. Cover shall be made of polymer concrete.

2.6 PRECAST MANHOLES

A. Comply with ASTM C 858.

B. Structural Design Loading: Comply with requirements in "Underground Enclosure Application" Article.

C. Precast Manholes: One-piece units and units with interlocking mating sections, complete with accessories, hardware, and features.

D. Windows: Precast openings in walls, arranged to match dimensions and elevations of approaching ducts and duct banks, plus an additional 12 inches vertically and horizontally to accommodate alignment variations.
 1. Windows shall be located no less than 6 inches from interior surfaces of walls, floors, or roofs of manholes, but close enough to corners to facilitate racking of cables on walls.
 2. Window opening shall have cast-in-place, welded-wire fabric reinforcement for field cutting and bending to tie in to concrete envelopes of duct banks.
 3. Window openings shall be framed with at least two additional No. 3 steel reinforcing bars in concrete around each opening.

E. Duct Entrances in Manhole Walls: Cast end-bell or duct-terminating fitting in wall for each entering duct.
 1. Type and size shall match fittings to duct or conduit to be terminated.
 2. Fittings shall align with elevations of approaching ducts and be located near interior corners of manholes to facilitate racking of cable.

F. Concrete Knockout Panels: 1-1/2 to 2 inches thick, for future conduit entrance and sleeve for ground rod.

G. Ground Rod Sleeve: Provide a 3-inch PVC conduit sleeve in manhole floors 2 inches from the wall adjacent to, but not underneath, the ducts routed from the facility.

H. Joint Sealant: Asphaltic-butyl material with adhesion, cohesion, flexibility, and durability properties necessary to withstand maximum hydrostatic pressures at the installation location with the ground-water level at grade.
2.7 CAST-IN-PLACE MANHOLES

A. Description: Underground utility structures, constructed in place, complete with accessories, hardware, and features. Include concrete knockout panels for conduit entrance and sleeve for ground rod.

B. Materials: Comply with ASTM C 858 and with Section 033000 "Cast-in-Place Concrete."

2.8 UTILITY STRUCTURE ACCESSORIES

A. Manhole Frames, Covers, and Chimney Components: Comply with structural design loading specified for manhole.
 1. Frame and Cover: Weatherproof, gray cast iron complying with ASTM A 48/A 48M, Class 30B with milled cover-to-frame bearing surfaces; diameter, 29 inches.
 a. Cover Finish: Nonskid finish shall have a minimum coefficient of friction of 0.50.
 b. Special Covers: Recess in face of cover designed to accept finish material in paved areas.
 2. Cover Legend: Cast in. Selected to suit system.
 a. Legend: "ELECTRIC-LV" for duct systems with power wires and cables for systems operating at 600 V and less.
 b. Legend: "ELECTRIC-HV" for duct systems with medium-voltage cables.
 3. Manhole Chimney Components: Precast concrete rings with dimensions matched to those of roof opening.
 a. Mortar for Chimney Ring and Frame and Cover Joints: Comply with ASTM C 270, Type M, except for quantities less than 2.0 cu. ft. where packaged mix complying with ASTM C 387, Type M, may be used.
 b. Seal joints watertight using preformed plastic or rubber conforming to ASTM C 990. Install sealing material according to the sealant manufacturers' printed instructions.

B. Manhole Sump Frame and Grate: ASTM A 48/A 48M, Class 30B, gray cast iron.

C. Pulling Eyes in Concrete Walls: Eyebolt with reinforcing-bar fastening insert, 2-inch-diameter eye, and 1-by-4-inch bolt.
 1. Working Load Embedded in 6-Inch, 4000-psi Concrete: 13,000-lbf minimum tension.

D. Pulling Eyes in Nonconcrete Walls: Eyebolt with reinforced fastening, 1-1/4-inch-diameter eye, rated 2500-lbf minimum tension.

E. Pulling-In and Lifting Irons in Concrete Floors: 7/8-inch-diameter, hot-dip galvanized, bent steel rod; stress relieved after forming; and fastened to reinforcing rod. Exposed triangular opening.
 1. Ultimate Yield Strength: 40,000-lbf shear and 60,000-lbf tension.

F. Bolting Inserts for Concrete Utility Structure Cable Racks and Other Attachments: Flared, threaded inserts of noncorrosive, chemical-resistant, nonconductive thermoplastic material; 1/2-inch ID by 2-3/4 inches deep, flared to 1-1/4 inches minimum at base.
 1. Tested Ultimate Pullout Strength: 12,000 lbf minimum.
G. Ground Rod Sleeve: 3-inch, PVC conduit sleeve in manhole floors 2 inches from the wall adjacent to, but not underneath, the ducts routed from the facility.

H. Expansion Anchors for Installation after Concrete Is Cast: Zinc-plated, carbon-steel-wedge type with stainless-steel expander clip with 1/2-inch bolt, 5300-lbf rated pullout strength, and minimum 6800-lbf rated shear strength.

I. Cable Rack Assembly: Steel, hot-rolled galvanized, except insulators.
 1. Stanchions: T-section or channel; 2-1/4-inch nominal size; punched with 14 holes on 1-1/2-inch centers for cable-arm attachment.
 2. Arms: 1-1/2 inches wide, lengths ranging from 3 inches with 450-lb minimum capacity to 18 inches with 250-lb minimum capacity. Arms shall have slots along full length for cable ties and be arranged for secure mounting in horizontal position at any vertical location on stanchions.

J. Cable Rack Assembly: Nonmetallic. Components fabricated from nonconductive, fiberglass-reinforced polymer.
 1. Stanchions: Nominal 36 inches high by 4 inches wide, with minimum of nine holes for arm attachment.
 2. Arms: Arranged for secure, drop-in attachment in horizontal position at any location on cable stanchions, and capable of being locked in position. Arms shall be available in lengths ranging from 3 inches with 450-lb minimum capacity to 20 inches with 250-lb minimum capacity. Top of arm shall be nominally 4 inches wide, and arm shall have slots along full length for cable ties.

K. Duct-Sealing Compound: Nonhardening, safe for contact with human skin, not deleterious to cable insulation, and workable at temperatures as low as 35 deg F. Capable of withstanding temperature of 300 deg F without slump and adhering to clean surfaces of plastic ducts, metallic conduits, conduit coatings, concrete, masonry, lead, cable sheaths, cable jackets, insulation materials, and common metals.

L. Fixed Manhole Ladders: Arranged for attachment to roof or wall and floor of manhole. Ladder and mounting brackets and braces shall be fabricated from nonconductive, structural-grade, fiberglass-reinforced resin hot-dip galvanized steel.

M. Portable Manhole Ladders: UL-listed, heavy-duty fiberglass specifically designed for portable use for access to electrical manholes. Minimum length equal to distance from deepest manhole floor to grade plus 36 inches.

N. Cover Hooks: Heavy duty, designed for lifts 60 lbf and greater. Two required.

2.9 SOURCE QUALITY CONTROL

A. Test and inspect precast concrete utility structures according to ASTM C 1037.

B. Nonconcrete Handhole and Pull-Box Prototype Test: Test prototypes of manholes and boxes for compliance with SCTE 77. Strength tests shall be for specified tier ratings of products supplied.
 1. Tests of materials shall be performed by an independent testing agency.
2. Strength tests of complete boxes and covers shall be by either an independent testing agency or manufacturer. A qualified registered professional engineer shall certify tests by manufacturer.

3. Testing machine pressure gages shall have current calibration certification, complying with ISO 9000 and ISO 10012, and traceable to NIST standards.

PART 3 - EXECUTION

3.1 PREPARATION

A. Coordinate layout and installation of ducts, manholes, handholes, and boxes with final arrangement of other utilities, site grading, and surface features as determined in the field. Notify Architect if there is a conflict between areas of excavation and existing structures or archaeological sites to remain.

B. Coordinate elevations of ducts and duct-bank entrances into manholes, handholes, and boxes with final locations and profiles of ducts and duct banks, as determined by coordination with other utilities, underground obstructions, and surface features. Revise locations and elevations as required to suit field conditions and to ensure that duct runs drain to manholes and handholes, and as approved by Architect.

C. Clear and grub vegetation to be removed, and protect vegetation to remain according to Section 311000 "Site Clearing." Remove and stockpile topsoil for reapplication according to Section 311000 "Site Clearing."

3.2 UNDERGROUND DUCT APPLICATION

A. Ducts for Electrical Cables More than 600 V: RNC, NEMA Type EPC-80-PVC, in concrete-encased duct bank unless otherwise indicated.

B. Ducts for Electrical Feeders 600 V and Less: RNC, NEMA Type EPC-40-PVC, in direct-buried duct bank unless otherwise indicated.

C. Ducts for Electrical Branch Circuits: RNC, NEMA Type EPC-40-PVC, in direct-buried duct bank unless otherwise indicated.

D. Underground Ducts Crossing Driveways and Roadways: RNC, NEMA Type EPC-40-PVC, encased in reinforced concrete.

3.3 UNDERGROUND ENCLOSURE APPLICATION

A. Handholes and Boxes for 600 V and Less:
 1. Units in Roadways and Other Deliberate Traffic Paths: Precast concrete, AASHTO HB 17, H-20 structural load rating.
 2. Units in Driveway, Parking Lot, and Off-Roadway Locations, Subject to Occasional, Nondeliberate Loading by Heavy Vehicles: Precast concrete, AASHTO HB 17, H-20 structural load rating.
3. Units in Sidewalk and Similar Applications with a Safety Factor for Nondeliberate Loading by Vehicles: Polymer concrete units, SCTE 77, Tier 8 structural load rating.
4. Units Subject to Light-Duty Pedestrian Traffic Only: High-density plastic, structurally tested according to SCTE 77 with 3000-lbf vertical loading.
5. Cover design load shall not exceed the design load of the handhole or box.

B. Manholes: Precast concrete.
1. Units Located in Roadways and Other Deliberate Traffic Paths by Heavy or Medium Vehicles: H-20 structural load rating according to AASHTO HB 17.
2. Units Not Located in Deliberate Traffic Paths by Heavy or Medium Vehicles: H-10 load rating according to AASHTO HB 17.

3.4 EARTHWORK
A. Excavation and Backfill: Comply with Section 312000 "Earth Moving," but do not use heavy-duty, hydraulic-operated, compaction equipment.
B. Restore surface features at areas disturbed by excavation, and re-establish original grades unless otherwise indicated. Replace removed sod immediately after backfilling is completed.
C. Restore areas disturbed by trenching, storing of dirt, cable laying, and other work. Restore vegetation and include necessary topsoiling, fertilizing, liming, seeding, sodding, sprigging, and mulching. Comply with Section 329200 "Turf and Grasses" and Section 329300 "Plants."
D. Cut and patch existing pavement in the path of underground ducts and utility structures according to the "Cutting and Patching" Article in Section 017300 "Execution."

3.5 DUCT INSTALLATION
A. Install ducts according to NEMA TCB 2.
B. Slope: Pitch ducts a minimum slope of 1:300 down toward manholes and handholes and away from buildings and equipment. Slope ducts from a high point in runs between two manholes, to drain in both directions.
C. Curves and Bends: Use 5-degree angle couplings for small changes in direction. Use manufactured long sweep bends with a minimum radius of 48 inches, both horizontally and vertically, at other locations unless otherwise indicated.
D. Joints: Use solvent-cemented joints in ducts and fittings and make watertight according to manufacturer's written instructions. Stagger couplings so those of adjacent ducts do not lie in same plane.
E. Installation Adjacent to High-Temperature Steam Lines: Where duct banks are installed parallel to underground steam lines, perform calculations showing the duct bank will not be subject to environmental temperatures above 40 deg C. Where environmental temperatures are calculated to rise above 40 deg C, and anywhere the duct bank crosses above an underground steam line, install insulation blankets listed for direct burial to isolate the duct bank from the steam line.
F. Duct Entrances to Manholes and Concrete and Polymer Concrete Handholes: Use end bells, spaced approximately 10 inches o.c. for 5-inch ducts, and vary proportionately for other duct sizes.
 1. Begin change from regular spacing to end-bell spacing 10 feet from the end bell without reducing duct line slope and without forming a trap in the line.
 2. Direct-Buried Duct Banks: Install an expansion and deflection fitting in each conduit in the area of disturbed earth adjacent to manhole or handhole. Install an expansion fitting near the center of all straight line direct-buried duct banks with calculated expansion of more than 3/4 inch.
 3. Grout end bells into structure walls from both sides to provide watertight entrances.

G. Building Wall Penetrations: Make a transition from underground duct to rigid steel conduit at least 10 feet outside the building wall, without reducing duct line slope away from the building, and without forming a trap in the line. Use fittings manufactured for duct-to-conduit transition. Install conduit penetrations of building walls as specified in Section 260544 "Sleeves and Sleeve Seals for Electrical Raceways and Cabling."

H. Sealing: Provide temporary closure at terminations of ducts that have cables pulled. Seal spare ducts at terminations. Use sealing compound and plugs to withstand at least 15-psig hydrostatic pressure.

I. Pulling Cord: Install 100-lbf-test nylon cord in empty ducts.

J. Concrete-Encased Ducts: Support ducts on duct separators.
 1. Excavate trench bottom to provide firm and uniform support for duct bank. Prepare trench bottoms as specified in Section 312000 "Earth Moving" for pipes less than 6 inches in nominal diameter.
 2. Width: Excavate trench 12 inches wider than duct bank on each side.
 3. Width: Excavate trench 3 inches wider than duct bank on each side.
 4. Depth: Install top of duct bank at least 24 inches below finished grade in areas not subject to deliberate traffic, and at least 30 inches below finished grade in deliberate traffic paths for vehicles unless otherwise indicated.
 5. Support ducts on duct separators coordinated with duct size, duct spacing, and outdoor temperature.
 6. Separator Installation: Space separators close enough to prevent sagging and deforming of ducts, with not less than four spacers per 20 feet of duct. Secure separators to earth and to ducts to prevent floating during concreting. Stagger separators approximately 6 inches between tiers. Tie entire assembly together using fabric straps; do not use tie wires or reinforcing steel that may form conductive or magnetic loops around ducts or duct groups.
 7. Minimum Space between Ducts: 3 inches between ducts and exterior envelope wall, 2 inches between ducts for like services, and 4 inches between power and signal ducts.
 8. Elbows: Use manufactured duct elbows for stub-ups at poles and equipment, at building entrances through floor, and at changes of direction in duct run unless otherwise indicated. Extend concrete encasement throughout length of elbow.
 9. Elbows: Use manufactured rigid steel conduit elbows for stub-ups at poles and equipment, at building entrances through floor, and at changes of direction in duct run.
 a. Couple steel conduits to ducts with adapters designed for this purpose, and encase coupling with 3 inches of concrete.
b. **Stub-Ups to Equipment:** For equipment mounted on outdoor concrete bases, extend steel conduit horizontally a minimum of 60 inches from edge of base. Install insulated grounding bushings on terminations at equipment.

10. **Reinforcement:** Reinforce concrete-encased duct banks where they cross disturbed earth and where indicated. Arrange reinforcing rods and ties without forming conductive or magnetic loops around ducts or duct groups.

11. **Forms:** Use walls of trench to form side walls of duct bank where soil is self-supporting and concrete envelope can be poured without soil inclusions; otherwise, use forms.

12. **Concrete Cover:** Install a minimum of 3 inches of concrete cover at top and bottom, and a minimum of 2 inches on each side of duct bank.

13. **Concreting Sequence:** Pour each run of envelope between manholes or other terminations in one continuous operation.
 a. Start at one end and finish at the other, allowing for expansion and contraction of ducts as their temperature changes during and after the pour. Use expansion fittings installed according to manufacturer's written recommendations, or use other specific measures to prevent expansion-contraction damage.
 b. If more than one pour is necessary, terminate each pour in a vertical plane and install 3/4-inch reinforcing-rod dowels extending a minimum of 18 inches into concrete on both sides of joint near corners of envelope.

14. **Pouring Concrete:** Comply with requirements in "Concrete Placement" Article in Section 033000 "Cast-in-Place Concrete." Place concrete carefully during pours to prevent voids under and between conduits and at exterior surface of envelope. Do not allow a heavy mass of concrete to fall directly onto ducts. Allow concrete to flow to center of bank and rise up in middle, uniformly filling all open spaces. Do not use power-driven agitating equipment unless specifically designed for duct-bank application.

K. Direct-Buried Duct Banks:

1. Excavate trench bottom to provide firm and uniform support for duct bank. Comply with requirements in Section 312000 "Earth Moving" for preparation of trench bottoms for pipes less than 6 inches in nominal diameter.

2. Support ducts on duct separators coordinated with duct size, duct spacing, and outdoor temperature.

3. Space separators close enough to prevent sagging and deforming of ducts, with not less than four spacers per 20 feet of duct. Secure separators to earth and to ducts to prevent displacement during backfill and yet permit linear duct movement due to expansion and contraction as temperature changes. Stagger spacers approximately 6 inches between tiers.

4. **Depth:** Install top of duct bank at least 36 inches below finished grade unless otherwise indicated.

5. **Set elevation of bottom of duct bank below frost line.**

6. **Install ducts with a minimum of 3 inches between ducts for like services and 6 inches between power and signal ducts.**

7. **Elbows:** Install manufactured duct elbows for stub-ups at poles and equipment, at building entrances through floor, and at changes of direction in duct run unless otherwise indicated. Encase elbows for stub-up ducts throughout length of elbow.

8. **Install manufactured rigid steel conduit elbows for stub-ups at poles and equipment, at building entrances through floor, and at changes of direction in duct run.**
 a. Couple steel conduits to ducts with adapters designed for this purpose, and encase coupling with 3 inches of concrete.
b. For equipment mounted on outdoor concrete bases, extend steel conduit horizontally a minimum of 60 inches from edge of equipment pad or foundation. Install insulated grounding bushings on terminations at equipment.

9. After installing first tier of ducts, backfill and compact. Start at tie-in point and work toward end of duct run, leaving ducts at end of run free to move with expansion and contraction as temperature changes during this process. Repeat procedure after placing each tier. After placing last tier, hand place backfill to 4 inches over ducts and hand tamp. Firmly tamp backfill around ducts to provide maximum supporting strength. Use hand tamper only. After placing controlled backfill over final tier, make final duct connections at end of run and complete backfilling with normal compaction. Comply with requirements in Section 312000 "Earth Moving" for installation of backfill materials.

a. Place minimum 3 inches of sand as a bed for duct bank. Place sand to a minimum of 6 inches above top level of duct bank.

b. Place minimum 6 inches of engineered fill above concrete encasement of duct bank.

L. Warning Planks: Bury warning planks approximately 12 inches above direct-buried ducts and duct banks, placing them 24 inches o.c. Align planks along the width and along the centerline of duct bank. Provide an additional plank for each 12-inch increment of duct-bank width over a nominal 18 inches. Space additional planks 12 inches apart, horizontally.

M. Warning Tape: Bury warning tape approximately 12 inches above all concrete-encased ducts and duct banks. Align tape parallel to and within 3 inches of centerline of duct bank. Provide an additional warning tape for each 12-inch increment of duct-bank width over a nominal 18 inches. Space additional tapes 12 inches apart, horizontally.

3.6 INSTALLATION OF CONCRETE MANHOLEs, HANDHOLEs, AND BOXES

A. Cast-in-Place Manhole Installation:
 1. Finish interior surfaces with a smooth-troweled finish.
 2. Windows for Future Duct Connections: Form and pour concrete knockout panels 1-1/2 to 2 inches thick, arranged as indicated.
 3. Comply with requirements in Section 033000 "Cast-in-Place Concrete" for cast-in-place concrete, formwork, and reinforcement.

B. Precast Concrete Handhole and Manhole Installation:
 1. Comply with ASTM C 891 unless otherwise indicated.
 2. Install units level and plumb and with orientation and depth coordinated with connecting ducts, to minimize bends and deflections required for proper entrances.
 3. Unless otherwise indicated, support units on a level bed of crushed stone or gravel, graded from 1-inch sieve to No. 4 sieve and compacted to same density as adjacent undisturbed earth.

C. Elevations:
 1. Manhole Roof: Install with rooftop at least 15 inches below finished grade.
 2. Manhole Frame: In paved areas and trafficways, set frames flush with finished grade. Set other manhole frames 1 inch above finished grade.
 3. Install handholes with bottom below frost line.
 4. Handhole Covers: In paved areas and trafficways, set surface flush with finished grade. Set covers of other handholes 1 inch above finished grade.
Where indicated, cast handhole cover frame integrally with handhole structure.

D. Drainage: Install drains in bottom of manholes where indicated. Coordinate with drainage provisions indicated.

E. Manhole Access: Circular opening in manhole roof; sized to match cover size.
 1. Manholes with Fixed Ladders: Offset access opening from manhole centerlines to align with ladder.
 2. Install chimney, constructed of precast concrete collars and rings, to support cast-iron frame to connect cover with manhole roof opening. Provide moisture-tight masonry joints and waterproof grouting for frame to chimney.

F. Waterproofing: Apply waterproofing to exterior surfaces of manholes after concrete has cured at least three days. Waterproofing materials and installation are specified in waterproofing section. After ducts have been connected and grouted, and before backfilling, waterproof joints and connections, and touch up abrasions and scars. Waterproof exterior of manhole chimneys after mortar has cured at least three days.

G. Hardware: Install removable hardware, including pulling eyes, cable stanchions, and cable arms, and insulators, as required for installation and support of cables and conductors and as indicated.

H. Fixed Manhole Ladders: Arrange to provide for safe entry with maximum clearance from cables and other items in manholes.

I. Field-Installed Bolting Anchors in Manholes and Concrete Handholes: Do not drill deeper than 3-7/8 inches for manholes and 2 inches for handholes, for anchor bolts installed in the field. Use a minimum of two anchors for each cable stanchion.

3.7 INSTALLATION OF HANDHOLES AND BOXES OTHER THAN PRECAST CONCRETE

A. Install handholes and boxes level and plumb and with orientation and depth coordinated with connecting ducts, to minimize bends and deflections required for proper entrances. Use box extension if required to match depths of ducts, and seal joint between box and extension as recommended by manufacturer.

B. Unless otherwise indicated, support units on a level bed of crushed stone or gravel, graded from 1/2-inch sieve to No. 4 sieve and compacted to same density as adjacent undisturbed earth.

C. Elevation: In paved areas and trafficways, set cover flush with finished grade. Set covers of other handholes 1 inch above finished grade.

D. Install handholes and boxes with bottom below frost line, below grade.

E. Install removable hardware, including pulling eyes, cable stanchions, cable arms, and insulators, as required for installation and support of cables and conductors and as indicated. Select arm lengths to be long enough to provide spare space for future cables, but short enough to preserve adequate working clearances in enclosure.
F. Field cut openings for ducts and conduits according to enclosure manufacturer's written instructions. Cut wall of enclosure with a tool designed for material to be cut. Size holes for terminating fittings to be used, and seal around penetrations after fittings are installed.

G. For enclosures installed in asphalt paving and subject to occasional, nondeliberate, heavy-vehicle loading, form and pour a concrete ring encircling, and in contact with, enclosure and with top surface screeded to top of box cover frame. Bottom of ring shall rest on compacted earth.
 1. Concrete: 3000 psi, 28-day strength, complying with Section 033000 "Cast-in-Place Concrete," with a troweled finish.
 2. Dimensions: 10 inches wide by 12 inches deep.

3.8 GROUNDING

A. Ground underground ducts and utility structures according to Section 260526 "Grounding and Bonding for Electrical Systems."

3.9 FIELD QUALITY CONTROL

A. Perform the following tests and inspections and prepare test reports:
 1. Demonstrate capability and compliance with requirements on completion of installation of underground ducts and utility structures.
 2. Pull solid aluminum or wood test mandrel through duct to prove joint integrity and adequate bend radii, and test for out-of-round duct. Provide a minimum 6-inch-long mandrel equal to 80 percent fill of duct. If obstructions are indicated, remove obstructions and retest.
 3. Test manhole grounding to ensure electrical continuity of grounding and bonding connections. Measure and report ground resistance as specified in Section 260526 "Grounding and Bonding for Electrical Systems."

B. Correct deficiencies and retest as specified above to demonstrate compliance.

3.10 CLEANING

A. Pull leather-washer-type duct cleaner, with graduated washer sizes, through full length of ducts. Follow with rubber duct swab for final cleaning and to assist in spreading lubricant throughout ducts.

B. Clean internal surfaces of manholes, including sump. Remove foreign material.

END OF SECTION 260543
SECTION 260544

SLEEVES AND SLEEVE SEALS FOR ELECTRICAL RACEWAYS AND CABLELING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:
1. Sleeves for raceway and cable penetration of non-fire-rated construction walls and floors.
2. Sleeve-seal systems.
5. Silicone sealants.

B. Related Requirements:
1. Section 078413 "Penetration Firestopping" for penetration firestopping installed in fire-resistance-rated walls, horizontal assemblies, and smoke barriers, with and without penetrating items.

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product.

PART 2 - PRODUCTS

2.1 SLEEVES

A. Wall Sleeves:
2. Cast-Iron Pipe Sleeves: Cast or fabricated "wall pipe," equivalent to ductile-iron pressure pipe, with plain ends and integral waterstop unless otherwise indicated.

B. Sleeves for Conduits Penetrating Non-Fire-Rated Gypsum Board Assemblies: Galvanized-steel sheet; 0.0239-inch minimum thickness; round tube closed with welded longitudinal joint, with tabs for screw-fastening the sleeve to the board.

C. PVC-Pipe Sleeves: ASTM D 1785, Schedule 40.
D. Molded-PVC Sleeves: With nailing flange for attaching to wooden forms.

E. Molded-PE or -PP Sleeves: Removable, tapered-cup shaped, and smooth outer surface with nailing flange for attaching to wooden forms.

F. Sleeves for Rectangular Openings:
 2. Minimum Metal Thickness:
 a. For sleeve cross-section rectangle perimeter less than 50 inches and with no side larger than 16 inches, thickness shall be 0.052 inch.
 b. For sleeve cross-section rectangle perimeter 50 inches or more and one or more sides larger than 16 inches, thickness shall be 0.138 inch.

2.2 SLEEVE-SEAL SYSTEMS

A. Description: Modular sealing device, designed for field assembly, to fill annular space between sleeve and raceway or cable.
 1. Sealing Elements: EPDM rubber interlocking links shaped to fit surface of pipe. Include type and number required for pipe material and size of pipe.
 2. Pressure Plates: Carbon steel.
 3. Connecting Bolts and Nuts: Carbon steel, with corrosion-resistant coating, of length required to secure pressure plates to sealing elements.

2.3 SLEEVE-SEAL FITTINGS

A. Description: Manufactured plastic, sleeve-type, waterstop assembly made for embedding in concrete slab or wall. Unit shall have plastic or rubber waterstop collar with center opening to match piping OD.

2.4 GROUT

A. Description: Nonshrink; recommended for interior and exterior sealing openings in non-fire-rated walls or floors.

C. Design Mix: 5000-psi, 28-day compressive strength.

D. Packaging: Premixed and factory packaged.

2.5 SILICONE SEALANTS

A. Silicone Sealants: Single-component, silicone-based, neutral-curing elastomeric sealants of grade indicated below.
 1. Grade: Pourable (self-leveling) formulation for openings in floors and other horizontal surfaces that are not fire rated.
B. Silicone Foams: Multicomponent, silicone-based liquid elastomers that, when mixed, expand and cure in place to produce a flexible, nonshrinking foam.

PART 3 - EXECUTION

3.1 SLEEVE INSTALLATION FOR NON-FIRE-RATED ELECTRICAL PENETRATIONS

A. Comply with NECA 1.

B. Comply with NEMA VE 2 for cable tray and cable penetrations.

C. Sleeves for Conduits Penetrating Above-Grade Non-Fire-Rated Concrete and Masonry-Unit Floors and Walls:
 1. Interior Penetrations of Non-Fire-Rated Walls and Floors:
 a. Seal annular space between sleeve and raceway or cable, using joint sealant appropriate for size, depth, and location of joint. Comply with requirements in Section 079200 "Joint Sealants."
 b. Seal space outside of sleeves with mortar or grout. Pack sealing material solidly between sleeve and wall so no voids remain. Tool exposed surfaces smooth; protect material while curing.
 2. Use pipe sleeves unless penetration arrangement requires rectangular sleeved opening.
 3. Size pipe sleeves to provide 1/4-inch annular clear space between sleeve and raceway or cable unless sleeve seal is to be installed.
 4. Install sleeves for wall penetrations unless core-drilled holes or formed openings are used. Install sleeves during erection of walls. Cut sleeves to length for mounting flush with both surfaces of walls. Deburr after cutting.

D. Sleeves for Conduits Penetrating Non-Fire-Rated Gypsum Board Assemblies:
 1. Use circular metal sleeves unless penetration arrangement requires rectangular sleeved opening.
 2. Seal space outside of sleeves with approved joint compound for gypsum board assemblies.

E. Roof-Penetration Sleeves: Seal penetration of individual raceways and cables with flexible boot-type flashing units applied in coordination with roofing work.

END OF SECTION 260544
This page intentionally left blank
SECTION 260553
IDENTIFICATION FOR ELECTRICAL SYSTEMS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:
 1. Identification for raceways.
 2. Identification of power and control cables.
 3. Identification for conductors.
 5. Warning labels and signs.
 6. Instruction signs.
 7. Equipment identification labels, including arc-flash warning labels.
 8. Miscellaneous identification products.

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product.
 1. Include construction details, material descriptions, dimensions of individual components and profiles, and finishes for electrical identification products.

B. Samples: For each type of label and sign to illustrate composition, size, colors, lettering style, mounting provisions, and graphic features of identification products.

C. Identification Schedule: For each piece of electrical equipment and electrical system components to be an index of nomenclature for electrical equipment and system components used in identification signs and labels. Use same designations indicated on Drawings.

D. Delegated-Design Submittal: For arc-flash hazard study.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

A. Comply with ASME A13.1.
B. Comply with NFPA 70.

D. Comply with ANSI Z535.4 for safety signs and labels.

E. Adhesive-attached labeling materials, including label stocks, laminating adhesives, and inks used by label printers, shall comply with UL 969.

F. Thermal Movements: Allow for thermal movements from ambient and surface temperature changes.

 1. Temperature Change: 120 deg F, ambient; 180 deg F, material surfaces.

2.2 COLOR AND LEGEND REQUIREMENTS

A. Raceways and Cables Carrying Circuits at 600 V or Less:

 1. Black letters on an orange field.
 2. Legend: Indicate voltage.

B. Raceways and Cables Carrying Circuits at More Than 600 V:

 1. Black letters on an orange field.
 2. Legend: "DANGER - CONCEALED HIGH VOLTAGE WIRING."

2.3 LABELS

A. Self-Adhesive Labels:

 1. Preprinted, 3-mil-thick, polyester flexible label with acrylic pressure-sensitive adhesive.

 a. Self-Lamination: Clear; UV-, weather- and chemical-resistant; self-laminating, protective shield over the legend. Labels sized to fit the raceway diameter, such that the clear shield overlaps the entire printed legend.

 2. Polyester, thermal, transfer-printed, 3-mil-thick, multicolor, weather- and UV-resistant, pressure-sensitive adhesive labels, configured for display on front cover, door, or other access to equipment unless otherwise indicated.

 a. Nominal Size: 3.5-by-5-inch.

 3. Marker for Tags: Permanent, waterproof, black ink marker recommended by tag manufacturer.

 4. Marker for Tags: Machine-printed, permanent, waterproof, black ink recommended by printer manufacturer.
2.4 BANDS AND TUBES:

A. Snap-Around, Color-Coding Bands for Raceways and Cables: Slit, pretensioned, flexible, solid-colored acrylic sleeves, 2 inches long, with diameters sized to suit diameters of raceways or cables they identify, and that stay in place by gripping action.

B. Heat-Shrink Preprinted Tubes: Flame-retardant polyolefin tubes with machine-printed identification labels, sized to suit diameters of and shrunk to fit firmly around cables they identify. Full shrink recovery occurs at a maximum of 200 deg F. Comply with UL 224.

2.5 TAPES AND STENCILS:

A. Underground-Line Warning Tape
 1. Tape:
 a. Recommended by manufacturer for the method of installation and suitable to identify and locate underground electrical utility lines.
 b. Printing on tape shall be permanent and shall not be damaged by burial operations.
 c. Tape material and ink shall be chemically inert and not subject to degradation when exposed to acids, alkalis, and other destructive substances commonly found in soils.
 2. Color and Printing:
 b. Inscriptions for Red-Colored Tapes: "ELECTRIC LINE, HIGH VOLTAGE".
 c. Inscriptions for Orange-Colored Tapes: "TELEPHONE CABLE, CATV CABLE, COMMUNICATIONS CABLE, OPTICAL FIBER CABLE".

2.6 Tags

A. Metal Tags: Brass or aluminum, 2 by 2 by 0.05 inch, with stamped legend, punched for use with self-locking cable tie fastener.

B. Nonmetallic Preprinted Tags: Polyethylene tags, 0.015 inch thick, color-coded for phase and voltage level, with factory screened permanent designations; punched for use with self-locking cable tie fastener.

C. Write-On Tags:
 1. Polyester Tags: 0.010 inch thick, with corrosion-resistant grommet and cable tie for attachment to raceway, conductor, or cable.
 2. Marker for Tags: Permanent, waterproof, black ink marker recommended by tag manufacturer.
 3. Marker for Tags: Machine-printed, permanent, waterproof, black ink marker recommended by printer manufacturer.
2.7 Signs

A. Baked-Enamel Signs:
 1. Preprinted aluminum signs, punched or drilled for fasteners, with colors, legend, and size required for application.
 2. 1/4-inch grommets in corners for mounting.

B. Metal-Backed Butyrate Signs:
 1. Weather-resistant, nonfading, preprinted, cellulose-acetate butyrate signs, with 0.0396-inch galvanized-steel backing and with colors, legend, and size required for application.
 2. 1/4-inch grommets in corners for mounting.
 3. Nominal Size: 10 by 14 inches.

C. Laminated Acrylic or Melamine Plastic Signs:
 1. Engraved legend.
 2. Thickness:
 a. For signs up to 20 sq. inches, minimum 1/16-inch.
 b. For signs larger than 20 sq. inches, 1/8 inch thick.
 c. Engraved legend with black letters on white face.
 d. Self-adhesive.
 e. Framed with mitered acrylic molding and arranged for attachment at applicable equipment.

2.8 CABLE TIES

A. General-Purpose Cable Ties: Fungus inert, self-extinguishing, one piece, self-locking, Type 6/6 nylon.
 2. Tensile Strength at 73 deg F according to ASTM D 638: 12,000 psi.
 3. Temperature Range: Minus 40 to plus 185 deg F.

B. UV-Stabilized Cable Ties: Fungus inert, designed for continuous exposure to exterior sunlight, self-extinguishing, one piece, self-locking, Type 6/6 nylon.
 2. Tensile Strength at 73 deg F according to ASTM D 638: 12,000 psi.
 3. Temperature Range: Minus 40 to plus 185 deg F.

C. Plenum-Rated Cable Ties: Self-extinguishing, UV stabilized, one piece, self-locking.
 2. Tensile Strength at 73 deg F according to ASTM D 638: 7000 psi.
3. UL 94 Flame Rating: 94V-0.
4. Temperature Range: Minus 50 to plus 284 deg F.
5. Color: Black.

2.9 MISCELLANEOUS IDENTIFICATION PRODUCTS

A. Paint: Comply with requirements in painting Sections for paint materials and application requirements. Retain paint system applicable for surface material and location (exterior or interior).

B. Fasteners for Labels and Signs: Self-tapping, stainless-steel screws or stainless-steel machine screws with nuts and flat and lock washers.

PART 3 - EXECUTION

3.1 PREPARATION

A. Self-Adhesive Identification Products: Before applying electrical identification products, clean substrates of substances that could impair bond, using materials and methods recommended by manufacturer of identification product.

3.2 INSTALLATION

A. Verify and coordinate identification names, abbreviations, colors, and other features with requirements in other Sections requiring identification applications, Drawings, Shop Drawings, manufacturer's wiring diagrams, and operation and maintenance manual. Use consistent designations throughout Project.

B. Install identifying devices before installing acoustical ceilings and similar concealment.

C. Verify identity of each item before installing identification products.

D. Install identification materials and devices at locations for most convenient viewing without interference with operation and maintenance of equipment. Install access doors or panels to provide view of identifying devices.

E. Apply identification devices to surfaces that require finish after completing finish work.

F. Attach signs and plastic labels that are not self-adhesive type with mechanical fasteners appropriate to the location and substrate.

G. Attach plastic raceway and cable labels that are not self-adhesive type with clear vinyl tape, with adhesive appropriate to the location and substrate.

H. Cable Ties: For attaching tags. Use general-purpose type, except as listed below:

1. Outdoors: UV-stabilized nylon.
2. In Spaces Handling Environmental Air: Plenum rated.
I. Painted Identification: Comply with requirements in painting Sections for surface preparation and paint application.

J. Aluminum Wraparound Marker Labels and Metal Tags: Secure tight to surface of conductor or cable at a location with high visibility and accessibility.

K. System Identification Color-Coding Bands for Raceways and Cables: Each color-coding band shall completely encircle cable or conduit. Place adjacent bands of two-color markings in contact, side by side. Locate bands at changes in direction, at penetrations of walls and floors, at 50-foot maximum intervals in straight runs, and at 25-foot maximum intervals in congested areas.

L. During backfilling of trenches, install continuous underground-line warning tape directly above cable or raceway at 6 to 8 inches below finished grade. Use multiple tapes where width of multiple lines installed in a common trench exceeds 16 inches overall.

3.3 IDENTIFICATION SCHEDULE

A. Concealed Raceways, Duct Banks, More Than 600 V, within Buildings: Tape and stencil 4-inch-wide black stripes on 10-inch centers over orange background that extends full length of raceway or duct and is 12 inches wide. Stencil legend "DANGER CONCEALED HIGH VOLTAGE WIRING" with 3-inch-high black letters on 20-inch centers. Stop stripes at legends. Apply stripes to the following finished surfaces:

1. Floor surface directly above conduits running beneath and within 12 inches of a floor that is in contact with earth or is framed above unexcavated space.
2. Wall surfaces directly external to raceways concealed within wall.
3. Accessible surfaces of concrete envelope around raceways in vertical shafts, exposed in the building, or concealed above suspended ceilings.

B. Power-Circuit Conductor Identification, 600 V or Less: For conductors in vaults, pull and junction boxes, manholes, and handholes, use color-coding conductor tape to identify the phase.

1. Color-Coding for Phase- Identification, 600 V or Less: Use colors listed below for ungrounded service feeder and branch-circuit conductors.

 a. Color shall be factory applied or field applied for sizes larger than No. 8 AWG if authorities having jurisdiction permit.

 b. In existing buildings, contractor shall match color existing color codes for each phase.

 c. Colors for 208/120-V Circuits:

 1) Phase A: Black.
 2) Phase B: Red.
 3) Phase C: Blue.

 d. Colors for 480/277-V Circuits:
1) Phase A: Brown.
2) Phase B: Orange.
3) Phase C: Yellow.

e. Field-Applied, Color-Coding Conductor Tape: Apply in half-lapped turns for a minimum distance of 6 inches from terminal points and in boxes where splices or taps are made. Apply last two turns of tape with no tension to prevent possible unwinding. Locate bands to avoid obscuring factory cable markings.

C. Power-Circuit Conductor Identification, More Than 600 V: For conductors in vaults, pull and junction boxes, manholes, and handholes, use nonmetallic preprinted tags colored and marked to indicate phase, and a separate tag with the circuit designation.

D. Install instructional sign, including the color code for grounded and ungrounded conductors using adhesive-film-type labels.

1. Identify conductors, cables, and terminals in enclosures and at junctions, terminals, and pull points. Identify by system and circuit designation.
2. Use system of marker-tape designations that is uniform and consistent with system used by manufacturer for factory-installed connections.
3. Coordinate identification with Project Drawings, manufacturer's wiring diagrams, and operation and maintenance manual.

F. Locations of Underground Lines: Identify with underground-line warning tape for power, lighting, communication, and control wiring and optical-fiber cable.

1. Limit use of underground-line warning tape to direct-buried cables.
2. Install underground-line warning tape for direct-buried cables and cables in raceways.

G. Workspace Indication: Install floor marking tape to show working clearances in the direction of access to live parts. Workspace shall comply with NFPA 70 and 29 CFR 1926.403 unless otherwise indicated. Do not install at flush-mounted panelboards and similar equipment in finished spaces.

H. Warning Labels for Indoor Cabinets, Boxes, and Enclosures for Power and Lighting: Self-adhesive warning labels.

2. Identify system voltage with black letters on an orange background.
3. Apply to exterior of door, cover, or other access.
4. For equipment with multiple power or control sources, apply to door or cover of equipment, including, but not limited to, the following:
 a. Power-transfer switches.
 b. Controls with external control power connections.

I. Arc Flash Warning Labeling: Self-adhesive thermal transfer vinyl labels.
2. Comply with Section 260574 "Overcurrent Protective Device Arc-Flash Study" requirements for arc-flash warning labels.

J. Operating Instruction Signs: Install instruction signs to facilitate proper operation and maintenance of electrical systems and items to which they connect. Install instruction signs with approved legend where instructions are needed for system or equipment operation.

K. Equipment Identification Labels: On each unit of equipment, install unique designation label that is consistent with wiring diagrams, schedules, and operation and maintenance manual. Apply labels to disconnect switches and protection equipment, central or master units, control panels, control stations, terminal cabinets, and racks of each system. Systems include power, lighting, control, communication, signal, monitoring, and alarm unless equipment is provided with its own identification.

1. Labeling Instructions:
 a. Indoor Equipment: Self-adhesive, engraved, laminated acrylic or melamine plastic label. Unless otherwise indicated, provide a single line of text with 1/2-inch-high letters on 1-1/2-inch-high label; where two lines of text are required, use labels 2 inches high.
 b. Outdoor Equipment: Engraved, laminated acrylic or melamine label.
 c. Elevated Components: Increase sizes of labels and letters to those appropriate for viewing from the floor.
 d. Unless labels are provided with self-adhesive means of attachment, fasten them with appropriate mechanical fasteners that do not change the NEMA or NRTL rating of the enclosure.

2. Equipment To Be Labeled:
 a. Panelboards: Typewritten directory of circuits in the location provided by panelboard manufacturer. Panelboard identification shall be in the form of a self-adhesive, engraved, laminated acrylic or melamine label.
 b. Enclosures and electrical cabinets.
 c. Access doors and panels for concealed electrical items.
 d. Switchgear.
 e. Switchboards.
 f. Transformers: Label that includes tag designation shown on Drawings for the transformer, feeder, and panelboards or equipment supplied by the secondary.
 g. Substations.
 h. Emergency system boxes and enclosures.
 i. Motor-control centers.
 j. Enclosed switches.
 k. Enclosed circuit breakers.
 l. Enclosed controllers.
 m. Variable-speed controllers.
 n. Power-transfer equipment.
 o. Contactors.
 q. Battery-inverter units.
 r. Battery racks.
s. Monitoring and control equipment.
t. UPS equipment.

END OF SECTION 260553
SECTION 262200
LOW-VOLTAGE TRANSFORMERS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
A. Section Includes: Distribution, dry-type transformers rated 600 V and less, with capacities up to 1500 kVA.

1.3 ACTION SUBMITTALS
A. Product Data: For each type of product.
 1. Include construction details, material descriptions, dimensions of individual components and profiles, and finishes for each type and size of transformer.
 2. Include rated nameplate data, capacities, weights, dimensions, minimum clearances, installed devices and features, and performance for each type and size of transformer.

B. Shop Drawings:
 1. Detail equipment assemblies and indicate dimensions, weights, loads, required clearances, method of field assembly, components, and location and size of each field connection.
 2. Vibration Isolation Base Details: Detail fabrication including anchorages and attachments to structure and to supported equipment.
 3. Include diagrams for power, signal, and control wiring.

1.4 INFORMATIONAL SUBMITTALS
A. Seismic Qualification Certificates: For transformers, accessories, and components, from manufacturer.
 1. Basis for Certification: Indicate whether withstand certification is based on actual test of assembled components or on calculation.
 2. Dimensioned Outline Drawings of Equipment Unit: Identify center of gravity and locate and describe mounting and anchorage provisions.
 3. Detailed description of equipment anchorage devices on which the certification is based and their installation requirements.

B. Qualification Data: For testing agency.

C. Source quality-control reports.
D. Field quality-control reports.

1.5 CLOSEOUT SUBMITTALS
A. Operation and Maintenance Data: For transformers to include in emergency, operation, and maintenance manuals.

1.6 QUALITY ASSURANCE
A. Testing Agency Qualifications: Accredited by NETA.
 1. Testing Agency's Field Supervisor: Certified by NETA to supervise on-site testing.

1.7 DELIVERY, STORAGE, AND HANDLING
A. Temporary Heating: Apply temporary heat according to manufacturer's written instructions within the enclosure of each ventilated-type unit, throughout periods during which equipment is not energized and when transformer is not in a space that is continuously under normal control of temperature and humidity.

PART 2 - PRODUCTS

2.1 MANUFACTURERS
A. Source Limitations: Obtain each transformer type from single source from single manufacturer.

2.2 GENERAL TRANSFORMER REQUIREMENTS
A. Description: Factory-assembled and -tested, air-cooled units for 60-Hz service.
B. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
C. Transformers Rated 15 kVA and Larger: Comply with NEMA TP 1 energy-efficiency levels as verified by testing according to NEMA TP 2.
D. Cores: Electrical grade, non-aging silicon steel with high permeability and low hysteresis losses.
E. Coils: Continuous windings without splices except for taps.
 1. Internal Coil Connections: Brazed or pressure type.
 2. Coil Material: Copper.
F. Encapsulation: Transformers smaller than 30 kVA shall have core and coils completely resin encapsulated.
G. Shipping Restraints: Paint or otherwise color code bolts, wedges, blocks, and other restraints that are to be removed after installation and before energizing. Use fluorescent colors that are easily identifiable inside the transformer enclosure.

2.3 DISTRIBUTION TRANSFORMERS

A. Comply with NFPA 70, and list and label as complying with UL 1561.

B. Cores: One leg per phase.

C. Enclosure: Ventilated.
1. NEMA 250: Core and coil shall be encapsulated within resin compound to seal out moisture and air.
2. Provide NEMA 3R enclosure for transformers located outdoors or in wet locations.
3. KVA Ratings: Based on convection cooling only and not relying on auxiliary fans.

D. Transformer Enclosure Finish: Comply with NEMA 250.
1. Finish Color: Gray.

E. Taps for Transformers 3 kVA and Smaller: None.

F. Taps for Transformers 7.5 to 24 kVA: Two 5 percent taps below rated voltage.

G. Taps for Transformers 25 kVA and Larger: Two 2.5 percent taps above and two 2.5 percent taps below normal full capacity.

H. Insulation Class, Smaller than 30 kVA: 185 deg C, UL-component-recognized insulation system with a maximum of 115-deg C rise above 40-deg C ambient temperature.

I. Insulation Class, 30 kVA and Larger: 220 deg C, UL-component-recognized insulation system with a maximum of 150-deg C rise above 40-deg C ambient temperature.

J. K-Factor Rating: Transformers indicated to be K-factor rated shall comply with UL 1561 requirements for nonsinusoidal load current-handling capability to the degree defined by designated K-factor.
1. Unit shall not overheat when carrying full-load current with harmonic distortion corresponding to designated K-factor.
2. Indicate value of K-factor on transformer nameplate.
3. Unit shall meet requirements of NEMA TP 1 when tested according to NEMA TP 2 with a K-factor equal to one.

K. Electrostatic Shielding: Each winding shall have an independent, single, full-width copper electrostatic shield arranged to minimize interwinding capacitance.
1. Arrange coil leads and terminal strips to minimize capacitive coupling between input and output terminals.
2. Include special terminal for grounding the shield.

L. Neutral: Rated 200 percent of full load current for K-factor rated transformers.
M. Low-Sound-Level Requirements: Maximum sound levels when factory tested according to IEEE C57.12.91, as follows:
1. 9 kVA and Less: 40dBA
2. 30 to 50 kVA: 45 dBA
3. 51 to 150 kVA: 50dBA
4. 151 to 300 kVA: 55dBA
5. 301 to 500 kVA: 60dBA
6. 501 to 750 kVA: 62dBA
7. 751 to 1000 kVA: 64dBA
8. 1001 to 1500 kVA: 65dBA

2.4 IDENTIFICATION DEVICES

A. Nameplates: Engraved, laminated-plastic or metal nameplate for each distribution transformer, mounted with corrosion-resistant screws. Nameplates and label products are specified in Section 260553 "Identification for Electrical Systems."

2.5 SOURCE QUALITY CONTROL

A. Test and inspect transformers according to IEEE C57.12.01 and IEEE C57.12.91.
1. Resistance measurements of all windings at the rated voltage connections and at all tap connections.
2. Ratio tests at the rated voltage connections and at all tap connections.
3. Phase relation and polarity tests at the rated voltage connections.
4. No load losses, and excitation current and rated voltage at the rated voltage connections.
5. Impedance and load losses at rated current and rated frequency at the rated voltage connections.
6. Applied and induced tensile tests.
7. Regulation and efficiency at rated load and voltage.
8. Insulation Resistance Tests:
 a. High-voltage to ground.
 b. Low-voltage to ground.
 c. High-voltage to low-voltage.
9. Temperature tests.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine conditions for compliance with enclosure- and ambient-temperature requirements for each transformer.

B. Verify that field measurements are as needed to maintain working clearances required by NFPA 70 and manufacturer's written instructions.

C. Examine walls, floors, roofs, and concrete bases for suitable mounting conditions where transformers will be installed.
D. Verify that ground connections are in place and requirements in Section 260526 "Grounding and Bonding for Electrical Systems" have been met. Maximum ground resistance shall be 5 ohms at location of transformer.

E. Environment: Enclosures shall be rated for the environment in which they are located. Covers for NEMA 250, Type 4X enclosures shall not cause accessibility problems.

F. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION

A. Install wall-mounted transformers level and plumb with wall brackets fabricated by transformer manufacturer.
 1. Coordinate installation of wall-mounted and structure-hanging supports with actual transformer provided.
 2. Brace wall-mounted transformers as specified in Section 260548.16 "Seismic Controls for Electrical Systems."

B. Install transformers level and plumb on a concrete base with vibration-dampening supports. Locate transformers away from corners and not parallel to adjacent wall surface.

C. Construct concrete bases according to Section 033000 "Cast-in-Place Concrete" and anchor floor-mounted transformers according to manufacturer's written instructions and requirements in Section 260529 "Hangers and Supports for Electrical Systems."
 1. Coordinate size and location of concrete bases with actual transformer provided. Cast anchor-bolt inserts into bases. Concrete, reinforcement, and formwork requirements are specified with concrete.

D. Secure transformer to concrete base according to manufacturer's written instructions.

E. Secure covers to enclosure and tighten all bolts to manufacturer-recommended torques to reduce noise generation.

F. Remove shipping bolts, blocking, and wedges.

3.3 CONNECTIONS

A. Ground equipment according to Section 260526 "Grounding and Bonding for Electrical Systems."

B. Connect wiring according to Section 260519 "Low-Voltage Electrical Power Conductors and Cables."

C. Tighten electrical connectors and terminals according to manufacturer's published torque-tightening values. If manufacturer's torque values are not indicated, use those specified in UL 486A-486B.

D. Provide flexible connections at all conduit and conductor terminations and supports to eliminate sound and vibration transmission to the building structure.
3.4 FIELD QUALITY CONTROL

A. Perform tests and inspections as recommended by the manufacturer.

B. Tests and Inspections:
 1. Perform each visual and mechanical inspection and electrical test stated in NETA ATS for dry-type, air-cooled, low-voltage transformers. Certify compliance with test parameters.

C. Remove and replace units that do not pass tests or inspections and retest as specified above.

D. Infrared Scanning: Two months after Substantial Completion, perform an infrared scan of transformer connections.
 1. Use an infrared-scanning device designed to measure temperature or detect significant deviations from normal values. Provide documentation of device calibration.
 2. Perform two follow-up infrared scans of transformers, one at four months and the other at 11 months after Substantial Completion.
 3. Prepare a certified report identifying transformer checked and describing results of scanning. Include notation of deficiencies detected, remedial action taken, and scanning observations after remedial action.

3.5 ADJUSTING

A. Adjust transformer taps to provide optimum voltage conditions at secondary terminals. Optimum is defined as not exceeding nameplate voltage plus 5 percent and not being lower than nameplate voltage minus 3 percent at maximum load conditions. Submit recording and tap settings as test results.

3.6 CLEANING

A. Vacuum dirt and debris; do not use compressed air to assist in cleaning.

END OF SECTION 262200
SECTION 262413
SWITCHBOARDS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:

1. Service and distribution switchboards rated 600 V and less.
2. Surge protection devices.
3. Disconnecting and overcurrent protective devices.
4. Instrumentation.
5. Control power.
6. Accessory components and features.
7. Identification.
8. Mimic bus.

1.3 ACTION SUBMITTALS

A. Product Data: For each switchboard, overcurrent protective device, surge protection device, ground-fault protector, accessory, and component.

1. Include dimensions and manufacturers' technical data on features, performance, electrical characteristics, ratings, accessories, and finishes.

B. Shop Drawings: For each switchboard and related equipment.

1. Include dimensioned plans, elevations, sections, and details, including required clearances and service space around equipment. Show tabulations of installed devices, equipment features, and ratings.
2. Detail enclosure types for types other than NEMA 250, Type 1.
3. Detail bus configuration, current, and voltage ratings.
5. Include descriptive documentation of optional barriers specified for electrical insulation and isolation.
6. Detail utility company's metering provisions with indication of approval by utility company.
7. Include evidence of NRTL listing for series rating of installed devices.
8. Detail features, characteristics, ratings, and factory settings of individual overcurrent protective devices and auxiliary components.
9. Include time-current coordination curves for each type and rating of overcurrent protective device included in switchboards. Submit on translucent log-log graft paper; include selectable ranges for each type of overcurrent protective device.
10. Include diagram and details of proposed mimic bus.
11. Include schematic and wiring diagrams for power, signal, and control wiring.

C. Samples: Representative portion of mimic bus with specified material and finish, for color selection.

1.4 INFORMATIONAL SUBMITTALS

A. Qualification Data: For Installer.
B. Seismic Qualification Certificates: For switchboards, overcurrent protective devices, accessories, and components, from manufacturer.
 1. Basis for Certification: Indicate whether withstand certification is based on actual test of assembled components or on calculation.
 2. Dimensioned Outline Drawings of Equipment Unit: Identify center of gravity and locate and describe mounting and anchorage provisions.
 3. Detailed description of equipment anchorage devices on which the certification is based and their installation requirements.
C. Field Quality-Control Reports:
 1. Test procedures used.
 2. Test results that comply with requirements.
 3. Results of failed tests and corrective action taken to achieve test results that comply with requirements.

1.5 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For switchboards and components to include in emergency, operation, and maintenance manuals.
 1. In addition to items specified in Section 017823 "Operation and Maintenance Data," include the following:
 a. Routine maintenance requirements for switchboards and all installed components.
 b. Manufacturer's written instructions for testing and adjusting overcurrent protective devices.
 c. Time-current coordination curves for each type and rating of overcurrent protective device included in switchboards. Submit on translucent log-log graft paper; include selectable ranges for each type of overcurrent protective device.

1.6 MAINTENANCE MATERIAL SUBMITTALS

A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
1. Potential Transformer Fuses: Equal to 10 percent of quantity installed for each size and type but no fewer than two of each size and type.
2. Control-Power Fuses: Equal to 10 percent of quantity installed for each size and type, but no fewer than two of each size and type.
3. Fuses and Fusible Devices for Fused Circuit Breakers: Equal to 10 percent of quantity installed for each size and type but no fewer than three of each size and type.
4. Fuses for Fused Switches: Equal to 10 percent of quantity installed for each size and type but no fewer than three of each size and type.
5. Fuses for Fused Power-Circuit Devices: Equal to 10 percent of quantity installed for each size and type but no fewer than three of each size and type.
6. Indicating Lights: Equal to 10 percent of quantity installed for each size and type but no less than one of each size and type.

1.7 QUALITY ASSURANCE

A. Installer Qualifications: An employer of workers qualified as defined in NEMA PB 2.1 and trained in electrical safety as required by NFPA 70E.

B. Testing Agency Qualifications: Member company of NETA or an NRTL.

1. Testing Agency's Field Supervisor: Certified by NETA to supervise on-site testing.

1.8 DELIVERY, STORAGE, AND HANDLING

A. Deliver switchboards in sections or lengths that can be moved past obstructions in delivery path.

B. Remove loose packing and flammable materials from inside switchboards and to prevent condensation.

C. Handle and prepare switchboards for installation according to NECA 400.

1.9 FIELD CONDITIONS

A. Installation Pathway: Remove and replace access fencing, doors, lift-out panels, and structures to provide pathway for moving switchboards into place.

B. Environmental Limitations:

1. Do not deliver or install switchboards until spaces are enclosed and weathertight, wet work in spaces is complete and dry, work above switchboards is complete, and HVAC system is operating and maintaining ambient temperature and humidity conditions at occupancy levels during the remainder of the construction period.

2. Rate equipment for continuous operation under the following conditions unless otherwise indicated:

 a. Ambient Temperature: Not exceeding 104 deg F.
 b. Altitude: Not exceeding 6600 feet.

C. Unusual Service Conditions: NEMA PB 2, as follows:
1. Ambient temperatures within limits specified.
2. Altitude not exceeding 6600 feet.

D. Interruption of Existing Electric Service: Do not interrupt electric service to facilities occupied by Owner or others unless permitted under the following conditions and then only after arranging to provide temporary electric service according to requirements indicated:

1. Notify Architect no fewer than 14 days in advance of proposed interruption of electric service.
2. Indicate method of providing temporary electric service.
3. Do not proceed with interruption of electric service without Owner's written permission.
4. Comply with NFPA 70E.

1.10 COORDINATION

A. Coordinate layout and installation of switchboards and components with other construction that penetrates walls or is supported by them, including electrical and other types of equipment, raceways, piping, encumbrances to workspace clearance requirements, and adjacent surfaces. Maintain required workspace clearances and required clearances for equipment access doors and panels.

B. Coordinate sizes and locations of concrete bases with actual equipment provided. Cast anchor-bolt inserts into bases. Concrete, reinforcement, and formwork requirements are specified with concrete.

1.11 WARRANTY

A. Manufacturer's Warranty: Manufacturer agrees to repair or replace switchboard enclosures, buswork, overcurrent protective devices, accessories, and factory installed interconnection wiring that fail in materials or workmanship within specified warranty period.

1. Warranty Period: Three years from date of Substantial Completion.

B. Manufacturer's Warranty: Manufacturer's agrees to repair or replace surge protection devices that fail in materials or workmanship within specified warranty period.

1. Warranty Period: Five years from date of Substantial Completion.

PART 2 - PRODUCTS

2.1 SWITCHBOARDS

A. Source Limitations: Obtain switchboards, overcurrent protective devices, components, and accessories from single source from single manufacturer. Square D, no exceptions.

B. Product Selection for Restricted Space: Drawings indicate maximum dimensions for switchboards including clearances between switchboards and adjacent surfaces and other items. Comply with indicated maximum dimensions.
C. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

D. Comply with NEMA PB 2.

E. Comply with NFPA 70.

F. Comply with UL 891.

G. Front-Connected, Front-Accessible Switchboards:
 1. Main Devices: Fixed, individually mounted.
 3. Sections front and rear aligned.

H. Front- and Side-Accessible Switchboards:
 1. Main Devices: Fixed, individually mounted.
 3. Section Alignment: Rear aligned.

I. Front- and Rear-Accessible Switchboards:
 1. Main Devices: Fixed, individually mounted.
 2. Branch Devices: Panel and fixed, individually mounted.
 3. Sections rear aligned.
 a. The term "withstand" means "the unit will remain in place without separation of any parts from the device when subjected to the seismic forces specified."
 b. The term "withstand" means "the unit will remain in place without separation of any parts from the device when subjected to the seismic forces specified and the unit will be fully operational after the seismic event."

J. Indoor Enclosures: Steel, NEMA 250, Type 1.

K. Enclosure Finish for Indoor Units: Factory-applied finish in manufacturer's standard gray finish over a rust-inhibiting primer on treated metal surface.

L. Outdoor Enclosures: Type 3R.
 1. Finish: Factory-applied finish in manufacturer's standard color; undersurfaces treated with corrosion-resistant undercoating.
 2. Enclosure: Flat roof; for each section, with provisions for padlocking.
 a. Factory-installed exhaust fan with capacities to maintain switchboard interior temperature of 100 deg F with outside design temperature of 90 deg F.
 b. Ventilating openings [complete with replaceable fiberglass air filters].
 c. Thermostat: Single stage; wired to control heat and exhaust fan.
 3. Power for space heaters, ventilation, lighting, and receptacle provided by a remote source.

M. Barriers: Between adjacent switchboard sections.
N. Insulation and isolation for main and vertical buses of feeder sections.

O. Space Heaters: Factory-installed electric space heaters of sufficient wattage in each vertical section to maintain enclosure temperature above expected dew point.

P. Service Entrance Rating: Switchboards intended for use as service entrance equipment shall contain from one to six service disconnecting means with overcurrent protection, a neutral bus with disconnecting link, a grounding electrode conductor terminal, and a main bonding jumper.

Q. Buses and Connections: Three phase, four wire unless otherwise indicated.
 1. Provide phase bus arrangement A, B, C from front to back, top to bottom, and left to right when viewed from the front of the switchboard.
 3. Tin-plated aluminum feeder circuit-breaker line connections.
 4. Load Terminals: Insulated, rigidly braced, runback bus extensions, of same material as through buses, equipped with mechanical connectors for outgoing circuit conductors. Provide load terminals for future circuit-breaker positions at full-ampere rating of circuit-breaker position.
 5. Ground Bus: Minimum-size required by UL 891, hard-drawn copper of 98 percent conductivity, equipped with mechanical connectors for feeder and branch-circuit ground conductors.
 6. Main-Phase Buses and Equipment-Ground Buses: Uniform capacity for entire length of switchboard's main and distribution sections. Provide for future extensions from both ends.
 7. Disconnect Links:
 a. Isolate neutral bus from incoming neutral conductors.
 b. Bond neutral bus to equipment-ground bus for switchboards utilized as service equipment or separately derived systems.
 8. Neutral Buses: 100 percent of the ampacity of phase buses unless otherwise indicated, equipped with mechanical connectors for outgoing circuit neutral cables. Brace bus extensions for busway feeder neutral bus.

R. Future Devices: Equip compartments with mounting brackets, supports, bus connections, and appurtenances at full rating of circuit-breaker compartment.

S. Bus-Bar Insulation: Factory-applied, flame-retardant, tape wrapping of individual bus bars or flame-retardant, spray-applied insulation. Minimum insulation temperature rating of 105 deg C.

2.2 DISCONNECTING AND OVERCURRENT PROTECTIVE DEVICES

A. For breakers 1,200A and higher, provide an energy reducing maintenance switch in compliance with NEC 240.87.

B. Molded-Case Circuit Breaker (MCCB): Comply with UL 489, with interrupting capacity to meet available fault currents.

3. Electronic trip circuit breakers with rms sensing; field-replaceable rating plug or field-replaceable electronic trip; and the following field-adjustable settings:
 a. Instantaneous trip.
 b. Long- and short-time pickup levels.
 c. Long and short time adjustments.
 d. Ground-fault pickup level, time delay, and I²t response.

4. Current-Limiting Circuit Breakers: Frame sizes 400 A and smaller; let-through ratings less than NEMA FU 1, RK-5.

5. Ground-Fault Equipment Protection (GFEP) Circuit Breakers: Class B ground-fault protection (30-mA trip).

6. MCCB Features and Accessories:
 a. Standard frame sizes, trip ratings, and number of poles.
 b. Lugs: Mechanical style, suitable for number, size, trip ratings, and conductor material.
 c. Application Listing: Appropriate for application; Type SWD for switching fluorescent lighting loads; Type HID for feeding fluorescent and high-intensity discharge (HID) lighting circuits.
 d. Ground-Fault Protection: Integrally mounted relay and trip unit with adjustable pickup and time-delay settings, push-to-test feature, and ground-fault indicator.

C. Insulated-Case Circuit Breaker (ICCB): 80 percent rated, sealed, insulated-case power circuit breaker with interrupting capacity rating to meet available fault current.

1. Fixed circuit-breaker mounting.

2. Two-step, stored-energy closing.

3. Standard-function, microprocessor-based trip units with interchangeable rating plug, trip indicators, and the following field-adjustable settings:
 a. Instantaneous trip.
 b. Time adjustments for long- and short-time pickup.
 c. Ground-fault pickup level, time delay, and I²t response.

4. Operating Mechanism: Manual handle operation to close switch; stores energy in mechanism for opening and closing.

5. Auxiliary Switches: Factory installed, SPDT, with leads connected to terminal block, and including one set more than quantity required for functional performance indicated.

2.3 INSTRUMENTATION
 A. Provide GE PQM-II or equal multi-function digital meter.

2.4 IDENTIFICATION
 A. Provide engraved nameplates on each breaker indicating either the source or the load served.
 B. Service Equipment Label: NRTL labeled for use as service equipment for switchboards with one or more service disconnecting and overcurrent protective devices.

PART 3 - EXECUTION

3.1 EXAMINATION
 A. Receive, inspect, handle, and store switchboards according to NECA 400.
 1. Lift or move panelboards with spreader bars and manufacturer-supplied lifting straps following manufacturer's instructions.
 2. Use rollers, slings, or other manufacturer-approved methods if lifting straps are not furnished.
 3. Protect from moisture, dust, dirt, and debris during storage and installation.
 4. Install temporary heating during storage per manufacturer's instructions.
 B. Examine switchboards before installation. Reject switchboards that are moisture damaged or physically damaged.
 C. Examine elements and surfaces to receive switchboards for compliance with installation tolerances and other conditions affecting performance of the Work or that affect the performance of the equipment.
 D. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION
 A. Install switchboards and accessories according to NECA 400.
 B. Equipment Mounting: Install switchboards on concrete base, 4-inch nominal thickness.
 1. Install conduits entering underneath the switchboard, entering under the vertical section where the conductors will terminate. Install with couplings flush with the concrete base. Extend 2 inches above concrete base after switchboard is anchored in place.
 2. Install dowel rods to connect concrete base to concrete floor. Unless otherwise indicated, install dowel rods on 18-inch centers around the full perimeter of concrete base.
 3. For supported equipment, install epoxy-coated anchor bolts that extend through concrete base and anchor into structural concrete floor.
 4. Place and secure anchorage devices. Use setting drawings, templates, diagrams, instructions, and directions furnished with items to be embedded.
5. Install anchor bolts to elevations required for proper attachment to switchboards.
6. Anchor switchboard to building structure at the top of the switchboard if required or recommended by the manufacturer.

C. Temporary Lifting Provisions: Remove temporary lifting eyes, channels, straps and brackets, and temporary blocking of moving parts from switchboard units and components.

D. Comply with mounting and anchoring requirements specified in Section 260548.16 "Seismic Controls for Electrical Systems."

E. Operating Instructions: Frame and mount the printed basic operating instructions for switchboards, including control and key interlocking sequences and emergency procedures. Fabricate frame of finished wood or metal and cover instructions with clear acrylic plastic. Mount on front of switchboards.

F. Install filler plates in unused spaces of panel-mounted sections.

G. Install overcurrent protective devices, surge protection devices, and instrumentation.
 1. Set field-adjustable switches and circuit-breaker trip ranges.

H. Install spare-fuse cabinet.

I. Comply with NECA 1.

3.3 CONNECTIONS

A. Comply with requirements for terminating feeder bus specified in Section 262500 "Enclosed Bus Assemblies." Drawings indicate general arrangement of bus, fittings, and specialties.

B. Comply with requirements for terminating cable trays specified in Section 260536 "Cable Trays for Electrical Systems." Drawings indicate general arrangement of cable trays, fittings, and specialties.

C. Bond conduits entering underneath the switchboard to the equipment ground bus with a bonding conductor sized per NFPA 70.

D. Support and secure conductors within the switchboard according to NFPA 70.

E. Extend insulated equipment grounding cable to busway ground connection and support cable at intervals in vertical run.

3.4 IDENTIFICATION

A. Identify field-installed conductors, interconnecting wiring, and components; provide warning signs complying with requirements for identification specified in Section 260553 "Identification for Electrical Systems."
B. Switchboard Nameplates: Label each switchboard compartment with a nameplate complying with requirements for identification specified in Section 260553 "Identification for Electrical Systems."

C. Device Nameplates: Label each disconnecting and overcurrent protective device and each meter and control device mounted in compartment doors with a nameplate complying with requirements for identification specified in Section 260553 "Identification for Electrical Systems."

3.5 FIELD QUALITY CONTROL

A. Perform the following tests and inspections.

1. Acceptance Testing:
 a. Test insulation resistance for each switchboard bus, component, connecting supply, feeder, and control circuit. Open control and metering circuits within the switchboard, and remove neutral connection to surge protection and other electronic devices prior to insulation test. Reconnect after test.
 b. Test continuity of each circuit.

2. Test ground-fault protection of equipment for service equipment per NFPA 70.
4. Correct malfunctioning units on-site where possible, and retest to demonstrate compliance; otherwise, replace with new units and retest.
5. Perform the following infrared scan tests and inspections, and prepare reports:
 a. Instruments and Equipment:
 1) Use an infrared scanning device designed to measure temperature or to detect significant deviations from normal values. Provide calibration record for device.

6. Test and adjust controls, remote monitoring, and safeties. Replace damaged and malfunctioning controls and equipment.

B. Switchboard will be considered defective if it does not pass tests and inspections.

C. Prepare test and inspection reports, including a certified report that identifies switchboards included and that describes scanning results. Include notation of deficiencies detected, remedial action taken, and observations after remedial action.

3.6 ADJUSTING

A. Adjust moving parts and operable components to function smoothly, and lubricate as recommended by manufacturer.
3.7 PROTECTION

A. Temporary Heating: Apply temporary heat, to maintain temperature according to manufacturer's written instructions, until switchboard is ready to be energized and placed into service.

END OF SECTION 262413
This page intentionally left blank
PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:
 1. Distribution panelboards.
 2. Lighting and appliance branch-circuit panelboards.
 3. Load centers.
 4. Electronic-grade panelboards.

1.3 DEFINITIONS

A. ATS: Acceptance testing specification.
B. GFCI: Ground-fault circuit interrupter.
C. GFEP: Ground-fault equipment protection.
D. HID: High-intensity discharge.
E. MCCB: Molded-case circuit breaker.
F. SPD: Surge protective device.
G. VPR: Voltage protection rating.

1.4 ACTION SUBMITTALS

A. Product Data: For each type of panelboard.
 1. Include materials, switching and overcurrent protective devices, SPDs, accessories, and components indicated.
 2. Include dimensions and manufacturers' technical data on features, performance, electrical characteristics, ratings, and finishes.

B. Shop Drawings: For each panelboard and related equipment.
1. Include dimensioned plans, elevations, sections, and details.
2. Show tabulations of installed devices with nameplates, conductor termination sizes, equipment features, and ratings.
3. Detail enclosure types including mounting and anchorage, environmental protection, knockouts, corner treatments, covers and doors, gaskets, hinges, and locks.
4. Detail bus configuration, current, and voltage ratings.
5. Short-circuit current rating of panelboards and overcurrent protective devices.
6. Include evidence of NRTL listing for series rating of installed devices.
7. Include evidence of NRTL listing for SPD as installed in panelboard.
8. Detail features, characteristics, ratings, and factory settings of individual overcurrent protective devices and auxiliary components.
9. Include wiring diagrams for power, signal, and control wiring.
10. Key interlock scheme drawing and sequence of operations.
11. Include time-current coordination curves for each type and rating of overcurrent protective device included in panelboards. Submit on translucent log-log graft paper; include selectable ranges for each type of overcurrent protective device. Include an Internet link for electronic access to downloadable PDF of the coordination curves.

1.5 INFORMATIONAL SUBMITTALS
A. Qualification Data: For testing agency.
B. Panelboard Schedules: For installation in panelboards.

1.6 CLOSEOUT SUBMITTALS
A. Operation and Maintenance Data: For panelboards and components to include in emergency, operation, and maintenance manuals. In addition to items specified in Section 017823 "Operation and Maintenance Data," include the following:
 1. Manufacturer's written instructions for testing and adjusting overcurrent protective devices.
 2. Time-current curves, including selectable ranges for each type of overcurrent protective device that allows adjustments.

1.7 QUALITY ASSURANCE
A. Manufacturer Qualifications: ISO 9001 or 9002 certified.

1.8 DELIVERY, STORAGE, AND HANDLING
A. Remove loose packing and flammable materials from inside panelboards; install temporary electric heating (250 W per panelboard) to prevent condensation.
B. Handle and prepare panelboards for installation according to NECA 407.
1.9 FIELD CONDITIONS

A. Environmental Limitations:

1. Do not deliver or install panelboards until spaces are enclosed and weathertight, wet work in spaces is complete and dry, work above panelboards is complete, and temporary HVAC system is operating and maintaining ambient temperature and humidity conditions at occupancy levels during the remainder of the construction period.

2. Rate equipment for continuous operation under the following conditions unless otherwise indicated:

 a. Ambient Temperature: Not exceeding minus 22 deg F to plus 104 deg F.
 b. Altitude: Not exceeding 6600 feet.

B. Service Conditions: NEMA PB 1, usual service conditions, as follows:

1. Ambient temperatures within limits specified.
2. Altitude not exceeding 6600 feet.

1.10 WARRANTY

A. Manufacturer's Warranty: Manufacturer agrees to repair or replace panelboards that fail in materials or workmanship within specified warranty period.

1. Panelboard Warranty Period: 18 months from date of Substantial Completion.

B. Special Warranty: Manufacturer's standard form in which manufacturer agrees to repair or replace SPD that fails in materials or workmanship within specified warranty period.

1. SPD Warranty Period: Five years from date of Substantial Completion.

PART 2 - PRODUCTS

2.1 PANELBOARDS AND LOAD CENTERS COMMON REQUIREMENTS

A. New panelboards shall be Square-D no exceptions

B. Fabricate and test panelboards according to IEEE 344 to withstand seismic forces defined in Section 260548.16 "Seismic Controls for Electrical Systems."

C. Product Selection for Restricted Space: Drawings indicate maximum dimensions for panelboards including clearances between panelboards and adjacent surfaces and other items. Comply with indicated maximum dimensions.

D. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

E. Comply with NEMA PB 1.
F. Comply with NFPA 70.

1. In finished spaces, all panelboards shall be installed flush-mounted in the wall. Panelboards shall only be installed surface mounted in electrical rooms, mechanical rooms and janitor closets.
2. Rated for environmental conditions at installed location.
 a. Indoor Dry and Clean Locations: NEMA 250, Type 1.
 b. Outdoor Locations: NEMA 250, Type 3R.
 c. Other Wet or Damp Indoor Locations: NEMA 250, Type 4.
3. Height: 84 inches maximum.
4. Front: Secured to box with concealed trim clamps. For surface-mounted fronts, match box dimensions; for flush-mounted fronts, overlap box. Trims shall cover all live parts and shall have no exposed hardware.
5. Hinged Front Cover: Entire front trim hinged to box and with standard door within hinged trim cover. Trims shall cover all live parts and shall have no exposed hardware.
6. Skirt for Surface-Mounted Panelboards: Same gage and finish as panelboard front with flanges for attachment to panelboard, wall, and ceiling or floor.
7. Gutter Extension and Barrier: Same gage and finish as panelboard enclosure; integral with enclosure body. Arrange to isolate individual panel sections.
8. Finishes:
 a. Panels and Trim: Steel, factory finished immediately after cleaning and pretreating with manufacturer's standard two-coat, baked-on finish consisting of prime coat and thermosetting topcoat.

H. Phase, Neutral, and Ground Buses:
1. Material: Copper.
 a. Plating shall run entire length of bus.
 b. Bus shall be fully rated the entire length.
2. Interiors shall be factory assembled into a unit. Replacing switching and protective devices shall not disturb adjacent units or require removing the main bus connectors.
3. Equipment Ground Bus: Adequate for feeder and branch-circuit equipment grounding conductors; bonded to box.
4. Isolated Ground Bus: Adequate for branch-circuit isolated ground conductors; insulated from box.
5. Full-Sized Neutral: Equipped with full-capacity bonding strap for service entrance applications. Mount electrically isolated from enclosure. Do not mount neutral bus in gutter.
6. Extra-Capacity Neutral Bus: Neutral bus rated 200 percent of phase bus and listed and labeled by an NRTL acceptable to authority having jurisdiction, as suitable for nonlinear loads in electronic-grade panelboards and others designated on Drawings. Connectors shall be sized for double-sized or parallel conductors as indicated on Drawings. Do not mount neutral bus in gutter.
7. Split Bus: Vertical buses divided into individual vertical sections.

I. Conductor Connectors: Suitable for use with conductor material and sizes.

1. Material: Copper.
2. Terminations shall allow use of 75 deg C rated conductors without derating.
3. Size: Lugs suitable for indicated conductor sizes, with additional gutter space, if required, for larger conductors.
4. Main and Neutral Lugs: Compression type, with a lug on the neutral bar for each pole in the panelboard.
5. Ground Lugs and Bus-Configured Terminators: Compression type, with a lug on the bar for each pole in the panelboard.
6. Feed-Through Lugs: Compression type, suitable for use with conductor material. Locate at opposite end of bus from incoming lugs or main device.
7. Subfeed (Double) Lugs: Compression type suitable for use with conductor material. Locate at same end of bus as incoming lugs or main device.

J. NRTL Label: Panelboards or load centers shall be labeled by an NRTL acceptable to authority having jurisdiction for use as service equipment with one or more main service disconnecting and overcurrent protective devices. Panelboards or load centers shall have meter enclosures, wiring, connections, and other provisions for utility metering. Coordinate with utility company for exact requirements.

K. Future Devices: Panelboards or load centers shall have mounting brackets, bus connections, filler plates, and necessary appurtenances required for future installation of devices.

L. Panelboard Short-Circuit Current Rating: Rated for series-connected system with integral or remote upstream overcurrent protective devices and labeled by an NRTL. Include label or manual with size and type of allowable upstream and branch devices listed and labeled by an NRTL for series-connected short-circuit rating.

1. Panelboards rated 240 V or less shall have short-circuit ratings as shown on Drawings, but not less than 10,000 A rms symmetrical.
2. Panelboards rated above 240 V and less than 600 V shall have short-circuit ratings as shown on Drawings, but not less than 14,000 A rms symmetrical.

M. Panelboard Short-Circuit Current Rating: Fully rated to interrupt symmetrical short-circuit current available at terminals. Assembly listed by an NRTL for 100 percent interrupting capacity.

1. Panelboards and overcurrent protective devices rated 240 V or less shall have short-circuit ratings as shown on Drawings, but not less than 10,000 A rms symmetrical.
2. Panelboards and overcurrent protective devices rated above 240 V and less than 600 V shall have short-circuit ratings as shown on Drawings, but not less than 14,000 A rms symmetrical.

2.2 POWER PANELBOARDS

A. Panelboards: NEMA PB 1, distribution type.
Panelboards

B. Doors: Secured with vault-type latch with tumbler lock; keyed alike.
 1. For doors more than 36 inches high, provide two latches, keyed alike.

C. Mains: Circuit breaker.

D. Branch Overcurrent Protective Devices for Circuit-Breaker Frame Sizes 125 A and Smaller: Bolt-on circuit breakers or plug-in types with a positive locking feature.

E. Branch Overcurrent Protective Devices for Circuit-Breaker Frame Sizes Larger Than 125 A: Bolt-on circuit breakers or plug-in types with a positive locking feature.

2.3 LIGHTING AND APPLIANCE BRANCH-CIRCUIT PANELBOARDS

A. Panelboards: NEMA PB 1, lighting and appliance branch-circuit type.

B. Mains: Circuit breaker or lugs only as indicated on schedule.

C. Branch Overcurrent Protective Devices: Bolt-on circuit breakers, replaceable without disturbing adjacent units.

D. Doors: Concealed hinges; secured with flush latch with tumbler lock; keyed alike.

2.4 DISCONNECTING AND OVERCURRENT PROTECTIVE DEVICES

A. MCCB: Comply with UL 489, with interrupting capacity to meet available fault currents.

 1. Thermal-Magnetic Circuit Breakers:

 a. Inverse time-current element for low-level overloads.
 b. Instantaneous magnetic trip element for short circuits.
 c. Adjustable magnetic trip setting for circuit-breaker frame sizes 250 A and larger.

 3. Electronic Trip Circuit Breakers:

 a. RMS sensing.
 b. Field-replaceable rating plug or electronic trip.
 c. Digital display of settings, trip targets, and indicated metering displays.
 d. Multi-button keypad to access programmable functions and monitored data.
 e. Ten-event, trip-history log. Each trip event shall be recorded with type, phase, and magnitude of fault that caused the trip.
 f. Integral test jack for connection to portable test set or laptop computer.
 g. Field-Adjustable Settings:

 1) Instantaneous trip.
 2) Long- and short-time pickup levels.
 3) Long and short time adjustments.
 4) Ground-fault pickup level, time delay, and I squared T response.
4. Current-Limiting Circuit Breakers: Frame sizes 400 A and smaller; let-through ratings less than NEMA FU 1, RK-5.
5. GFCI Circuit Breakers: Single- and double-pole configurations with Class A ground-fault protection (6-mA trip).
6. GFEP Circuit Breakers: Class B ground-fault protection (30-mA trip).
9. MCCB Features and Accessories:
 a. Standard frame sizes, trip ratings, and number of poles.
 b. Breaker handle indicates tripped status.
 c. UL listed for reverse connection without restrictive line or load ratings.
 d. Lugs: Compression style, suitable for number, size, trip ratings, and conductor materials.
 e. Application Listing: Appropriate for application; Type SWD for switching fluorescent lighting loads; Type HID for feeding fluorescent and HID lighting circuits.
 f. Ground-Fault Protection: Integrally mounted relay and trip unit with adjustable pickup and time-delay settings, push-to-test feature, and ground-fault indicator.

2.5 IDENTIFICATION

A. Panelboard Label: Manufacturer's name and trademark, voltage, amperage, number of phases, and number of poles shall be located on the interior of the panelboard door.

B. Breaker Labels: Faceplate shall list current rating, UL and IEC certification standards, and AIC rating.

 1. Circuit directory shall identify specific purpose with detail sufficient to distinguish it from all other circuits.

D. Circuit Directory: Computer-generated circuit directory mounted inside panelboard door with transparent plastic protective cover.
 1. Circuit directory shall identify specific purpose with detail sufficient to distinguish it from all other circuits.

2.6 ACCESSORY COMPONENTS AND FEATURES

A. Accessory Set: Include tools and miscellaneous items required for overcurrent protective device test, inspection, maintenance, and operation.

B. Portable Test Set: For testing functions of solid-state trip devices without removing from panelboard. Include relay and meter test plugs suitable for testing panelboard meters and switchboard class relays.
PART 3 - EXECUTION

3.1 EXAMINATION

A. Verify actual conditions with field measurements prior to ordering panelboards to verify that equipment fits in allocated space in, and comply with, minimum required clearances specified in NFPA 70.

B. Receive, inspect, handle, and store panelboards according to NECA 407.

C. Examine panelboards before installation. Reject panelboards that are damaged, rusted, or have been subjected to water saturation.

D. Examine elements and surfaces to receive panelboards for compliance with installation tolerances and other conditions affecting performance of the Work.

E. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION

A. Coordinate layout and installation of panelboards and components with other construction that penetrates walls or is supported by them, including electrical and other types of equipment, raceways, piping, encumbrances to workspace clearance requirements, and adjacent surfaces. Maintain required workspace clearances and required clearances for equipment access doors and panels.

B. Comply with NECA 1.

C. Install panelboards and accessories according to NECA 407.

D. Equipment Mounting:

1. Floor-mounted panelboards shall be installed on cast-in-place concrete equipment base(s).
2. Attach panelboard to the vertical finished or structural surface behind the panelboard.

E. Top most switch or breaker when in on position shall not be higher than 79 inches above finished floor or grade.

F. Mount panelboard cabinet plumb and rigid without distortion of box.

G. Mount recessed panelboards with fronts uniformly flush with wall finish and mating with back box.

H. Install overcurrent protective devices and controllers not already factory installed.

1. Tighten bolted connections and circuit breaker connections using calibrated torque wrench or torque screwdriver per manufacturer's written instructions.
I. Make grounding connections and bond neutral for services and separately derived systems to ground. Make connections to grounding electrodes, separate grounds for isolated ground bars, and connections to separate ground bars.

J. Install filler plates in unused spaces.

K. Stub four 1-inch empty conduits from panelboard into accessible ceiling space or space designated to be ceiling space in the future. Stub four 1-inch empty conduits into raised floor space or below slab not on grade.

L. Arrange conductors in gutters into groups and bundle and wrap with wire ties.

M. Mount spare fuse cabinet in accessible location.

3.3 IDENTIFICATION

A. Identify field-installed conductors, interconnecting wiring, and components; install warning signs complying with requirements in Section 260553 "Identification for Electrical Systems."

B. Create a directory to indicate installed circuit loads; incorporate Owner's final room designations. Obtain approval before installing. Handwritten directories are not acceptable. Install directory inside panelboard door.

C. Panelboard Nameplates: Label each panelboard with a nameplate complying with requirements for identification specified in Section 260553 "Identification for Electrical Systems."

D. Device Nameplates: Label each branch circuit device in power panelboards with a nameplate complying with requirements for identification specified in Section 260553 "Identification for Electrical Systems."

E. Install warning signs complying with requirements in Section 260553 "Identification for Electrical Systems" identifying source of remote circuit.

3.4 FIELD QUALITY CONTROL

A. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect, test, and adjust components, assemblies, and equipment installations, including connections.

B. Perform tests and inspections.

1. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect components, assemblies, and equipment installations, including connections, and to assist in testing.

C. Acceptance Testing Preparation:

1. Test insulation resistance for each panelboard bus, component, connecting supply, feeder, and control circuit.

2. Test continuity of each circuit.
D. Tests and Inspections:

1. Perform each visual and mechanical inspection and electrical test for low-voltage air circuit breakers stated in NETA ATS, Paragraph 7.6 Circuit Breakers, optional tests. Certify compliance with test parameters.
2. Correct malfunctioning units on-site, where possible, and retest to demonstrate compliance; otherwise, replace with new units and retest.
3. Perform the following infrared scan tests and inspections and prepare reports:
 a. Initial Infrared Scanning: After Substantial Completion, but not more than 60 days after Final Acceptance, perform an infrared scan of each panelboard. Remove front panels so joints and connections are accessible to portable scanner.
 b. Follow-up Infrared Scanning: Perform an additional follow-up infrared scan of each panelboard 11 months after date of Substantial Completion.
 c. Instruments and Equipment:
 1) Use an infrared scanning device designed to measure temperature or to detect significant deviations from normal values. Provide calibration record for device.

E. Panelboards will be considered defective if they do not pass tests and inspections.

F. Prepare test and inspection reports, including a certified report that identifies panelboards included and that describes scanning results, with comparisons of the two scans. Include notation of deficiencies detected, remedial action taken, and observations after remedial action.

3.5 ADJUSTING

A. Adjust moving parts and operable components to function smoothly, and lubricate as recommended by manufacturer.

B. Load Balancing: After Substantial Completion, but not more than 60 days after Final Acceptance, measure load balancing and make circuit changes. Prior to making circuit changes to achieve load balancing, inform Architect of effect on phase color coding.

1. Measure loads during period of normal facility operations.
2. Perform circuit changes to achieve load balancing outside normal facility operation schedule or at times directed by the Architect. Avoid disrupting services such as fax machines and on-line data processing, computing, transmitting, and receiving equipment.
3. After changing circuits to achieve load balancing, recheck loads during normal facility operations. Record load readings before and after changing circuits to achieve load balancing.
4. Tolerance: Maximum difference between phase loads, within a panelboard, shall not exceed 20 percent.

3.6 PROTECTION

A. Temporary Heating: Prior to energizing panelboards, apply temporary heat to maintain temperature according to manufacturer's written instructions.
END OF SECTION 262416
This page intentionally left blank
PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:

1. Straight-blade convenience, hospital-grade, isolated-ground, and tamper-resistant receptacles.
2. USB charger devices.
3. GFCI receptacles.
4. SPD receptacles.
5. Hazardous (classified) location receptacles.
6. Twist-locking receptacles.
7. Pendant cord-connector devices.
8. Cord and plug sets.
10. Decorator-style convenience.
11. Wall switch sensor light switches with dual technology sensors.
12. Wall switch sensor light switches with passive infrared sensors.
13. Wall switch sensor light switches with ultrasonic sensors.
15. Residential devices.
16. Wall-box dimmers.
17. Wall plates.
18. Floor service outlets.
19. Poke-through assemblies.
20. Prefabricated multioutlet assemblies.

1.3 DEFINITIONS

A. Abbreviations of Manufacturers' Names:

1. Cooper: Cooper Wiring Devices; Division of Cooper Industries, Inc.
B. BAS: Building automation system.
C. EMI: Electromagnetic interference.
D. GFCI: Ground-fault circuit interrupter.
E. Pigtail: Short lead used to connect a device to a branch-circuit conductor.
F. RFI: Radio-frequency interference.
G. SPD: Surge protective device.
H. UTP: Unshielded twisted pair.

1.4 ACTION SUBMITTALS

A. Product Data: For each type of product.
B. Shop Drawings: List of legends and description of materials and process used for premarking wall plates.
C. Samples: Only when requested by architect.

1.5 INFORMATIONAL SUBMITTALS

A. Field quality-control reports.

1.6 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For wiring devices to include in all manufacturers' packing-label warnings and instruction manuals that include labeling conditions.

PART 2 - PRODUCTS

2.1 GENERAL WIRING-DEVICE REQUIREMENTS

A. Wiring Devices, Components, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
B. Comply with NFPA 70.
C. Devices that are manufactured for use with modular plug-in connectors may be substituted under the following conditions:
 1. Connectors shall comply with UL 2459 and shall be made with stranding building wire.
 2. Devices shall comply with the requirements in this Section.
D. Devices for Owner-Furnished Equipment:
 1. Receptacles: Match plug configurations.
 2. Cord and Plug Sets: Match equipment requirements.

E. Source Limitations: Obtain each type of wiring device and associated wall plate from single source from single manufacturer.

2.2 STRAIGHT-BLADE RECEPTACLES

A. Duplex Convenience Receptacles: 125 V, 20 A; comply with NEMA WD 1, NEMA WD 6 Configuration 5-20R, UL 498, and FS W-C-596.

B. Hospital-Grade, Duplex Convenience Receptacles: 125 V, 20 A; comply with NEMA WD 1, NEMA WD 6 Configuration 5-20R, UL 498 Supplement sd, and FS W-C-596.

C. Isolated-Ground, Duplex Convenience Receptacles: 125 V, 20 A; comply with NEMA WD 1, NEMA WD 6 Configuration 5-20R, UL 498, and FS W-C-596.
 1. Description: Straight blade; equipment grounding contacts shall be connected only to the green grounding screw terminal of the device and with inherent electrical isolation from mounting strap. Isolation shall be integral to receptacle construction and not dependent on removable parts.

D. Tamper-Resistant Convenience Receptacles: 125 V, 20 A; comply with NEMA WD 1, NEMA WD 6 Configuration 5-20R, UL 498, and FS W-C-596.
 1. Description: Labeled and complying with NFPA 70, "Health Care Facilities" Article, "Pediatric Locations" Section.

2.3 USB CHARGER DEVICES

A. Tamper-Resistant, USB Charger Receptacles: 125 V, 20 A; comply with NEMA WD 1, NEMA WD 6 Configuration 5-20R, UL 498, UL 1310, and FS W-C-596.
 2. USB Receptacles: Dual, Type A, minimum 3-amp output.
 3. Line Voltage Receptacles: Dual, two pole, three wire, and self-grounding.

B. Hospital-Grade, USB Charger Receptacles: 125 V, 20 A; comply with NEMA WD 1, NEMA WD 6 Configuration 5-20R, UL 498 Supplement sd, UL 1310, and FS W-C-596.
 1. Description: Labeled and complying with NFPA 70, "Health Care Facilities" Article, "Pediatric Locations" Section.
 2. USB Receptacles: Dual, Type A, minimum 3-amp output.
 3. Line Voltage Receptacles: Dual, two pole, three wire, and self-grounding.
2.4 GFCI RECEPTACLES

A. General Description:
 1. 125 V, 20 A, straight blade, feed-through type.
 2. Comply with NEMA WD 1, NEMA WD 6 Configuration 5-20R, UL 498, UL 943 Class A, and FS W-C-596.
 3. Include indicator light that shows when the GFCI has malfunctioned and no longer provides proper GFCI protection.

B. Duplex GFCI Convenience Receptacles:

C. Tamper-Resistant, Duplex GFCI Convenience Receptacles:

D. Hospital-Grade, Duplex GFCI Convenience Receptacles: Comply with UL 498 Supplement sd.

2.5 TOGGLE SWITCHES

A. Comply with NEMA WD 1, UL 20, and FS W-S-896.

B. Switches, 120/277 V, 20 A:
 1. Description: Single pole or double pole and three-way or four way switches as indicated on plans.

C. Key-Operated Switches: 120/277 V, 20 A.
 1. Description: Single pole, with factory-supplied key in lieu of switch handle.

D. Single-Pole, Double-Throw, Momentary-Contact, Center-off Switches: 120/277 V, 20 A; for use with mechanically held lighting contactors.

2.6 WALL SWITCH SENSOR LIGHT SWITCH, DUAL TECHNOLOGY

A. Description: Switchbox-mounted, combination lighting-control sensor and conventional switch lighting-control unit using dual technology.
 1. Rated 960 W at 120-V ac for tungsten lighting, 10 A at 120-V ac or 10 A at 277-V ac for fluorescent or LED lighting, and 1/4 hp at 120-V ac.
 2. Integral relay for connection to BAS.
 3. Adjustable time delay up to 30 minutes.
 4. Able to be locked to either Automatic-On or Manual-On mode.
 6. Comply with NEMA WD 1, UL 20, and FS W-S-896.

2.7 WALL SWITCH SENSOR LIGHT SWITCH, PASSIVE INFRARED

A. Description: Switchbox-mounted, combination, lighting-control sensor and conventional switch lighting-control unit using passive infrared technology.
 1. Rated 960 W at 120-V ac for tungsten lighting, 10 A at 120-V ac or 10 A at 277-V ac for fluorescent or LED lighting, and 1/4 hp at 120-V ac.
 2. Integral relay for connection to BAS.
3. Adjustable time delay of 30 minutes.
1. Able to be locked to either Automatic-On or Manual-On mode.
3. Comply with NEMA WD 1, UL 20, and FS W-S-896.

2.8 WALL SWITCH SENSOR LIGHT SWITCH, ULTRASONIC

A. Description: Switchbox-mounted, combination, lighting-control sensor and conventional switch lighting-control unit using ultrasonic technology.
1. Rated 960 W at 120-V ac for tungsten lighting, 10 A at 120-V ac or 10 A at 277-V ac for fluorescent or LED lighting, and 1/4 hp at 120-V ac.
2. Integral relay for connection to BAS.
3. Adjustable time delay up to 30 minutes.
1. Able to be locked to either Automatic-On or Manual-On mode.
3. Comply with NEMA WD 1, UL 20, and FS W-S-896.

2.9 DIGITAL TIMER LIGHT SWITCH

A. Description: Switchbox-mounted, combination digital timer and conventional switch lighting-control unit, with backlit digital display, with selectable time interval in 10-minute increments.
1. Rated 960 W at 120-V ac for tungsten lighting, 10 A at 120-V ac or 10 A at 277-V ac for fluorescent or LED lighting, and 1/4 hp at 120-V ac.
2. Integral relay for connection to BAS.

2.10 WALL-BOX DIMMERS

A. In all locations, contractor or lighting supplier shall verify compatibility of dimmer control with fixtures to be supplied.

B. Dimmer Switches: Modular, full-wave, solid-state units with integral, quiet on-off switches, with audible frequency and EMI/RFI suppression filters.

C. Control: Continuously adjustable with single-pole or three-way switching. Comply with UL 1472.

D. Incandescent Lamp Dimmers: 120 V; control shall follow square-law dimming curve. On-off switch positions shall bypass dimmer module.
1. 600 W; dimmers shall require no derating when ganged with other devices.

E. LED Lamp Dimmer Switches: Modular; compatible with LED lamps; trim potentiometer to adjust low-end dimming; capable of consistent dimming with low end not greater than 20 percent of full brightness.
2.11 WALL PLATES

A. Single and combination types shall match corresponding wiring devices.
 1. Plate-Securing Screws: Metal with head color to match plate finish.
 2. Material for Finished Spaces: Coordinate with architect for color and material. Where plastic is required, plates shall be unbreakable nylon.

B. Wet-Location, Weatherproof Cover Plates: NEMA 250, complying with Type 3R, weather-resistant thermoplastic with lockable cover.

2.12 FLOOR SERVICE FITTINGS

A. Type: Modular, flush-type, dual-service units suitable for wiring method used.

B. Compartments: Barrier separates power from voice and data communication cabling.

C. Service Plate: Round, with satin finish, verify color with architect.

D. Power Receptacle: NEMA WD 6 Configuration 5-20R, gray finish, unless otherwise indicated.

E. Voice and Data Communication Outlet: Blank cover with bushed cable opening.

2.13 POKE-THROUGH ASSEMBLIES

A. Description:
 1. Factory-fabricated and -wired assembly of below-floor junction box with multichanneled, through-floor raceway/firestop unit and detachable matching floor service-outlet assembly.
 2. Comply with UL 514 scrub water exclusion requirements.
 3. Service-Outlet Assembly: Flush type with four simplex receptacles and space for four RJ-45 jacks complying with requirements in Section 271500 "Communications Horizontal Cabling."
 4. Size: Selected to fit nominal 6-inch cored holes in floor and matched to floor thickness.
 5. Fire Rating: Unit is listed and labeled for fire rating of floor-ceiling assembly.
 6. Wiring Raceways and Compartments: For a minimum of four No. 12 AWG conductors and a minimum of four, four-pair cables that comply with requirements in Section 271500 "Communications Horizontal Cabling."

2.14 PREFABRICATED MULTIOUTLET ASSEMBLIES

A. Description:
 1. Two-piece surface metal raceway, with factory-wired multioutlet harness.
 2. Components shall be products from single manufacturer designed for use as a complete, matching assembly of raceways and receptacles.

B. Raceway Material: Metal, with manufacturer's standard finish.
C. Multioutlet Harness:
 1. Receptacles: 15-A, 125-V, NEMA WD 6 Configuration 5-15R receptacles complying with NEMA WD 1, UL 498, and FS W-C-596.
 2. Receptacle Spacing: 6 inches.
 3. Wiring: No. 12 AWG solid, Type THHN copper, two circuit, connecting alternating receptacles.

2.15 FINISHES

A. Device Color:
 1. Wiring Devices Connected to Normal Power System: As selected by Architect unless otherwise indicated or required by NFPA 70 or device listing.

B. Wall Plate Color: For plastic covers, match device color.

PART 3 - EXECUTION

3.1 INSTALLATION

A. Comply with NECA 1, including mounting heights listed in that standard, unless otherwise indicated.

B. Coordination with Other Trades:
 1. Protect installed devices and their boxes. Do not place wall finish materials over device boxes and do not cut holes for boxes with routers that are guided by riding against outside of boxes.
 2. Keep outlet boxes free of plaster, drywall joint compound, mortar, cement, concrete, dust, paint, and other material that may contaminate the raceway system, conductors, and cables.
 3. Install device boxes in brick or block walls so that the cover plate does not cross a joint unless the joint is troweled flush with the face of the wall.
 4. Install wiring devices after all wall preparation, including painting, is complete.

C. Conductors:
 1. Do not strip insulation from conductors until right before they are spliced or terminated on devices.
 2. Strip insulation evenly around the conductor using tools designed for the purpose. Avoid scoring or nicking of solid wire or cutting strands from stranded wire.
 3. The length of free conductors at outlets for devices shall meet provisions of NFPA 70, Article 300, without pigtails.
 4. Existing Conductors:
 a. Cut back and pigtail, or replace all damaged conductors.
b. Straighten conductors that remain and remove corrosion and foreign matter.
c. Pigtail existing conductors is permitted, provided the outlet box is large enough.

D. Device Installation:

1. Replace devices that have been in temporary use during construction and that were installed before building finishing operations were complete.
2. Keep each wiring device in its package or otherwise protected until it is time to connect conductors.
3. Do not remove surface protection, such as plastic film and smudge covers, until the last possible moment.
4. Connect devices to branch circuits using pigtails that are not less than 6 inches in length.
5. When there is a choice, use side wiring with binding-head screw terminals. Wrap solid conductor tightly clockwise, two-thirds to three-fourths of the way around terminal screw.
6. Use a torque screwdriver when a torque is recommended or required by manufacturer.
7. When conductors larger than No. 12 AWG are installed on 15- or 20-A circuits, splice No. 12 AWG pigtails for device connections.
8. Tighten unused terminal screws on the device.
9. When mounting into metal boxes, remove the fiber or plastic washers used to hold device-mounting screws in yokes, allowing metal-to-metal contact.

E. Receptacle Orientation:

1. Install ground pin of vertically mounted receptacles up.
2. Install hospital-grade receptacles in patient-care areas with the ground pin or neutral blade at the top.

F. Device Plates: Do not use oversized or extra-deep plates. Repair wall finishes and remount outlet boxes when standard device plates do not fit flush or do not cover rough wall opening.

G. Dimmers:

1. Install dimmers within terms of their listing.
2. Verify that dimmers used for fan-speed control are listed for that application.
3. Install unshared neutral conductors on line and load side of dimmers according to manufacturers’ device listing conditions in the written instructions.

H. Arrangement of Devices: Unless otherwise indicated, mount flush, with long dimension vertical and with grounding terminal of receptacles on top. Group adjacent switches under single, multigang wall plates.

I. Adjust locations of floor service outlets and service poles to suit arrangement of partitions and furnishings.

J. When installing occupancy sensors, consideration shall be given to the location of the sensor, potential obstructions and occupant locations. Sensors shall not be located behind doors, columns, furniture or other obstructions that would reduce the sensor’s ability to sense motion. If sensors are not as specified and are not located where indicated on plans, the contractor will be responsible for ensuring adequate operation of the sensors. The Architect’s interpretation of adequate sensor operation will be final.
3.2 GFCI RECEPTACLES
 A. Install non-feed-through-type GFCI receptacles where protection of downstream receptacles is not required.

3.3 IDENTIFICATION
 A. Comply with Section 260553 "Identification for Electrical Systems."
 B. Identify each receptacle with panelboard identification and circuit number. Use hot, stamped, or engraved machine printing with black-filled lettering on face of plate, and durable wire markers or tags inside outlet boxes.

3.4 FIELD QUALITY CONTROL
 A. Test Instruments: Use instruments that comply with UL 1436.
 B. Test Instrument for Convenience Receptacles: Digital wiring analyzer with digital readout or illuminated digital-display indicators of measurement.
 C. Perform the following tests and inspections:
 1. In healthcare facilities, prepare reports that comply with recommendations in NFPA 99.
 2. Test Instruments: Use instruments that comply with UL 1436.
 3. Test Instrument for Convenience Receptacles: Digital wiring analyzer with digital readout or illuminated digital-display indicators of measurement.
 D. Tests for Convenience Receptacles:
 1. Line Voltage: Acceptable range is 105 to 132 V.
 2. Percent Voltage Drop under 15-A Load: A value of 6 percent or higher is unacceptable.
 3. Ground Impedance: Values of up to 2 ohms are acceptable.
 4. GFCI Trip: Test for tripping values specified in UL 1436 and UL 943.
 5. Using the test plug, verify that the device and its outlet box are securely mounted.
 6. Tests shall be diagnostic, indicating damaged conductors, high resistance at the circuit breaker, poor connections, inadequate fault current path, defective devices, or similar problems. Correct circuit conditions, remove malfunctioning units and replace with new ones, and retest as specified above.
 E. Test straight-blade hospital-grade convenience outlets for the retention force of the grounding blade according to NFPA 99. Retention force shall be not less than 4 oz.
 F. Wiring device will be considered defective if it does not pass tests and inspections.
 G. Prepare test and inspection reports.

END OF SECTION 262726
SECTION 262813

FUSES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:

1. Cartridge fuses rated 600 V ac and less for use in the following:
 a. Control circuits.
 b. Motor-control centers.
 c. Panelboards.
 d. Switchboards.
 e. Enclosed controllers.
 f. Enclosed switches.

2. Spare-fuse cabinets.

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product. Include construction details, material descriptions, dimensions of individual components and profiles, and finishes for spare-fuse cabinets. Include the following for each fuse type indicated:

1. Ambient Temperature Adjustment Information: If ratings of fuses have been adjusted to accommodate ambient temperatures, provide list of fuses with adjusted ratings.
 a. For each fuse having adjusted ratings, include location of fuse, original fuse rating, local ambient temperature, and adjusted fuse rating.
 b. Provide manufacturer's technical data on which ambient temperature adjustment calculations are based.

2. Dimensions and manufacturer's technical data on features, performance, electrical characteristics, and ratings.
4. Coordination charts and tables and related data.
1.4 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For fuses to include in emergency, operation, and maintenance manuals. In addition include the following:

1. Ambient temperature adjustment information.
2. Current-limitation curves for fuses with current-limiting characteristics.
3. Time-current coordination curves (average melt) and current-limitation curves (instantaneous peak let-through current) for each type and rating of fuse used on the Project.
4. Coordination charts and tables and related data.

1.5 FIELD CONDITIONS

A. Where ambient temperature to which fuses are directly exposed is less than 40 deg F or more than 100 deg F, apply manufacturer's ambient temperature adjustment factors to fuse ratings.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. Source Limitations: Obtain fuses, for use within a specific product or circuit, from single source from single manufacturer.

2.2 CARTRIDGE FUSES

A. Characteristics: NEMA FU 1, current-limiting, nonrenewable cartridge fuses with voltage ratings consistent with circuit voltages.

B. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

C. Comply with NEMA FU 1 for cartridge fuses.

D. Comply with NFPA 70.

E. Coordinate fuse ratings with utilization equipment nameplate limitations of maximum fuse size and with system short-circuit current levels.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine fuses before installation. Reject fuses that are moisture damaged or physically damaged.
B. Examine holders to receive fuses for compliance with installation tolerances and other conditions affecting performance, such as rejection features.

C. Examine utilization equipment nameplates and installation instructions. Install fuses of sizes and with characteristics appropriate for each piece of equipment.

D. Evaluate ambient temperatures to determine if fuse rating adjustment factors must be applied to fuse ratings.

E. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 FUSE APPLICATIONS

A. Cartridge Fuses:
 1. Service Entrance: Class T, fast acting.

3.3 INSTALLATION

A. Install fuses in fusible devices. Arrange fuses so rating information is readable without removing fuse.

3.4 IDENTIFICATION

A. Install labels complying with requirements for identification specified in Section 260553 "Identification for Electrical Systems" and indicating fuse replacement information inside of door of each fused switch and adjacent to each fuse block, socket, and holder.

END OF SECTION 262813
SECTION 262816

ENCLOSED SWITCHES AND CIRCUIT BREAKERS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and other Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:

1. Fusible switches.
2. Nonfusible switches.
3. Receptacle switches.
4. Shunt trip switches.
5. Molded-case circuit breakers (MCCBs).
7. Enclosures.

1.3 DEFINITIONS

A. NC: Normally closed.
B. NO: Normally open.
C. SPDT: Single pole, double throw.

1.4 ACTION SUBMITTALS

A. Product Data: For each type of enclosed switch, circuit breaker, accessory, and component indicated. Include nameplate ratings, dimensioned elevations, sections, weights, and manufacturers' technical data on features, performance, electrical characteristics, ratings, accessories, and finishes.

1. Enclosure types and details for types other than NEMA 250, Type 1.
2. Current and voltage ratings.
3. Short-circuit current ratings (interrupting and withstand, as appropriate).
4. Include evidence of a nationally recognized testing laboratory (NRTL) listing for series rating of installed devices.
5. Detail features, characteristics, ratings, and factory settings of individual overcurrent protective devices, accessories, and auxiliary components.
B. Shop Drawings: For enclosed switches and circuit breakers.
 1. Include plans, elevations, sections, details, and attachments to other work.
 2. Include wiring diagrams for power, signal, and control wiring.

1.5 INFORMATIONAL SUBMITTALS

A. Qualification Data: For qualified testing agency.

B. Seismic Qualification Certificates: For enclosed switches and circuit breakers, accessories, and components, from manufacturer.
 1. Basis for Certification: Indicate whether withstand certification is based on actual test of assembled components or on calculation.
 2. Dimensioned Outline Drawings of Equipment Unit: Identify center of gravity and locate and describe mounting and anchorage provisions.
 3. Detailed description of equipment anchorage devices on which the certification is based and their installation requirements.

C. Field quality-control reports.

1.6 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For enclosed switches and circuit breakers to include in emergency, operation, and maintenance manuals.
 1. In addition to items specified in Section 017823 "Operation and Maintenance Data," include the following:
 a. Manufacturer's written instructions for testing and adjusting enclosed switches and circuit breakers.

1.7 QUALITY ASSURANCE

A. Testing Agency Qualifications: Accredited by NETA.
 1. Testing Agency's Field Supervisor: Currently certified by NETA to supervise on-site testing.

1.8 FIELD CONDITIONS

A. Environmental Limitations: Rate equipment for continuous operation under the following conditions unless otherwise indicated:
 1. Ambient Temperature: Not less than minus 22 deg F and not exceeding 104 deg F.
 2. Altitude: Not exceeding 6600 feet.
1.9 WARRANTY

A. Manufacturer's Warranty: Manufacturer and Installer agree to repair or replace components that fail in materials or workmanship within specified warranty period.

1. Warranty Period: One year(s) from date of Substantial Completion.

PART 2 - PRODUCTS

2.1 GENERAL REQUIREMENTS

A. Source Limitations: Obtain enclosed switches and circuit breakers, overcurrent protective devices, components, and accessories, within same product category, from single manufacturer.

B. Product Selection for Restricted Space: Drawings indicate maximum dimensions for enclosed switches and circuit breakers, including clearances between enclosures, and adjacent surfaces and other items. Comply with indicated maximum dimensions.

C. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by an NRTL, and marked for intended location and application.

D. Comply with NFPA 70.

2.2 FUSIBLE SWITCHES

A. Type HD, Heavy Duty:

1. Single throw.
2. Three pole.
3. 240 or 600-V AC as required by the load.
4. Lockable handle with capability to accept three padlocks, and interlocked with cover in closed position.

B. Accessories:

1. Equipment Ground Kit: Internally mounted and labeled for copper and aluminum ground conductors.
2. Neutral Kit: Internally mounted; insulated, capable of being grounded and bonded; labeled for copper and aluminum neutral conductors.
3. Isolated Ground Kit: Internally mounted; insulated, labeled for copper and aluminum neutral conductors.
4. Class R Fuse Kit: Provides rejection of other fuse types when Class R fuses are specified.
5. Lugs: Mechanical type, suitable for number, size, and conductor material.

2.3 NONFUSIBLE SWITCHES

A. Square D
B. Cutler Hammer
C. Siemens
D. General Electric
E. Type HD, Heavy Duty, Three Pole, Single Throw, 1200 A and Smaller: UL 98 and NEMA KS 1, horsepower rated, lockable handle with capability to accept three padlocks, and interlocked with cover in closed position.
F. Accessories:
 1. Equipment Ground Kit: Internally mounted and labeled for copper and aluminum ground conductors.
 2. Neutral Kit: Internally mounted; insulated, capable of being grounded and bonded; labeled for copper and aluminum neutral conductors.
 3. Class R Fuse Kit: Provides rejection of other fuse types when Class R fuses are specified.
 4. Lugs: Mechanical type, suitable for number, size, and conductor material.
 5. Service-Rated Switches: Labeled for use as service equipment.

2.4 MOLDED-CASE CIRCUIT BREAKERS
A. Circuit breakers shall be constructed using glass-reinforced insulating material. Current carrying components shall be completely isolated from the handle and the accessory mounting area.
B. Circuit breakers shall have a toggle operating mechanism with common tripping of all poles, which provides quick-make, quick-break contact action. The circuit-breaker handle shall be over center, be trip free, and reside in a tripped position between on and off to provide local trip indication. Circuit-breaker escutcheon shall be clearly marked on and off in addition to providing international I/O markings. Equip circuit breaker with a push-to-trip button, located on the face of the circuit breaker to mechanically operate the circuit-breaker tripping mechanism for maintenance and testing purposes.
C. The maximum ampere rating and UL, IEC, or other certification standards with applicable voltage systems and corresponding interrupting ratings shall be clearly marked on face of circuit breaker. Circuit breakers shall be 100 percent rated or series rated as indicated on the Drawings. Circuit breaker/circuit breaker combinations for series connected interrupting ratings shall be listed by UL as recognized component combinations. Any series rated combination used shall be marked on the end-use equipment along with the statement "Caution - Series Rated System. _____ Amps Available. Identical Replacement Component Required."
D. MCCBs shall be equipped with a device for locking in the isolated position.
E. Standards: Comply with UL 489 and NEMA AB 3, with interrupting capacity to comply with available fault currents.

H. Electronic Trip Circuit Breakers: Field-replaceable rating plug, rms sensing, with the following field-adjustable settings:
 1. Instantaneous trip.
 2. Long- and short-time pickup levels.
 3. Long- and short-time time adjustments.
 4. Ground-fault pickup level, time delay, and I-squared t response.

I. Current-Limiting Circuit Breakers: Frame sizes 400 A and smaller, and let-through ratings less than NEMA FU 1, RK-5.

J. Integrally Fused Circuit Breakers: Thermal-magnetic trip element with integral limiter-style fuse listed for use with circuit breaker and trip activation on fuse opening or on opening of fuse compartment door.

L. Ground-Fault Equipment-Protection (GFEP) Circuit Breakers: With Class B ground-fault protection (30-mA trip).

M. Features and Accessories:
 1. Standard frame sizes, trip ratings, and number of poles.
 2. Lugs: Mechanical type, suitable for number, size, trip ratings, and conductor material.
 3. Application Listing: Appropriate for application; Type SWD for switching fluorescent lighting loads; Type HID for feeding fluorescent and high-intensity discharge lighting circuits.

2.5 MOLDED-CASE SWITCHES

A. Description: MCCB with fixed, high-set instantaneous trip only, and short-circuit withstand rating equal to equivalent breaker frame size interrupting rating.

B. Features and Accessories:
 1. Standard frame sizes and number of poles.
 2. Lugs:
 a. Mechanical type, suitable for number, size, trip ratings, and conductor material.
 b. Lugs shall be suitable for 194 deg F (90 deg C) rated wire.

2.6 ENCLOSURES

A. Enclosed Switches and Circuit Breakers: UL 489, NEMA KS 1, NEMA 250, and UL 50, to comply with environmental conditions at installed location.
B. Enclosure Finish: The enclosure shall be finished with gray baked enamel paint, electrodeposited on cleaned, phosphatized steel (NEMA 250 Type I).

C. Conduit Entry: NEMA 250 Types 4, 4X, and 12 enclosures shall contain no knockouts. NEMA 250 Types 7 and 9 enclosures shall be provided with threaded conduit openings in both endwalls.

D. Operating Mechanism: The circuit-breaker operating handle shall be externally operable with the operating mechanism being an integral part of the box, not the cover. The cover interlock mechanism shall have an externally operated override. The override shall not permanently disable the interlock mechanism, which shall return to the locked position once the override is released. The tool used to override the cover interlock mechanism shall not be required to enter the enclosure in order to override the interlock.

E. Enclosures designated as NEMA 250 Type 4, 4X stainless steel, 12, or 12K shall have a dual cover interlock mechanism to prevent unintentional opening of the enclosure cover when the circuit breaker is ON and to prevent turning the circuit breaker ON when the enclosure cover is open.

F. NEMA 250 Type 7/9 enclosures shall be furnished with a breather and drain kit to allow their use in outdoor and wet location applications.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine elements and surfaces to receive enclosed switches and circuit breakers for compliance with installation tolerances and other conditions affecting performance of the Work.

B. Proceed with installation only after unsatisfactory conditions have been corrected.

1. Commencement of work shall indicate Installer's acceptance of the areas and conditions as satisfactory.

3.2 PREPARATION

A. Interruption of Existing Electric Service: Do not interrupt electric service to facilities occupied by Owner or others unless permitted under the following conditions and then only after arranging to provide temporary electric service according to requirements indicated:

1. Notify Architect no fewer than 14 days in advance of proposed interruption of electric service.
2. Indicate method of providing temporary electric service.
3. Do not proceed with interruption of electric service without Architect's and Owner’s written permission.
4. Comply with NFPA 70E.
3.3 ENCLOSURE ENVIRONMENTAL RATING APPLICATIONS

A. Enclosed Switches and Circuit Breakers: Provide enclosures at installed locations with the following environmental ratings.

1. Indoor, Dry and Clean Locations: NEMA 250, Type 1.
2. Outdoor Locations: NEMA 250, Type 3R.
4. Other Wet or Damp, Indoor Locations: NEMA 250, Type 4.
5. Indoor Locations Subject to Dust, Falling Dirt, and Dripping Noncorrosive Liquids: NEMA 250, Type 12.

3.4 INSTALLATION

A. Coordinate layout and installation of switches, circuit breakers, and components with equipment served and adjacent surfaces. Maintain required workspace clearances and required clearances for equipment access doors and panels.

B. Install individual wall-mounted switches and circuit breakers with tops at uniform height unless otherwise indicated.

C. Comply with mounting and anchoring requirements specified in Section 260548.16 "Seismic Controls for Electrical Systems."

D. Temporary Lifting Provisions: Remove temporary lifting of eyes, channels, and brackets and temporary blocking of moving parts from enclosures and components.

E. Install fuses in fusible devices.

F. Comply with NFPA 70 and NECA 1.

3.5 IDENTIFICATION

A. Comply with requirements in Section 260553 "Identification for Electrical Systems."

1. Identify field-installed conductors, interconnecting wiring, and components; provide warning signs.
2. Label each enclosure with engraved metal or laminated-plastic nameplate.

3.6 FIELD QUALITY CONTROL

A. Tests and Inspections for Switches:

1. Visual and Mechanical Inspection:

 a. Inspect physical and mechanical condition.
 b. Inspect anchorage, alignment, grounding, and clearances.
 c. Verify that the unit is clean.
 d. Verify blade alignment, blade penetration, travel stops, and mechanical operation.
e. Verify that fuse sizes and types match the Specifications and Drawings.
f. Verify that each fuse has adequate mechanical support and contact integrity.
g. Inspect bolted electrical connections for high resistance using one of the two following methods:
 1) Use a low-resistance ohmmeter.
 a) Compare bolted connection resistance values to values of similar connections. Investigate values that deviate from those of similar bolted connections by more than 50 percent of the lowest value.
 2) Verify tightness of accessible bolted electrical connections by calibrated torque-wrench method in accordance with manufacturer's published data or NETA ATS Table 100.12.
 a) Bolt-torque levels shall be in accordance with manufacturer's published data. In the absence of manufacturer's published data, use NETA ATS Table 100.12.

h. Verify that operation and sequencing of interlocking systems is as described in the Specifications and shown on the Drawings.
i. Verify correct phase barrier installation.
j. Verify lubrication of moving current-carrying parts and moving and sliding surfaces.

2. Electrical Tests:
 a. Perform resistance measurements through bolted connections with a low-resistance ohmmeter. Compare bolted connection resistance values to values of similar connections. Investigate values that deviate from adjacent poles or similar switches by more than 50 percent of the lowest value.
 b. Measure contact resistance across each switchblade fuseholder. Drop values shall not exceed the high level of the manufacturer's published data. If manufacturer's published data are not available, investigate values that deviate from adjacent poles or similar switches by more than 50 percent of the lowest value.
 c. Perform insulation-resistance tests for one minute on each pole, phase-to-phase and phase-to-ground with switch closed, and across each open pole. Apply voltage in accordance with manufacturer's published data. In the absence of manufacturer's published data, use Table 100.1 from the NETA ATS. Investigate values of insulation resistance less than those published in Table 100.1 or as recommended in manufacturer's published data.

B. Tests and Inspections for Molded Case Circuit Breakers:
 1. Visual and Mechanical Inspection:
 a. Verify that equipment nameplate data are as described in the Specifications and shown on the Drawings.
 b. Inspect physical and mechanical condition.
 c. Inspect anchorage, alignment, grounding, and clearances.
 d. Verify that the unit is clean.
e. Operate the circuit breaker to ensure smooth operation.

f. Inspect bolted electrical connections for high resistance using one of the two following methods:

1) Use a low-resistance ohmmeter.

a) Compare bolted connection resistance values to values of similar connections. Investigate values that deviate from those of similar bolted connections by more than 50 percent of the lowest value.

2) Verify tightness of accessible bolted electrical connections by calibrated torque-wrench method in accordance with manufacturer's published data or NETA ATS Table 100.12.

a) Bolt-torque levels shall be in accordance with manufacturer's published data. In the absence of manufacturer's published data, use NETA ATS Table 100.12.

g. Inspect operating mechanism, contacts, and chutes in unsealed units.

2. Electrical Tests:

a. Perform resistance measurements through bolted connections with a low-resistance ohmmeter. Compare bolted connection resistance values to values of similar connections. Investigate values that deviate from adjacent poles or similar switches by more than 50 percent of the lowest value.

b. Perform insulation-resistance tests for one minute on each pole, phase-to-phase and phase-to-ground with circuit breaker closed, and across each open pole. Apply voltage in accordance with manufacturer's published data. In the absence of manufacturer's published data, use Table 100.1 from the NETA ATS. Investigate values of insulation resistance less than those published in Table 100.1 or as recommended in manufacturer's published data.

c. Perform a contact/pole resistance test. Drop values shall not exceed the high level of the manufacturer's published data. If manufacturer's published data are not available, investigate values that deviate from adjacent poles or similar switches by more than 50 percent of the lowest value.

d. Perform insulation resistance tests on all control wiring with respect to ground. Applied potential shall be 500-V dc for 300-V rated cable and 1000-V dc for 600-V rated cable. Test duration shall be one minute. For units with solid state components, follow manufacturer's recommendation. Insulation resistance values shall be no less than two megohms.

3. Correct malfunctioning units on-site, where possible, and retest to demonstrate compliance; otherwise, replace with new units and retest.

4. Test and adjust controls, remote monitoring, and safeties. Replace damaged and malfunctioning controls and equipment.

C. Enclosed switches and circuit breakers will be considered defective if they do not pass tests and inspections.
3.7 ADJUSTING

A. Adjust moving parts and operable components to function smoothly, and lubricate as recommended by manufacturer.
SECTION 265119
LED INTERIOR LIGHTING

PART 1 - PART 1 - GENERAL

1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary
 Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
A. Section Includes:
 1. Interior solid-state luminaires that use LED technology.
 2. Lighting fixture supports.

1.3 DEFINITIONS
A. CCT: Correlated color temperature.
B. CRI: Color Rendering Index.
C. Fixture: See "Luminaire."
D. IP: International Protection or Ingress Protection Rating.
E. LED: Light-emitting diode.
F. Lumen: Measured output of lamp and luminaire, or both.
G. Luminaire: Complete lighting unit, including lamp, reflector, and housing.

1.4 ACTION SUBMITTALS
A. Product Data: For each type of product.
 1. Arrange in order of luminaire designation.
 2. Include data on features, accessories, and finishes.
 3. Include physical description and dimensions of luminaires.
 4. Include emergency lighting units, including batteries and chargers.
 5. Include life, output (lumens, CCT, and CRI), and energy efficiency data.
a. Manufacturers' Certified Data: Photometric data certified by manufacturer's laboratory with a current accreditation under the National Voluntary Laboratory Accreditation Program for Energy Efficient Lighting Products.

B. Shop Drawings: For nonstandard or custom luminaires.
 1. Include diagrams for control and signal wiring of relay panel systems or network/distributed type control systems if used on this project.

C. Samples: Only when requested by the architect or engineer.

1.5 INFORMATIONAL SUBMITTALS

A. Coordination Drawings: Reflected ceiling plan(s) and other details, drawn to scale, on which the following items are shown and coordinated with each other, using input from installers of the items involved:
 1. Lighting luminaires.
 2. Suspended ceiling components.
 3. Partitions and millwork that penetrate the ceiling or extend to within 12 inches of the plane of the luminaires.
 4. Structural members to which luminaires will be attached.
 5. Initial access modules for acoustical tile, including size and locations.
 6. Items penetrating finished ceiling, including the following:
 a. Other luminaires.
 b. Air outlets and inlets.
 c. Speakers.
 d. Sprinklers.
 e. Access panels.
 f. Ceiling-mounted projectors.
 7. Moldings.

B. Qualification Data: For testing laboratory providing photometric data for luminaires.

C. Detailed description of equipment anchorage devices on which the certification is based and their installation requirements.

D. Product Certificates: For each type of luminaire.

E. Product Test Reports: For each luminaire, for tests performed by manufacturer and witnessed by a qualified testing agency.

F. Sample warranty.

1.6 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For luminaires and lighting systems to include in operation and maintenance manuals.
1. Provide a list of all lamp types used on Project; use ANSI and manufacturers' codes.

1.7 QUALITY ASSURANCE

A. Luminaire Photometric Data Testing Laboratory Qualifications: Luminaire manufacturer's laboratory that is accredited under the NVLAP for Energy Efficient Lighting Products.

B. Luminaire Photometric Data Testing Laboratory Qualifications: Provided by an independent agency, with the experience and capability to conduct the testing indicated, that is an NRTL as defined by OSHA in 29 CFR 1910.7, accredited under the NVLAP for Energy Efficient Lighting Products, and complying with the applicable IES testing standards.

C. Provide luminaires from a single manufacturer for each luminaire type.

D. Each luminaire type shall be binned within a three-step MacAdam Ellipse to ensure color consistency among luminaires.

E. Mockups: For interior lighting luminaires in room or module mockups, complete with power and control connections.
 1. Obtain Architect's approval of luminaires in mockups before starting installations.
 2. Maintain mockups during construction in an undisturbed condition as a standard for judging the completed Work.
 3. Approval of mockups does not constitute approval of deviations from the Contract Documents contained in mockups unless Architect specifically approves such deviations in writing.
 4. Subject to compliance with requirements, approved mockups may become part of the completed Work if undisturbed at time of Substantial Completion.

1.8 DELIVERY, STORAGE, AND HANDLING

A. Protect finishes of exposed surfaces by applying a strippable, temporary protective covering before shipping.

1.9 WARRANTY

A. Warranty: Manufacturer and Installer agree to repair or replace components of luminaires that fail in materials or workmanship within specified warranty period.

B. Warranty Period: Five year(s) from date of Substantial Completion.
PART 2 - PRODUCTS

2.1 LUMINAIRE REQUIREMENTS

A. For all fixtures with screw-in sockets (incandescent sockets, etc.), contractor shall provide and install a compatible LED lamp. Manufacturer shall label fixture with a maximum wattage equal to that of the specified lamp unless noted otherwise.

B. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

C. NRTL Compliance: Luminaires for hazardous locations shall be listed and labeled for indicated class and division of hazard by an NRTL.

D. FM Global Compliance: Luminaires for hazardous locations shall be listed and labeled for indicated class and division of hazard by FM Global.

E. Recessed Fixtures: Comply with NEMA LE 4.

F. CRI of minimum 80.

G. Lamps dimmable from 100 percent to 0 percent of maximum light output where dimming is shown on plans or in schedule. Contractor is responsible for providing compatible dimming control for all fixture types provided.

H. Internal driver.

2.2 MATERIALS

A. Metal Parts:
 1. Free of burrs and sharp corners and edges.
 2. Sheet metal components shall be steel unless otherwise indicated.
 3. Form and support to prevent warping and sagging.

B. Doors, Frames, and Other Internal Access: Smooth operating, free of light leakage under operating conditions, and designed to permit relamping without use of tools. Designed to prevent doors, frames, lenses, diffusers, and other components from falling accidentally during relamping and when secured in operating position.

C. Diffusers and Globes:
 1. Acrylic Diffusers: One hundred percent virgin acrylic plastic, with high resistance to yellowing and other changes due to aging, exposure to heat, and UV radiation.
 2. Glass: Annealed crystal glass unless otherwise indicated.
 3. Lens Thickness: At least 0.125 inch minimum unless otherwise indicated.

D. Factory-Applied Labels: Comply with UL 1598. Include recommended lamps. Locate labels where they will be readily visible to service personnel, but not seen from normal viewing angles when lamps are in place.
1. Label shall include the following lamp characteristics:
 a. "USE ONLY" and include specific lamp type.
 b. Lamp diameter, shape, size, wattage, and coating.
 c. CCT and CRI for all luminaires.

2.3 METAL FINISHES
 A. Variations in finishes are unacceptable in the same piece. Variations in finishes of adjoining components are acceptable if they are within the range of approved Samples and if they can be and are assembled or installed to minimize contrast.

2.4 LUMINAIRE FIXTURE SUPPORT COMPONENTS
 A. Comply with requirements in Section 260529 "Hangers and Supports for Electrical Systems" for channel and angle iron supports and nonmetallic channel and angle supports.
 B. Single-Stem Hangers: 1/2-inch steel tubing with swivel ball fittings and ceiling canopy. Finish same as luminaire.
 D. Rod Hangers: 3/16-inch minimum diameter, cadmium-plated, threaded steel rod.
 E. Hook Hangers: Integrated assembly matched to luminaire, line voltage, and equipment with threaded attachment, cord, and locking-type plug.

PART 3 - EXECUTION

3.1 EXAMINATION
 A. Examine substrates, areas, and conditions, with Installer present, for compliance with requirements for installation tolerances and other conditions affecting performance of the Work.
 B. Examine roughing-in for luminaire to verify actual locations of luminaire and electrical connections before fixture installation. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 TEMPORARY LIGHTING
 A. If approved by the Architect, use selected permanent luminaires for temporary lighting. When construction is sufficiently complete, clean luminaires used for temporary lighting and install new lamps.
3.3 INSTALLATION

A. Comply with NECA 1.

B. Install luminaires level, plumb, and square with ceilings and walls unless otherwise indicated.

C. Install lamps in each luminaire.

D. Supports:
 1. Sized and rated for luminaire weight.
 2. Able to maintain luminaire position after cleaning and relamping.
 3. Provide support for luminaire without causing deflection of ceiling or wall.
 4. Luminaire mounting devices shall be capable of supporting a horizontal force of 100 percent of luminaire weight and vertical force of 400 percent of luminaire weight.

E. Flush-Mounted Luminaire Support:
 1. Secured to outlet box.
 2. Attached to ceiling structural members at four points equally spaced around circumference of luminaire.
 3. Trim ring flush with finished surface.

F. Suspended Luminaire Support:
 1. Pendants and Rods: Where longer than 48 inches, brace to limit swinging.
 3. Do not use ceiling grid as support for pendant luminaires. Connect support wires or rods to building structure.

G. Ceiling-Grid-Mounted Luminaires:
 1. Secure to any required outlet box.
 2. Secure luminaire to the luminaire opening using approved fasteners in a minimum of four locations, spaced near corners of luminaire.
 3. Use approved devices and support components to connect luminaire to ceiling grid and building structure in a minimum of four locations, spaced near corners of luminaire.

H. Comply with requirements in Section 260519 "Low-Voltage Electrical Power Conductors and Cables" for wiring connections.

3.4 IDENTIFICATION

A. Identify system components, wiring, cabling, and terminals. Comply with requirements for identification specified in Section 260553 "Identification for Electrical Systems."
3.5 FIELD QUALITY CONTROL

A. Perform the following tests and inspections:

1. Operational Test: After installing luminaires, switches, and accessories, and after electrical circuitry has been energized, test units to confirm proper operation.
2. Test for Emergency Lighting: Interrupt power supply to demonstrate proper operation. Verify transfer from normal power to battery power and retransfer to normal.

B. Luminaire will be considered defective if it does not pass operation tests and inspections.

C. Prepare test and inspection reports.

3.6 STARTUP SERVICE

A. Contractor shall test operation of all fixtures and controls. Contractor shall program and adjust all components to provide a fully functional system in accordance with owner’s requirements.

3.7 ADJUSTING

A. Contractor shall adjust all fixtures in accordance with manufacturer’s recommendations, and as project specific requirements dictate.

END OF SECTION 265119
This page intentionally left blank
SECTION 270500

COMMON WORK RESULTS FOR COMMUNICATIONS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
 A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
 A. Section Includes:
 1. Communications equipment coordination and installation.
 2. Sleeves for pathways and cables.
 3. Sleeve seals.
 5. Common communications installation requirements.

1.3 DEFINITIONS
 A. EPDM: Ethylene-propylene-diene terpolymer rubber.
 B. NBR: Acrylonitrile-butadiene rubber.

1.4 SUBMITTALS
 A. Product Data: For sleeve seals.

1.5 COORDINATION
 A. Coordinate arrangement, mounting, and support of communications equipment:
 1. To allow maximum possible headroom unless specific mounting heights that reduce headroom are indicated.
 2. To provide for ease of disconnecting the equipment with minimum interference to other installations.
 3. To allow right of way for piping and conduit installed at required slope.
 4. So connecting pathways, cables, wireways, cable trays, and busways will be clear of obstructions and of the working and access space of other equipment.
 B. Coordinate installation of required supporting devices and set sleeves in cast-in-place concrete, masonry walls, and other structural components as they are constructed.
C. Coordinate location of access panels and doors for communications items that are behind finished surfaces or otherwise concealed.

1.6 PRICING

A. The contractor shall prepare and present to Midwestern State University or their representative pricing which shall include the list of equipment and labor in tabular form including; part numbers, item description, unit pricing, number of units, extended pricing and totals.

PART 2 - PRODUCTS

2.1 SLEEVES FOR PATHWAYS AND CABLES

A. Steel Pipe Sleeves: Hilti CP 653 Speed Sleeve.

2.2 SLEEVE SEALS

A. Description: Modular sealing device, designed for field assembly, to fill annular space between sleeve and pathway or cable.

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Hilti USA
 b. STI, Inc.

2. Sealing Elements: EPDM or NBR interlocking links shaped to fit surface of cable or conduit. Include type and number required for material and size of pathway or cable.
3. Pressure Plates: Stainless steel. Include two for each sealing element.
4. Connecting Bolts and Nuts: Stainless steel of length required to secure pressure plates to sealing elements. Include one for each sealing element.

2.3 GROUT

A. Nonmetallic, Shrinkage-Resistant Grout: ASTM C 1107, factory-packaged, nonmetallic aggregate grout, noncorrosive, nonstaining, mixed with water to consistency suitable for application and a 30-minute working time.
PART 3 - EXECUTION

3.1 COMMON REQUIREMENTS FOR COMMUNICATIONS INSTALLATION

A. Comply with NECA 1.

B. Measure indicated mounting heights to bottom of unit for suspended items and to center of unit for wall-mounting items.

C. Headroom Maintenance: If mounting heights or other location criteria are not indicated, arrange and install components and equipment to provide maximum possible headroom consistent with these requirements.

D. Equipment: Install to facilitate service, maintenance, and repair or replacement of components of both communications equipment and other nearby installations. Connect in such a way as to facilitate future disconnecting with minimum interference with other items in the vicinity.

E. Right of Way: Give to piping systems installed at a required slope.

3.2 SLEEVE INSTALLATION FOR COMMUNICATIONS PENETRATIONS

A. Communications penetrations occur when pathways, cables, wireways, or cable trays penetrate concrete slabs, concrete or masonry walls, or fire-rated floor and wall assemblies.

B. Concrete Slabs and Walls: Install sleeves during erection of slabs and walls.

C. Use pipe sleeves unless penetration arrangement requires rectangular sleeved opening.

D. Fire-Rated Assemblies: Install sleeves for penetrations of fire-rated floor and wall assemblies unless openings compatible with firestop system used are fabricated during construction of floor or wall.

E. Cut sleeves to length for mounting flush with both surfaces of walls.

F. Extend sleeves installed in floors 4 inches above finished floor level.

G. Size pipe sleeves to provide 1/4-inch annular clear space between sleeve and pathway or cable, unless indicated otherwise.

H. Seal space outside of sleeves with grout for penetrations of concrete and masonry
 1. Promptly pack grout solidly between sleeve and wall so no voids remain. Tool exposed surfaces smooth; protect grout while curing.

I. Interior Penetrations of Non-Fire-Rated Walls and Floors: Seal annular space between sleeve and pathway or cable, using joint sealant appropriate for size, depth, and location of joint.
J. Fire-Rated-Assembly Penetrations: Maintain indicated fire rating of walls, partitions, ceilings, and floors at pathway and cable penetrations. Install sleeves and seal pathway and cable penetration sleeves with firestop materials.

K. Roof-Penetration Sleeves: Seal penetration of individual pathways and cables with flexible boot-type flashing units applied in coordination with roofing work.

L. Aboveground, Exterior-Wall Penetrations: Seal penetrations using steel pipe sleeves and mechanical sleeve seals. Select sleeve size to allow for 1-inch annular clear space between pipe and sleeve for installing mechanical sleeve seals.

M. Underground, Exterior-Wall Penetrations: Install cast-iron pipe sleeves. Size sleeves to allow for 1-inch annular clear space between pathway or cable and sleeve for installing mechanical sleeve seals.

3.3 SLEEVE-SEAL INSTALLATION

A. Install to seal exterior wall penetrations.

B. Use type and number of sealing elements recommended by manufacturer for pathway or cable material and size. Position pathway or cable in center of sleeve. Assemble mechanical sleeve seals and install in annular space between pathway or cable and sleeve. Tighten bolts against pressure plates that cause sealing elements to expand and make watertight seal.

3.4 FIRESTOPPING

A. Apply firestopping to penetrations of fire-rated floor and wall assemblies for communications installations to restore original fire-resistance rating of assembly.

END OF SECTION
SECTION 270526

GROUNDING AND BONDING FOR COMMUNICATIONS SYSTEMS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:

 A. Grounding conductors.
 B. Grounding connectors.
 C. Grounding busbars.
 D. Grounding rods.
 E. Grounding labeling.

1.3 DEFINITIONS

A. BCT: Bonding conductor for telecommunications.

B. EMT: Electrical metallic tubing.

C. TGB: Telecommunications grounding busbar.

D. TMGB: Telecommunications main grounding busbar.

1.4 ACTION SUBMITTALS

A. Product Data: For each type of product.

B. Shop Drawings: For communications equipment room signal reference grid. Include plans, elevations, sections, details, and attachments to other work.

1.5 INFORMATIONAL SUBMITTALS

A. As-Built Data: Plans showing as-built locations of grounding and bonding infrastructure, including the following:

 A. Ground rods.
 B. Ground and roof rings.
 C. BCT, TMGB, TGBs, and routing of their bonding conductors.

B. Qualification Data: For Installer, installation supervisor, and field inspector.

C. Qualification Data: For testing agency and testing agency's field supervisor.
D. Field quality-control reports.

1.6 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For grounding to include in emergency, operation, and maintenance manuals.
 A. In addition to items specified in Section 017823 “Operation and Maintenance Data,” include the following:
 a. Result of the ground-resistance test, measured at the point of BCT connection.
 b. Result of the bonding-resistance test at each TGB and its nearest grounding electrode.

1.7 QUALITY ASSURANCE

A. Installer Qualifications: Cabling Installer must have personnel certified by BICSI on staff.
 A. Installation Supervision: Installation shall be under the direct supervision of ITS Technician, who shall be present at all times when Work of this Section is performed at Project site.
 B. Field Inspector: Currently registered by BICSI as ITS Installer to perform the on-site inspection.

1.8 PRICING

A. The contractor shall prepare and present to Midwestern State University or their representative pricing which shall include the list of equipment and labor in tabular form including: part numbers, item description, unit pricing, number of units, extended pricing and totals.

PART 2 - PRODUCTS

2.1 SYSTEM COMPONENTS

A. Comply with J-STD-607-A.

2.2 CONDUCTORS

A. Comply with UL 486A-486B.

 B. Cable Tray Grounding Jumper:
 A. Green #8 AWG insulated bonding jumper (12” max) with appropriate lugs or manufactured braided copper grounding jumper equal to B-Line #CAM-GJ, T&B #BD12, OZ/Gedney type “FB” or Mono-Systems.
 B. Not smaller than No. 6 AWG and not longer than 12 inches. If jumper is a wire, it shall have a crimped grounding lug with two holes and long barrel for two crimps. If jumper is a flexible braid, it shall have a one-hole ferrule. Attach with grounding screw or connector provided by cable tray manufacturer.
 C. Not smaller than No. 10 AWG and not longer than 12 inches. If jumper is a wire, it shall have a crimped grounding lug with one hole and standard barrel for one crimp. If jumper is a flexible braid, it shall have a one- or two-hole ferrule. Attach with grounding screw or connector provided by cable tray manufacturer.
C. Equipment Frame Bonding Conductor

 A. Panduit #TRGK672 Telecommunications Rack Grounding Kit.

D. Bonding Conductor (BC)

 A. Green insulated copper bonding conductor, size as required by NEC.
 B. The BC shall be, as a minimum, the same size as the TBB.

E. Telecommunications Bonding Backbone (TBB)

 A. Green insulated copper conductor, minimum size of No. 6 AWG. The TBB shall be sized at 2 kcmil per linear foot of conductor length up to a maximum size of 3/0 AWG. Insulation shall meet fire ratings of its pathway.
 a. Table 1
 1) Sizing of the TBB
 2) TBB length (ft) TBB Size (AWG)
 a) Less than 13 6
 b) 14-20 4
 c) 21-26 3
 d) 27-33 2
 e) 34-41 1
 f) 42-52 1/0
 g) 53-66 2/0

 b. Greater than 66 3/0

2.3 GROUNDING BUSBARS

 A. Telecommunications Main Grounding Busbar (TMGB) Chatsworth #10622-012 ground busbar with Chatsworth #10622-000 busbar insulators or equivalent in Erico.

 B. Telecommunications Grounding Busbar (TGB) Chatsworth #10622-012 ground busbar with Chatsworth #10622-000 busbar insulators or equivalent in Erico.

 C. TMGB: Predrilled, wall-mounted, rectangular bars of hard-drawn solid copper, 1/4 by 4 inches in cross section, length as indicated on Drawings. The busbar shall be NRTL listed for use as TMGB and shall comply with J-STD-607-A.
 A. Predrilling shall be with holes for use with lugs specified in this Section.
 B. Mounting Hardware: Stand-off brackets that provide a 4-inch clearance to access the rear of the busbar. Brackets and bolts shall be stainless steel.
 C. Stand-off insulators for mounting shall be Lexan or PVC. Comply with UL 891 for use in 600-V switchboards, impulse tested at 5000 V.
D. TGB: Predrilled rectangular bars of hard-drawn solid copper, 1/4 by 2 inches in cross section, length as indicated on Drawings. The busbar shall be for wall mounting, shall be NRTL listed as complying with UL 467, and shall comply with J-STD-607-A.

 A. Predrilling shall be with holes for use with lugs specified in this Section.
 B. Mounting Hardware: Stand-off brackets that provide at least a 2-inch
 C. Stand-off insulators for mounting shall be Lexan or PVC. Comply with UL 891 for use in 600-V switchboards, impulse tested at 5000 V.

E. Rack and Cabinet Grounding Busbars: Rectangular bars of hard-drawn solid copper, accepting conductors ranging from No. 14 to No. 2/0 AWG, NRTL listed as complying with UL 467, and complying with J-STD-607-A. Predrilling shall be with holes for use with lugs specified in this Section.

 A. Cabinet-Mounted Busbar: Terminal block, with stainless-steel or copper-plated hardware for attachment to the cabinet.
 B. Rack-Mounted Horizontal Busbar: Designed for mounting in 19-inch equipment racks. Include a copper splice bar for transitioning to an adjoining rack, and stainless-steel or copper-plated hardware for attachment to the rack.
 C. Rack-Mounted Vertical Busbar: 72 or 36 inches long, with stainless-steel or copper-plated hardware for attachment to the rack.

2.4 GROUNDING JOINTS AND SPLICES

 A. Grounding conductor joints/splices shall be mechanical type, copper alloy, with a minimum of two bolts and a separate section for each conductor equal to Burndy “QPX”, OZ/Gedney “XTP” or “PMX” or Penn-Union “VX” or copper compression type with two (2) indents equal to Burndy, T&B or Blackburn.

 B. Grounding conductor terminations (lugs) shall be single barrel, mechanical screw type, copper alloy with machined contact surfaces equal to OZ type “SL”, T&B, or Burndy or copper compression type with two (2) indents equal to Burndy, T&B or Blackburn.

2.5 LABELING

 A. Comply with TIA/EIA-606-A and UL 969 for a system of labeling materials, including label stocks, laminating adhesives, and inks used by label printers.

 B. Adhesive Film Label with Clear Protective Overlay: Machine printed, in black, by thermal transfer or equivalent process. Minimum letter height shall be 3/8 inch. Overlay shall provide a weatherproof and UV-resistant seal for label.

PART 3 - EXECUTION

3.1 EXAMINATION

 A. Examine the ac grounding electrode system and equipment grounding for compliance with requirements for maximum ground-resistance level and other conditions affecting performance of grounding and bonding of the electrical system.

 B. Inspect the test results of the ac grounding system measured at the point of BCT connection.

 C. Prepare written report, endorsed by Installer, listing conditions detrimental to performance of the Work.

 D. Proceed with connection of the BCT only after unsatisfactory conditions have been corrected.
3.2 INSTALLATION

A. Bonding shall include the ac utility power service entrance, the communications cable entrance, and the grounding electrode system. The bonding of these elements shall form a loop so that each element is connected to at least two others.

B. Comply with NECA 1.

C. Comply with J-STD-607-A.

3.3 APPLICATION

A. Conductors: Install solid conductor for No. 8 AWG and smaller and stranded conductors for No. 6 AWG and larger unless otherwise indicated.

 A. The bonding conductors between the TGB and structural steel of steel-frame buildings shall not be smaller than No. 6 AWG.
 B. The bonding conductors between the TMGB and structural steel of steel-frame buildings shall not be smaller than No. 6 AWG.

B. Underground Grounding Conductors: Install bare copper conductor, No. 2 AWG minimum.

C. Conductor Terminations and Connections:

 A. Pipe and Equipment Grounding Conductor Terminations: Bolted connectors.
 B. Underground Connections: Welded connectors except at test wells and as otherwise indicated.
 C. Connections to Ground Rods at Test Wells: Bolted connectors.
 D. Connections to Structural Steel: Welded connectors.

D. Conductor Support:

 A. Secure grounding and bonding conductors at intervals of not less than 36 inches.

E. Grounding and Bonding Conductors:

 A. Install in the straightest and shortest route between the origination and termination point, and no longer than required. The bend radius shall not be smaller than eight times the diameter of the conductor. No one bend may exceed 90 degrees.
 B. Install without splices.
 C. Support at not more than 36-inch intervals.
 D. Install grounding and bonding conductors in 3/4-inch PVC conduit until conduit enters a telecommunications room. The grounding and bonding conductor pathway through a plenum shall be in EMT. Conductors shall not be installed in EMT unless otherwise indicated.

 a. If a grounding and bonding conductor is installed in ferrous metallic conduit, bond the conductor to the conduit using a grounding bushing that complies with requirements in Section 270528 "Pathways for Communications Systems," and bond both ends of the conduit to a TGB.

3.4 GROUNDING BUSBARS

A. Indicate locations of grounding busbars on Drawings. Install busbars horizontally, on insulated spacers 2 inches minimum from wall, 84 inches above finished floor unless otherwise indicated.

B. Where indicated on both sides of doorways, route bus up to top of door frame, across top of doorway, and down; connect to horizontal bus.
3.5 CONNECTIONS

A. Bond metallic equipment in a telecommunications equipment room to the grounding busbar in that room, using equipment grounding conductors not smaller than No. 6 AWG.

B. Stacking of conductors under a single bolt is not permitted when connecting to busbars.

C. Assemble the wire connector to the conductor, complying with manufacturer's written instructions and as follows:
 A. Use crimping tool and the die specific to the connector.
 B. Pretwist the conductor.
 C. Apply an antioxidant compound to all bolted and compression connections.

D. Primary Protector: Bond to the TMGB with insulated bonding conductor.

E. Interconnections: Interconnect all TGBs with the TMGB with the telecommunications backbone conductor. If more than one TMGB is installed, interconnect TMGBs using the grounding equalizer conductor. The telecommunications backbone conductor and grounding equalizer conductor size shall not be less than 2 kcmils/linear foot of conductor length, up to a maximum size of No. 3/0 AWG 168 kcmils unless otherwise indicated.

F. Telecommunications Enclosures and Equipment Racks: Bond metallic components of enclosures to the telecommunications bonding and grounding system. Install vertically mounted rack grounding busbar unless the enclosure and rack are manufactured with the busbar. Bond the equipment grounding busbar to the TGB No. 2 AWG bonding conductors.

G. Structural Steel: Where the structural steel of a steel frame building is readily accessible within the room or space, bond each TGB and TMGB to the vertical steel of the building frame.

H. Electrical Power Panelboards: Where an electrical panelboard for telecommunications equipment is located in the same room or space, bond each TGB to the ground bar of the panelboard.

I. Shielded Cable: Bond the shield of shielded cable to the TGB in communications rooms and spaces. Comply with TIA/EIA-568-B.1 and TIA/EIA-568-B.2 when grounding screened, balanced, twisted-pair cables.

J. Rack- and Cabinet-Mounted Equipment: Bond powered equipment chassis to the cabinet or rack grounding bar. Power connection shall comply with NFPA 70; the equipment grounding conductor in the power cord of cord- and plug-connected equipment shall be considered as a supplement to bonding requirements in this Section.

K. Access Floors: Bond all metal parts of access floors to the TGB.

L. Equipment Room Signal Reference Grid: Provide a low-impedance path between telecommunications cabinets, equipment racks, and the reference grid, using No. AWG bonding conductors.
 A. Install the conductors in grid pattern on 4-foot centers, allowing bonding of one pedestal from each access floor tile.
 B. Bond the TGB of the equipment room to the reference grid at two or more locations.
 C. Bond all conduits and piping entering the equipment room to the TGB at the perimeter of the room.

D. Waveguides and Coaxial Cable:
 a. Bond cable shields at the point of entry into the building to the TGB and to the cable entrance plate, using No. 2 AWG bonding conductors.
 b. Bond coaxial cable surge arrester to the ground or roof ring using bonding conductor size recommended by surge-arrester manufacturer.
3.6 GROUNDING UNDERGROUND DISTRIBUTION SYSTEM COMPONENTS

A. Duct-Bank Grounding Conductor: Bury 12 inches above duct bank when indicated as part of duct-bank installation.

B. Comply with IEEE C2 grounding requirements.

C. Grounding Manholes and Handholes: Install a driven ground rod through manhole or handhole floor, close to wall, and set rod depth so 4 inches extends above finished floor. If necessary, install ground rod before manhole is placed and provide No. 1/0 AWG bare, tinned-copper conductor from ground rod into manhole through a waterproof sleeve in manhole wall. Protect ground rods passing through concrete floor with a double wrapping of pressure-sensitive insulating tape or heat-shrunk insulating sleeve from 2 inches above to 6 inches below concrete. Seal floor opening with waterproof, nonshrink grout.

D. Grounding Connections to Manhole Components: Bond exposed-metal parts such as inserts, cable racks, pulling irons, ladders, and cable shields within each manhole or handhole, to ground rod or grounding conductor. Make connections with No. 4 AWG minimum, bonding conductor. Train conductors level or plumb around corners and fasten to manhole walls. Connect grounding conductors to cable armor and cable shields according to written instructions by manufacturer of splicing and termination kits.

3.7 IDENTIFICATION

A. Labels shall be preprinted or computer-printed type.

A. Label TMGB(s) with "fs-TMGB," where "fs" is the telecommunications space identifier for the space containing the TMGB.

B. Label TGB(s) with "fs-TGB," where "fs" is the telecommunications space identifier for the space containing the TGB.

C. Label the BCT and each telecommunications backbone conductor at its attachment point: "WARNING! TELECOMMUNICATIONS BONDING CONDUCTOR. DO NOT REMOVE OR DISCONNECT!"

3.8 FIELD QUALITY CONTROL

A. Testing Agency: Engage a qualified testing agency to perform tests and inspections.

B. Perform tests and inspections.

C. Tests and Inspections:

A. Inspect physical and mechanical condition. Verify tightness of accessible, bolted, electrical connections with a calibrated torque wrench according to manufacturer's written instructions.

B. Test the bonding connections of the system using an ac earth ground-resistance tester, taking two-point bonding measurements in each telecommunications equipment room containing a TMGB and a TGB and using the process recommended by BICSI TDMM. Conduct tests with the facility in operation.

a. Measure the resistance between the busbar and the nearest available grounding electrode. The maximum acceptable value of this bonding resistance is 100 milliohms.

C. Test for ground loop currents using a digital clamp-on ammeter, with a full-scale of not more than 10 A, displaying current in increments of 0.01 A at an accuracy of plus/minus 2.0 percent.

a. With the grounding infrastructure completed and the communications system electronics operating, measure the current in every conductor connected to the TMGB. Maximum acceptable ac current level is 1 A.

D. Excessive Ground Resistance: If resistance to ground at the BCT exceeds 5 ohms, notify Architect promptly and include recommendations to reduce ground resistance.
E. Grounding system will be considered defective if it does not pass tests and inspections.

F. Prepare test and inspection reports.

END OF SECTION
SECTION 27 11 00

COMMUNICATIONS EQUIPMENT ROOM FITTINGS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:

1. Telecommunications mounting elements.
2. Backboards.
3. Telecommunications equipment racks and cabinets.

B. Related Requirements:

1. Section 270536 "Cable Trays for Communications Systems" for cable trays and accessories.
2. Section 271300 "Communications Backbone Cabling" for voice and data cabling associated with system panels and devices.
3. Section 271500 "Communications Horizontal Cabling" for voice and data cabling associated with system panels and devices.
4. Section 280513 "Conductors and Cables for Electronic Safety and Security" for voice and data cabling associated with system panels and devices.

1.3 DEFINITIONS

B. LAN: Local area network.
C. RCDD: Registered Communications Distribution Designer.

1.4 ACTION SUBMITTALS

A. Product Data: For each type of product.

1. Include construction details, material descriptions, dimensions of individual components and profiles, and finishes for equipment racks and cabinets.
2. Include rated capacities, operating characteristics, electrical characteristics, and furnished specialties and accessories.

B. Shop Drawings: For communications equipment room fittings. Include plans, elevations, sections, details, and attachments to other work.

1. Detail equipment assemblies and indicate dimensions, weights, loads, required clearances, method of field assembly, components, and location and size of each field connection.
2. Equipment Racks and Cabinets: Include workspace requirements and access for cable connections.
3. Grounding: Indicate location of grounding bus bar and its mounting detail showing standoff insulators and wall mounting brackets.

1.5 INFORMATIONAL SUBMITTALS

A. Qualification Data: For Installer, qualified layout technician, installation supervisor, and field inspector.

B. Seismic Qualification Certificates: For equipment frames from manufacturer.

1. Basis for Certification: Indicate whether withstand certification is based on actual test of assembled components or on calculation.
2. Dimensioned Outline Drawings of Equipment Unit: Identify center of gravity and locate and describe mounting and anchorage provisions. Base certification on the maximum number of components capable of being mounted in each rack type. Identify components on which certification is based.
3. Detailed description of equipment anchorage devices on which the certification is based and their installation requirements.

1.6 QUALITY ASSURANCE

A. Installer Qualifications: Cabling Installer must have personnel certified by BICSI on staff.

1. Layout Responsibility: Preparation of Shop Drawings shall be under the direct supervision of RCDD.
2. Installation Supervision: Installation shall be under the direct supervision of Registered Technician, who shall be present at all times when Work of this Section is performed at Project site.
3. Field Inspector: Currently registered by BICSI as RCDD to perform the on-site inspection.

1.7 PRICING

A. The contractor shall prepare and present to Midwestern State University or their representative pricing which shall include the list of equipment and labor in tabular form including; part numbers, item description, unit pricing, number of units, extended pricing and totals.
PART 2 - PRODUCTS

2.1 BACKBOARDS

A. Backboards: Plywood, fire-retardant treated, ¾” around the perimeter of the room. Comply with requirements for plywood backing panels specified in Section 061000 "Rough Carpentry." Install A/C grade plywood from 6” A.F.F. to structure above. Install up against the door facing. Provide gang box extenders for the receptacles and switches.

2.2 EQUIPMENT FRAMES

A. Panduit

B. General Frame Requirements:

1. Distribution Frames: Freestanding and wall-mounting, modular-steel units designed for telecommunications terminal support and coordinated with dimensions of units to be supported.
3. Finish: Manufacturer’s standard, baked-polyester powder coat.

C. Floor-Mounted Racks: Modular-type, steel construction.

1. Vertical and horizontal cable management channels, top and bottom cable troughs, grounding lug, and a power strip.
2. Baked-polyester powder coat finish.

D. Cable Management for Equipment Frames:

1. Metal, with integral wire retaining fingers.
2. Baked-polyester powder coat finish.
3. Vertical cable management panels shall have front and rear channels, with covers.
4. Provide horizontal crossover cable manager at the top of each relay rack, with a minimum height of two rack units each.

2.3 POWER STRIPS

A. Power Strips: Comply with UL 1363.

1. Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
2. Rack mounting.
3. LED indicator lights for power and protection status.
4. LED indicator lights for reverse polarity and open outlet ground.
5. Circuit Breaker and Thermal Fusing: When protection is lost, circuit opens and cannot be reset.
6. Circuit Breaker and Thermal Fusing: Unit continues to supply power if protection is lost.
7. Close-coupled, direct plug-in line cord.
8. Rocker-type on-off switch, illuminated when in on position.
10. Protection modes shall be line to neutral, line to ground, and neutral to ground. UL 1449 clamping voltage for all three modes shall be not more than 330 V.

2.4 GROUNDING

A. Comply with requirements in Section 270526 "Grounding and Bonding for Communications Systems" for grounding conductors and connectors.

B. Telecommunications Main Bus Bar:

1. Connectors: Mechanical type, cast silicon bronze, solderless -type wire terminals, and long-barrel, two-bolt connection to ground bus bar.
2. Ground Bus Bar: Copper, minimum 1/4 inch thick by 4 inches wide with 9/32-inch holes spaced 1-1/8 inches apart.
3. Stand-Off Insulators: Comply with UL 891 for use in switchboards, 600 V. Lexan or PVC, impulse tested at 5000 V.

C. Comply with J-STD-607-A.

2.5 LABELING

A. Comply with TIA/EIA-606-A and UL 969 for a system of labeling materials, including label stocks, laminating adhesives, and inks used by label printers.

B. Shall meet the legibility, defacement, exposure and adhesion requirements of UL 969.

C. Shall be preprinted or computer printed type. Hand written labels are not acceptable.

D. Where insert type labels are used provide clear plastic cover over label.

E. Outside plant labels shall be totally waterproof even when submerged.

F. Approved Manufacturer:

1. Panduit
2. Brady Corporation
3. Equivalent

G. Equipment Room Copper, Fiber, and Coax Backbone Cable Labels
1. Panduit Part#LS7-75NL-1 or Brady#WML-1231-292

H. Equipment Room Copper, Fiber, and Coax Horizontal Cable Labels
1. Panduit Part#LS7-75NL-1 or Brady#WML-317-292

I. Work Area Copper, Fiber, and Coax Riser Cable Labels
1. Panduit Part#LS7-75NL-1 or Brady #WML-317-292

J. Patch Panel Labels
1. Panduit Part #LS7-38-1 or Brady #CL-111-619

PART 3 - EXECUTION

3.1 ENTRANCE FACILITIES

A. Contact telecommunications service provider and arrange for installation of demarcation point, protected entrance terminals, and a housing when so directed by service provider.

B. Comply with requirements in Section 270528 "Pathways for Communications Systems" for materials and installation requirements for underground and buried pathways.

3.2 INSTALLATION

A. Comply with NECA 1.

B. Comply with BICSI TDMM for layout and installation of communications equipment rooms.

C. Bundle, lace, and train conductors and cables to terminal points without exceeding manufacturer's limitations on bending radii. Install lacing bars and distribution spools.

D. Coordinate layout and installation of communications equipment with Owner's telecommunications and LAN equipment and service suppliers. Coordinate service entrance arrangement with local exchange carrier.

1. Meet jointly with telecommunications and LAN equipment suppliers, local exchange carrier representatives, and Owner to exchange information and agree on details of equipment arrangements and installation interfaces.
2. Record agreements reached in meetings and distribute them to other participants.
3. Adjust arrangements and locations of distribution frames, cross-connects, and patch panels in equipment rooms to accommodate and optimize arrangement and space requirements of telephone switch and LAN equipment.
4. Adjust arrangements and locations of equipment with distribution frames, cross-connects, and patch panels of cabling systems of other communications, electronic safety and security, and related systems that share space in the equipment room.
3.3 SLEEVE AND SLEEVE SEAL INSTALLATION FOR ELECTRICAL PENETRATIONS

A. Install sleeves and sleeve seals at penetrations of exterior floor and wall assemblies. Comply with requirements in Section 270544 "Sleeves and Sleeve Seals for Communications Pathways and Cabling." Provide Hilti Speed Sleeves for all penetrations.

3.4 FIRESTOPPING

A. Comply with requirements in Section 078413 "Penetration Firestopping."

B. Comply with TIA-569-B, Annex A, "Firestopping."

C. Comply with BICSI TDMM, "Firestopping Systems" Article.

3.5 GROUNDING

A. Install grounding according to BICSI TDMM, "Grounding, Bonding, and Electrical Protection" Chapter.

B. Comply with J-STD-607-A.

C. Locate grounding bus bar to minimize the length of bonding conductors. Fasten to wall allowing at least 2-inch clearance behind the grounding bus bar. Connect grounding bus bar with a minimum No. 4 AWG grounding electrode conductor from grounding bus bar to suitable electrical building ground.

D. Bond metallic equipment to the grounding bus bar, using not smaller than No. 6 AWG equipment grounding conductor.

1. Bond the shield of shielded cable to the grounding bus bar in communications rooms and spaces.

3.6 IDENTIFICATION

A. Identify system components, wiring, and cabling complying with TIA/EIA-606-A. Comply with requirements in Section 260553 "Identification for Electrical Systems."

B. Comply with requirements in Section 099123 "Interior Painting" for painting backboards. For fire-resistant plywood, do not paint over manufacturer's label.

C. Paint and label colors for equipment identification shall comply with TIA/EIA-606-A for Class 2, Class 3] [Class 4] level of administration including optional identification requirements of this standard.
D. The size, color, and contrast of all labels should be selected to ensure that the identifiers are easily read. Labels should be visible during the installation of and normal maintenance of the infrastructure.

E. Labels should be resistant to the environmental conditions at the point of installation (such as moisture, heat, or ultraviolet light), and should have a design life equal to or greater than that of the labeled component.

F. All labels shall be printed or generated by a mechanical device.

3.7 TELECOMMUNICATION IDENTIFIERS

A. All voice and data outlets and patch panels shall be clearly marked using permanent means. Voice and data outlets shall by labeled with: ER/TR Number – Rack/ Wallfield Designation – Rack Unit Location of Patch Panel – Port Number. (ie. XX-A-38-01) Refer to drawings for details

B. Outlet numbers shall be marked by permanent means on each cable at the outlet and at the TR.

3.8 LABELING PROCEDURES

A. Visibility and durability

1. The size, color, and contrast of all labels should be selected to ensure that the identifiers are easily read. Labels should be visible during the installation of and normal maintenance of the infrastructure.

2. Labels should be resistant to the environmental conditions at the point of installation (such as moisture, heat, or ultraviolet light), and should have a design life equal to or greater than that of the labeled component.

3. Labels are generally of either the adhesive or insert type. All labels must be legible, resistant to defacement, and maintain adhesion to the application surface.

4. Outside plant labels shall be totally waterproof, even when submerged.

5. Labels applied directly to a cable shall have a clear vinyl wrapping applied over the label and around the cable to permanently affix the label.

6. Other types of labels, such as tie-on labels, may be used. However, the label must be appropriate for the environment in which it is used, and must be used in the manner intended by the manufacturer.
B. Mechanical generation

1. All cable and faceplate labels shall be printed or generated by a mechanical device.
SECTION 271300
COMMUNICATIONS BACKBONE CABLEING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:
 1. Pathways.
 2. UTP cable.
 3. 50/125-micrometer, optical fiber cabling.
 5. Cable connecting hardware, patch panels, and cross-connects.

1.3 DEFINITIONS

B. Cross-Connect: A facility enabling the termination of cable elements and their interconnection or cross-connection.

C. EMI: Electromagnetic interference.

D. IDC: Insulation displacement connector.

E. LAN: Local area network.

F. RCDD: Registered Communications Distribution Designer.

G. UTP: Unshielded twisted pair.

1.4 BACKBONE CABLEING DESCRIPTION

A. Backbone cabling system shall provide interconnections between communications equipment rooms, main terminal space, and entrance facilities in the telecommunications cabling system structure. Cabling system consists of backbone cables, intermediate and main cross-connects, mechanical terminations, and patch cords or jumpers used for backbone-to-backbone cross-connection.
B. Backbone cabling cross-connects may be located in communications equipment rooms or at entrance facilities. Bridged taps and splitters shall not be used as part of backbone cabling.

1.5 PERFORMANCE REQUIREMENTS

A. General Performance: Backbone cabling system shall comply with transmission standards in TIA/EIA-568-B.1, when tested according to test procedures of this standard.

1.6 SUBMITTALS

A. Product Data: For each type of product indicated.
 1. For all cable, include the following installation data for each type used:
 a. Nominal OD.
 b. Minimum bending radius.
 c. Maximum pulling tension.

B. Shop Drawings:
 1. System Labeling Schedules: Electronic copy of labeling schedules, in software and format selected by Owner.
 2. System Labeling Schedules: Electronic copy of labeling schedules that are part of the cabling and asset identification system of the software.
 3. Cabling administration drawings and printouts.
 4. Wiring diagrams to show typical wiring schematics including the following:
 b. Patch panels.
 c. Patch cords.
 5. Cross-connects and patch panels. Detail mounting assemblies, and show elevations and physical relationship between the installed components.
 6. Cable tray layout, showing cable tray route to scale, with relationship between the tray and adjacent structural, electrical, and mechanical elements. Include the following:
 a. Vertical and horizontal offsets and transitions.
 b. Clearances for access above and to side of cable trays.
 c. Vertical elevation of cable trays above the floor or bottom of ceiling structure.
 d. Load calculations to show dead and live loads as not exceeding manufacturer's rating for tray and its support elements.

C. Qualification Data: For qualified layout technician, installation supervisor, and field inspector.

D. Source quality-control reports.

E. Field quality-control reports.
F. Maintenance Data: For splices and connectors to include in maintenance manuals.

G. Software and Firmware Operational Documentation:
 1. Software operating and upgrade manuals.
 2. Program Software Backup: On magnetic media or compact disk, complete with data files.
 3. Device address list.
 4. Printout of software application and graphic screens.

1.7 QUALITY ASSURANCE

A. Installer Qualifications: Cabling Installer must have personnel certified by BICSI on staff.
 1. Layout Responsibility: Preparation of Shop Drawings and Cabling Administration Drawings by an RCDD.
 2. Installation Supervision: Installation shall be under the direct supervision of an RCDD, who shall be present at all times when Work of this Section is performed at Project site.
 3. Testing Supervisor: Currently certified by BICSI as an RCDD to supervise on-site testing.

B. Testing Agency Qualifications: An NRTL.
 1. Testing Agency's Field Supervisor: Currently certified by BICSI as an RCDD to supervise on-site testing.

C. Surface-Burning Characteristics: As determined by testing identical products according to ASTM E 84 by a qualified testing agency. Identify products with appropriate markings of applicable testing agency.
 1. Flame-Spread Index: 25 or less.
 2. Smoke-Developed Index: 50 or less.

D. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

E. Telecommunications Pathways and Spaces: Comply with TIA/EIA-569-A.

1.8 DELIVERY, STORAGE, AND HANDLING

A. Test cables upon receipt at Project site.
 1. Test optical fiber cable to determine the continuity of the strand end to end. Use optical fiber flashlight or optical loss test set.
2. Test optical fiber cable while on reels. Use an optical time domain reflectometer to verify the cable length and locate cable defects, splices, and connector, including the loss value of each. Retain test data and include the record in maintenance data.

3. Test each pair of UTP cable for open and short circuits.

1.9 PROJECT CONDITIONS

A. Environmental Limitations: Do not deliver or install cables and connecting materials until wet work in spaces is complete and dry, and temporary HVAC system is operating and maintaining ambient temperature and humidity conditions at occupancy levels during the remainder of the construction period.

1.10 COORDINATION

A. Coordinate layout and installation of telecommunications pathways and cabling with Owner's telecommunications and LAN equipment and service suppliers.

1.11 PRICING

A. The contractor shall prepare and present to Midwestern State University or their representative pricing based on plenum rated Category 6 type cable for voice and data. Pricing shall include the list of equipment and labor in tabular form including: part numbers, item description, unit pricing, number of units, extended pricing and totals. The pricing shall breakdown the material and labor into the following categories; workstation (voice, data and pathways), copper riser, fiber riser, ER build-out, TR build-out and project management.

PART 2 - PRODUCTS

2.1 PATHWAYS

A. General Requirements: Comply with TIA/EIA-569-A.

B. Cable Support: NRTL labeled for support of Category 6 cabling, designed to prevent degradation of cable performance and pinch points that could damage cable.

1. Support brackets with cable tie slots for fastening cable ties to brackets.
2. Lacing bars, spools, J-hooks, and D-rings.
3. Straps and other devices.

a. Erico Caddy
b. Cooper B-Line
c. Arlington, Inc.

C. Cable Trays:
1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Panduit
 b. Cablofil Inc.
 c. Wiremold, Inc.
 d. Chatsworth Products

2. Cable Tray Materials: Metal, suitable for indoors and protected against corrosion by electroplated zinc galvanizing, complying with ASTM B 633, Type 1, not less than 0.000472 inch thick.
 a. Basket Cable Trays: 6 to 12 inches wide and 2 inches. Wire mesh spacing shall not exceed 2 by 4 inches (50 by 100 mm).
 b. Ladder Cable Trays: Nominally 12 to 18 inches wide, and a rung spacing of 12 inches.

D. Conduit and Boxes: Comply with requirements in Division 26 Section "Raceway and Boxes for Electrical Systems.

2.2 BACKBOARDS
A. Backboards: Plywood, fire-retardant treated, 3/4 by 48 by 96 inches. Comply with requirements for plywood backing panels specified in Division 06 Section "Rough Carpentry."

2.3 UTP CABLE
A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. Panduit PUP6504IG-U

B. Description: Solid copper 24 AWG, 100-ohm, multi-pair UTP, formed into 25-pair binder groups covered with a gray thermoplastic jacket.
 1. Comply with ICEA S-90-661 for mechanical properties.
 2. Comply with TIA/EIA-568-B.1 for performance specifications.
 3. Comply with TIA/EIA-568-B.2
 4. Listed and labeled by an NRTL acceptable to authorities having jurisdiction as complying with UL 444 and NFPA 70 for the following types:
 a. Communications, Plenum Rated: Type CMP, complying with NFPA 262.
 b. Cables shall meet the required UL rating(s) based on the installation requirements.
2.4 UTP CABLE HARDWARE

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. Leviton Voice & Data Division.
2. Panduit

B. General Requirements for Cable Connecting Hardware: Comply with TIA/EIA-568-B.2, IDC type, with modules designed for punch-down caps or tools. Cables shall be terminated with connecting hardware of same category or higher.

C. Connecting Blocks: 110-style IDC for Category 6. Provide blocks for the number of cables terminated on the block, plus 25 percent spare. Integral with connector bodies, including plugs and jacks where indicated.

D. Cross-Connect: Modular array of connecting blocks arranged to terminate building cables and permit interconnection between cables.

1. Number of Terminals per Field: One for each conductor in assigned cables.

E. Patch Panel: Modular panels housing multiple-numbered jack units with IDC-type connectors at each jack for permanent termination of pair groups of installed cables.

1. Number of Jacks per Field: One for each four-pair.

F. Jacks and Jack Assemblies: Modular, color-coded, eight-position modular receptacle units with integral IDC-type terminals.

G. Patch Cords: Factory-made, four-pair cables in shall be 60 inches and 84 inches in length at Main, Intermediate and Horizontal cross-connects (MC, IC and HC respectively). 80% of the cables shall be 60 inches and 20% shall be 84 inches. At the Work Area Outlet (WAO) the cables shall be 120 inches.

1. Patch cords shall have bend-relief-compliant boots and color-coded icons to ensure Category 6 performance. Patch cords shall have latch guards to protect against snagging.
2. Patch cords shall have color-coded boots for circuit identification.

2.5 OPTICAL FIBER CABLE

A. Manufacturers: Subject to compliance with requirements, [provide products by one of the following] [available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following]:

1. Owens Corning
2. General Cable

1. Comply with ICEA S-83-596 for mechanical properties.
2. Comply with TIA/EIA-568-B.3 for performance specifications.
3. Comply with TIA/EIA-492AAAA-B for detailed specifications.
4. Listed and labeled by an NRTL acceptable to authorities having jurisdiction as complying with UL 444, UL 1651, and NFPA 70 for the following types:
 a. Plenum Rated, Nonconductive: Type OFNP, complying with NFPA 262.
 b. Riser Rated, Nonconductive: Type OFNR, complying with UL 1666.
 c. Plenum Rated, Conductive: Type OFCP, complying with NFPA 262.
 d. Riser Rated, Conductive: Type OFCR, complying with UL 1666.
5. Conductive cable shall be aluminum armored type.
6. Maximum Attenuation: 3.50 dB/km at 850 nm; 1.5 dB/km at 1300 nm.
7. Minimum Modal Bandwidth: 160 MHz-km at 850 nm; 500 MHz-km at 1300 nm.

C. Jacket:

2. Cable cordage jacket, fiber, unit, and group color shall be according to TIA/EIA-598-B.
3. Imprinted with fiber count, fiber type, and aggregate length at regular intervals not to exceed 40 inches.

2.6 OPTICAL FIBER CABLE HARDWARE

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
1. Panduit

B. Cross-Connects and Patch Panels: Modular panels housing multiple-numbered, duplex cable connectors.

1. Number of Connectors per Field: One for each fiber of cable or cables assigned to field, plus spares and blank positions adequate to suit specified expansion criteria.

C. Patch Cords: Factory-made, dual-fiber cables in 36-inch lengths.

D. Cable Connecting Hardware:

2. Quick-connect, simplex and duplex, Type to comply with equipment termination connectors. Insertion loss not more than 0.75 dB.
3. Type SFF connectors may be used in termination racks, panels, and equipment packages.
2.7 GROUNDING
 A. Comply with requirements in Division 26 Section "Grounding and Bonding for Electrical Systems." for grounding conductors and connectors.
 B. Comply with ANSI-J-STD-607-A.

2.8 IDENTIFICATION PRODUCTS
 A. Comply with TIA/EIA-606-A and UL 969 for a system of labeling materials, including label stocks, laminating adhesives, and inks used by label printers.

2.9 SOURCE QUALITY CONTROL
 A. Testing Agency: Engage a qualified testing agency to evaluate cables.
 B. Factory test cables on reels according to TIA/EIA-568-B.1.
 C. Factory test UTP cables according to TIA/EIA-568-B.2.
 D. Factory test multimode optical fiber cables according to TIA/EIA-526-14-A and TIA/EIA-568-B.3.
 E. Cable will be considered defective if it does not pass tests and inspections.
 F. Prepare test and inspection reports.

PART 3 - EXECUTION

3.1 ENTRANCE FACILITIES
 A. Coordinate backbone cabling with the protectors and demarcation point provided by communications service provider.

3.2 WIRING METHODS
 A. Wiring Method: Install cables in raceways and cable trays except within consoles, cabinets, desks, and counters and except in accessible ceiling spaces, in attics, and in gypsum board partitions where unenclosed wiring method may be used. Conceal raceway and cables except in unfinished spaces.
 1. Install plenum cable in environmental air spaces, including plenum ceilings.
 2. Comply with requirements for raceways and boxes specified in Division 26 Section "Raceway and Boxes for Electrical Systems."
B. Wiring Method: Conceal conductors and cables in accessible ceilings, walls, and floors where possible.

C. Wiring within Enclosures: Bundle, lace, and train cables within enclosures. Connect to terminal points with no excess and without exceeding manufacturer’s limitations on bending radii. Provide and use lacing bars and distribution spools.

3.3 INSTALLATION OF PATHWAYS

A. Cable Trays: Comply with NEMA VE 2 and TIA/EIA-569-A.

B. Comply with requirements for demarcation point, pathways, cabinets, and racks specified in Division 27 Section "Communications Equipment Room Fittings." Drawings indicate general arrangement of pathways and fittings.

C. Comply with TIA/EIA-569-A for pull-box sizing and length of conduit and number of bends between pull points.

D. Comply with requirements in Division 26 Section "Raceway and Boxes for Electrical Systems" for installation of conduits and wireways.

E. Install manufactured conduit sweeps and long-radius elbows whenever possible.

F. Pathway Installation in Communications Equipment Rooms:
 1. Position conduit ends adjacent to a corner on backboard where a single piece of plywood is installed, or in the corner of room where multiple sheets of plywood are installed around perimeter walls of room.
 2. Install cable trays to route cables if conduits cannot be located in these positions.
 3. Secure conduits to backboard when entering room from overhead.
 4. Extend conduits 3 inches above finished floor.
 5. Install metal conduits with grounding bushings and connect with grounding conductor to grounding system.

G. Backboards: Install backboards with 96-inch dimension vertical. Butt adjacent sheets tightly, and form smooth gap-free corners and joints.

3.4 INSTALLATION OF CABLES

A. Comply with NECA 1.

B. General Requirements for Cabling:
 2. Comply with BICSI ITSIM, Ch. 6, "Cable Termination Practices."
 3. Install 110-style IDC termination hardware unless otherwise indicated.
 4. Terminate all conductors; no cable shall contain unterminated elements. Make terminations only at indicated outlets, terminals, cross-connects, and patch panels.
5. Cables may not be spliced. Secure and support cables at intervals not exceeding 30 inches and not more than 6 inches from cabinets, boxes, fittings, outlets, racks, frames, and terminals.
6. Install lacing bars to restrain cables, to prevent straining connections, and to prevent bending cables to smaller radii than minimums recommended by manufacturer.
7. Bundle, lace, and train conductors to terminal points without exceeding manufacturer's limitations on bending radii, but not less than radii specified in BICSI ITSIM, "Cabling Termination Practices" Chapter. Use lacing bars and distribution spools.
8. Do not install bruised, kinked, scored, deformed, or abraded cable. Do not splice cable between termination, tap, or junction points. Remove and discard cable if damaged during installation and replace it with new cable.
9. Cold-Weather Installation: Bring cable to room temperature before dereeling. Heat lamps shall not be used for heating.
10. In the communications equipment room, install a 10-foot long service loop on each end of cable.
11. Pulling Cable: Comply with BICSI ITSIM, Ch. 4, "Pulling Cable." Monitor cable pull tensions.

C. UTP Cable Installation:
 2. Do not untwist UTP cables more than 1/2 inch from the point of termination to maintain cable geometry.

D. Optical Fiber Cable Installation:
 2. Cable may be terminated on connecting hardware that is rack or cabinet mounted.

E. Open-Cable Installation:
 1. Install cabling with horizontal and vertical cable guides in telecommunications spaces with terminating hardware and interconnection equipment.
 2. Suspend UTP cable not in a wireway or pathway, a minimum of 8 inches above ceilings by cable supports not more than 60 inches apart.
 3. Cable shall not be run through structural members or in contact with pipes, ducts, or other potentially damaging items.

F. Group connecting hardware for cables into separate logical fields.

G. Separation from EMI Sources:
 1. Comply with BICSI TDMM and TIA/EIA-569-A recommendations for separating unshielded copper voice and data communication cable from potential EMI sources, including electrical power lines and equipment.
 2. Separation between open communications cables or cables in nonmetallic raceways and unshielded power conductors and electrical equipment shall be as follows:
 b. Electrical Equipment Rating between 2 and 5 kVA: A minimum of 12 inches.

3. Separation between communications cables in grounded metallic raceways and unshielded power lines or electrical equipment shall be as follows:
 b. Electrical Equipment Rating between 2 and 5 kVA: A minimum of 6 inches.

4. Separation between communications cables in grounded metallic raceways and power lines and electrical equipment located in grounded metallic conduits or enclosures shall be as follows:
 b. Electrical Equipment Rating between 2 and 5 kVA: A minimum of 3 inches.

5. Separation between Communications Cables and Electrical Motors and Transformers, 5 kVA or HP and Larger: A minimum of 48 inches.

6. Separation between Communications Cables and Fluorescent Fixtures: A minimum of 5 inches.

3.5 FIRESTOPPING
 A. Comply with BICSI TDMM, "Firestopping Systems" Article.

3.6 GROUNDING
 A. Install grounding according to BICSI TDMM, "Grounding, Bonding, and Electrical Protection" Chapter.
 B. Comply with ANSI-J-STD-607-A.
 C. Locate grounding bus bar to minimize the length of bonding conductors. Fasten to wall allowing at least 2-inch clearance behind the grounding bus bar. Connect grounding bus bar with a minimum No. 4 AWG grounding electrode conductor from grounding bus bar to suitable electrical building ground.
 D. Bond metallic equipment to the grounding bus bar, using not smaller than No. 6 AWG equipment grounding conductor.

3.7 IDENTIFICATION
 A. Identify system components, wiring, and cabling complying with TIA/EIA-606-A. Comply with requirements for identification specified in Division 26 Section "Identification for Electrical Systems."
1. Color-code cross-connect fields and apply colors to voice and data service backboards, connections, covers, and labels.

B. See Division 27 Section "Communications Horizontal Cabling" for additional identification requirements. See Evaluations for discussion about TIA/EIA standard as it applies to this Section. Paint and label colors for equipment identification shall comply with TIA/EIA-606-A and shall be approved by Tarrant County College District prior to implementation.

C. Comply with requirements in Division 27 Section "Communications Horizontal Cabling" for cable and asset management software.

D. Cable Schedule: Install in a prominent location in each equipment room and wiring closet. List incoming and outgoing cables and their designations, origins, and destinations. Protect with rigid frame and clear plastic cover. Furnish an electronic copy of final comprehensive schedules for Project.

E. Cabling Administration Drawings: Show building floor plans with cabling administration-point labeling. Identify labeling convention and show labels for telecommunications closets, backbone pathways and cables, entrance pathways and cables, terminal hardware and positions, horizontal cables, work areas and workstation terminal positions, grounding buses and pathways, and equipment grounding conductors.

F. Cable and Wire Identification:
 1. Label each cable within 4 inches of each termination and tap, where it is accessible in a cabinet or junction or outlet box, and elsewhere as indicated.
 2. Each wire connected to building-mounted devices is not required to be numbered at device if color of wire is consistent with associated wire connected and numbered within panel or cabinet.
 3. Exposed Cables and Cables in Cable Trays and Wire Troughs: Label each cable at intervals not exceeding 15 feet.
 4. Label each terminal strip and screw terminal in each cabinet, rack, or panel.
 a. Individually number wiring conductors connected to terminal strips and identify each cable or wiring group being extended from a panel or cabinet to a building-mounted device with name and number of particular device as shown.
 b. Label each unit and field within distribution racks and frames.
 5. Identification within Connector Fields in Equipment Rooms and Wiring Closets: Label each connector and each discrete unit of cable-terminating and connecting hardware. Where similar jacks and plugs are used for both voice and data communication cabling, use a different color for jacks and plugs of each service.

G. Labels shall be preprinted or computer-printed type with printing area and font color that contrasts with cable jacket color but still complies with requirements in TIA/EIA 606-A, for the following:
 1. Cables use flexible vinyl or polyester that flexes as cables are bent.
3.8 FIELD QUALITY CONTROL

A. Perform tests and inspections.

B. Tests and Inspections:

2. Visually inspect cable placement, cable termination, grounding and bonding, equipment and patch cords, and labeling of all components.

3. Test UTP copper cabling for DC loop resistance, shorts, opens, intermittent faults, and polarity between conductors. Test operation of shorting bars in connection blocks. Test cables after termination but not cross-connection.

 a. Test instruments shall meet or exceed applicable requirements in TIA/EIA-568-B.2. Perform tests with a tester that complies with performance requirements in "Test Instruments (Normative)" Annex, complying with measurement accuracy specified in "Measurement Accuracy (Informative)" Annex. Use only test cords and adapters that are qualified by test equipment manufacturer for channel or link test configuration.

4. Optical Fiber Cable Tests:

 a. Test instruments shall meet or exceed applicable requirements in TIA/EIA-568-B.1. Use only test cords and adapters that are qualified by test equipment manufacturer for channel or link test configuration.

 b. Link End-to-End Attenuation Tests:

 1) Horizontal and multimode backbone link measurements: Test at 850 or 1300 nm in 1 direction according to TIA/EIA-526-14-A, Method B, One Reference Jumper.

 2) Attenuation test results for backbone links shall be less than 2.0 dB. Attenuation test results shall be less than that calculated according to equation in TIA/EIA-568-B.1.

C. Data for each measurement shall be documented. Data for submittals shall be printed in a summary report that is formatted similar to Table 10.1 in BICSI TDMM, or transferred from the instrument to the computer, saved as text files, and printed and submitted.

D. Remove and replace cabling where test results indicate that they do not comply with specified requirements.

E. End-to-end cabling will be considered defective if it does not pass tests and inspections.

F. Prepare test and inspection reports.

END OF SECTION

Moffett Library Renovation Phase II

Communications Backbone Cabling 271300-13
SECTION 27 15 00

COMMUNICATIONS HORIZONTAL CABLING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:
 1. Pathways.
 2. UTP cabling.
 3. Multiuser telecommunications outlet assemblies.
 4. Cable connecting hardware, patch panels, and cross-connects.
 5. Telecommunications outlet/connectors.
 6. Cabling system identification products.
 7. Cable management system.

1.3 DEFINITIONS

A. Basket Cable Tray: A fabricated structure consisting of wire mesh bottom and side rails.

C. Channel Cable Tray: A fabricated structure consisting of a one-piece, ventilated-bottom or solid-bottom channel.

D. Consolidation Point: A location for interconnection between horizontal cables extending from building pathways and horizontal cables extending into furniture pathways.

E. Cross-Connect: A facility enabling the termination of cable elements and their interconnection or cross-connection.

F. EMI: Electromagnetic interference.

G. IDC: Insulation displacement connector.

H. Ladder Cable Tray: A fabricated structure consisting of two longitudinal side rails connected by individual transverse members (rungs).

I. LAN: Local area network.

J. MUTOA: Multiuser telecommunications outlet assembly, a grouping in one location of several telecommunications outlet/connectors.
K. Outlet/Connectors: A connecting device in the work area on which horizontal cable or outlet cable terminates.

L. RCDD: Registered Communications Distribution Designer.

M. Solid-Bottom or Nonventilated Cable Tray: A fabricated structure consisting of longitudinal side rails and a bottom without ventilation openings.

N. Trough or Ventilated Cable Tray: A fabricated structure consisting of longitudinal side rails and a bottom having openings for the passage of air.

O. UTP: Unshielded twisted pair.

1.4 HORIZONTAL CABELING DESCRIPTION

A. Horizontal cable and its connecting hardware provide the means of transporting signals between the telecommunications outlet/connector and the horizontal cross-connect located in the communications equipment room. This cabling and its connecting hardware are called "permanent link," a term that is used in the testing protocols.

1. Refer to project drawings for outlet locations and number of cables per outlet. If number is not identified a minimum of two cables shall be provided to each outlet.
2. Horizontal cabling shall contain no more that one transition point or consolidation point between the horizontal cross-connect and the telecommunications outlet/connector.
3. Bridged taps and splices shall not be installed in the horizontal cabling.
4. Splitters shall not be installed as part of the optical fiber cabling.

B. A work area includes the components that extend from the telecommunications outlet/connectors to the station equipment.

C. The maximum allowable horizontal cable length is 295 feet. This maximum allowable length does not include an allowance for the length of 16 feet to the workstation equipment. The maximum allowable length does not include an allowance for the length of 16 feet in the horizontal cross-connect.

1.5 PERFORMANCE REQUIREMENTS

A. General Performance: Horizontal cabling system shall comply with transmission standards in TIA/EIA-568-B.1, when tested according to test procedures of this standard.

1.6 SUBMITTALS

A. Product Data: For each type of product indicated.
1. For all cable, include the following installation data for each type used:
 a. Nominal OD.
 b. Minimum bending radius.
 c. Maximum pulling tension.
B. Shop Drawings:

1. System Labeling Schedules: Electronic copy of labeling schedules, in software and format selected by Owner.
2. System Labeling Schedules: Electronic copy of labeling schedules that are part of the cabling and asset identification system of the software.
3. Cabling administration drawings and printouts.
4. Wiring diagrams to show typical wiring schematics, including the following:
 b. Patch panels.
 c. Patch cords.
5. Cross-connects and patch panels. Detail mounting assemblies, and show elevations and physical relationship between the installed components.
6. Cable tray layout, showing cable tray route to scale, with relationship between the tray and adjacent structural, electrical, and mechanical elements. Include the following:
 a. Vertical and horizontal offsets and transitions.
 b. Clearances for access above and to side of cable trays.
 c. Vertical elevation of cable trays above the floor or bottom of ceiling structure.
 d. Load calculations to show dead and live loads as not exceeding manufacturer's rating for tray and its support elements.

C. Qualification Data: For Installer, qualified layout technician, installation supervisor, and field inspector.

D. Source quality-control reports.

E. Field quality-control reports.

F. Maintenance Data: For splices and connectors to include in maintenance manuals.

1.7 QUALITY ASSURANCE

A. Contracting Company: Company must be a Certified Panduit Partner.

B. Installer Qualifications: Cabling Installer must have personnel certified by BICSI on staff.

1. Layout Responsibility: Preparation of Shop Drawings, Cabling Administration Drawings, and field testing program development by an RCDD.
2. Installation Supervision: Installation shall be under the direct supervision of a BICSI Certified Technician who shall be present at all times when work of this section is performed at project site.
3. Testing Supervisor: Currently certified by BICSI as an RCDD to supervise on-site testing.

C. Testing Agency Qualifications: An NRTL.

1. Testing Agency's Field Supervisor: Currently certified by BICSI as an RCDD to supervise on-site testing.
D. Surface-Burning Characteristics: As determined by testing identical products according to ASTM E 84 by a qualified testing agency. Identify products with appropriate markings of applicable testing agency.

1. Flame-Spread Index: 25 or less.
2. Smoke-Developed Index: 50 or less.

E. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

F. Telecommunications Pathways and Spaces: Comply with TIA/EIA-569-A.

1.8 DELIVERY, STORAGE, AND HANDLING

A. Test cables upon receipt at Project site.

1. Test optical fiber cables to determine the continuity of the strand end to end. Use optical fiber flashlight or optical loss test set.
2. Test optical fiber cables while on reels. Use an optical time domain reflectometer to verify the cable length and locate cable defects, splices, and connector; including the loss value of each. Retain test data and include the record in maintenance data.
3. Test each pair of UTP cable for open and short circuits.

1.9 PROJECT CONDITIONS

A. Environmental Limitations: Do not deliver or install cables and connecting materials until wet work in spaces is complete and dry, and temporary HVAC system is operating and maintaining ambient temperature and humidity conditions at occupancy levels during the remainder of the construction period.

1.10 COORDINATION

A. Coordinate layout and installation of telecommunications pathways and cabling with Owner's telecommunications and LAN equipment and service suppliers.

B. Coordinate telecommunications outlet/connector locations with location of power receptacles at each work area.

1.11 Pricing

A. The contractor shall prepare and present to Midwestern State University or their representative pricing based on plenum rated Category 6 type cable for voice and data. Pricing shall include the list of equipment and labor in tabular form including; part numbers, item description, unit pricing, number of units, extended pricing and totals. The pricing shall breakdown the material and labor into the following categories; workstation (voice, data and pathways), copper riser, fiber riser, ER build-out, TR build-out and project management.
PART 2 - PATHWAYS

A. General Requirements: Comply with TIA/EIA-569-A.

B. Cable Support: NRTL labeled for support of Category 6 cabling, designed to prevent degradation of cable performance and pinch points that could damage cable.
 1. Support brackets with cable tie slots for fastening cable ties to brackets.
 2. Lacing bars, spools, J-hooks, and D-rings.
 a. Erico Caddy

C. Conduit and Boxes: Comply with requirements in Division 26 Section "Raceway and Boxes for Electrical Systems."
 1. Standard work area outlet rought-in will include a 1” conduit to a double gang back box with a single gang reducer plate.

2.2 UTP CABLE

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. General Cable GenSPEED 6500 #7131930
 2. Panduit PUP6504BU-UY

B. Description: 100-ohm, 4-pair UTP, formed into 25-pair, binder groups covered with a blue flame-retardant PVC jacket.
 1. Comply with ICEA S-90-661 for mechanical properties.
 3. Listed and labeled by an NRTL acceptable to authorities having jurisdiction as complying with UL 444 and NFPA 70 for the following types:
 a. Communications, Plenum Rated: Type CMP, complying with NFPA 262.
 b. Communications, Riser Rated: Type CMR, complying with UL 1666.

2.3 UTP CABLE HARDWARE

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. Panduit Corp.

B. General Requirements for Cable Connecting Hardware: Comply with TIA/EIA-568-B.2, IDC type, with modules designed for punch-down caps or tools. Cables shall be terminated with connecting hardware of same category or higher.

C. Cross-Connect: Modular array of connecting blocks arranged to terminate building cables and permit interconnection between cables.
1. Number of Terminals per Field: One for each conductor in assigned cables.

D. Patch Panel: Modular panels housing multiple-numbered jack units with CFFPL4 type front removable snap in faceplates.

E. Coordinate subparagraph below with Drawings for quantity of fields.

1. Number of Jacks per Field: Two for each four-pair UTP cable indicated.

F. Jacks and Jack Assemblies: Modular, color-coded, eight-position modular receptacle units with integral IDC-type terminals and shall comply with the rating of the communications cable routed to the assembly. Cords are generally available in lengths to 20 feet (6 m) and longer in 24-inch (600-mm) increments.

G. Patch Cords: Factory-made, four-pair cables in shall be 60 inches. Panduit #UTP28SP5BU

1. Patch cords shall have bend-relief-compliant boots and color-coded icons to ensure Category 6 performance. Patch cords shall have latch guards to protect against snagging.
2. Patch cords shall have color-coded boots for circuit identification.

2.4 TELECOMMUNICATIONS OUTLET/CONNECTORS

B. Workstation Outlets: Four-port-connector assemblies mounted in single faceplate.

1. Plastic Faceplate: High-impact plastic. Coordinate color with Division 26 Section "Wiring Devices."
2. For use with snap-in jacks accommodating any combination of UTP and optical fiber work area cords.

2.5 GROUNDING

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. Erico International

B. Comply with requirements in Division 26 Section "Grounding and Bonding for Electrical Systems" for grounding conductors and connectors.

C. Comply with ANSI-J-STD-607-A.

2.6 IDENTIFICATION PRODUCTS

A. Comply with TIA/EIA-606-A and UL 969 for labeling materials, including label stocks, laminating adhesives, and inks used by label printers.

B. Comply with requirements in Division 26 Section "Identification for Electrical Systems."
C. The contractor is responsible for coordinating with Tarrant Country College for campus specific labeling requirements.

2.7 SOURCE QUALITY CONTROL

A. Testing Agency: Engage a qualified testing agency to evaluate cables.
B. Factory test UTP and optical fiber cables on reels according to TIA/EIA-568-B.1.
C. Factory test UTP cables according to TIA/EIA-568-B.2.
D. Factory test multimode optical fiber cables according to TIA/EIA-526-14-A and TIA/EIA-568-B.3.
E. Factory-sweep test coaxial cables at frequencies from 5 MHz to 1 GHz. Sweep test shall test the frequency response, or attenuation over frequency, of a cable by generating a voltage whose frequency is varied through the specified frequency range and graphing the results.
F. Cable will be considered defective if it does not pass tests and inspections.
G. Prepare test and inspection reports.

PART 3 - EXECUTION

3.1 WIRING METHODS

A. Wiring Method: Install cables in raceways and cable trays except within consoles, cabinets, desks, and counters and except in accessible ceiling spaces, in attics, and in gypsum board partitions where unenclosed wiring method may be used. Conceal raceway and cables except in unfinished spaces.

1. Install plenum rated cable in all areas.
2. Comply with requirements for raceways and boxes specified in Division 26 Section "Raceway and Boxes for Electrical Systems."

B. Wiring Method: Conceal conductors and cables in accessible ceilings, walls, and floors where possible.

C. Wiring within Enclosures: Bundle, lace, and train cables to terminal points with no excess and without exceeding manufacturer's limitations on bending radii. Provide and use lacing bars and distribution spools.

3.2 INSTALLATION OF PATHWAYS

A. Comply with requirements for demarcation point, pathways, cabinets, and racks specified in Division 27 Section "Communications Equipment Room Fittings." Drawings indicate general arrangement of pathways and fittings.
B. Comply with TIA/EIA-569-A for pull-box sizing and length of conduit and number of bends between pull points.

C. Comply with requirements in Division 26 Section "Raceway and Boxes for Electrical Systems" for installation of conduits and wireways.

D. Install manufactured conduit sweeps and long-radius elbows whenever possible.

E. Pathway Installation in Communications Equipment Rooms:
 1. Position conduit ends adjacent to a corner on backboard where a single piece of plywood is installed, or in the corner of room where multiple sheets of plywood are installed around perimeter walls of room.
 2. Install cable trays to route cables if conduits cannot be located in these positions.
 3. Secure conduits to backboard when entering room from overhead.
 4. Extend conduits 3 inches above finished floor.
 5. Install metal conduits with grounding bushings and connect with grounding conductor to grounding system.

3.3 INSTALLATION OF CABLES

A. Comply with NECA 1.

B. General Requirements for Cabling:
 2. Comply with BICSI ITSIM, Ch. 6, "Cable Termination Practices."
 3. MUTOA shall not be used as a cross-connect point.
 4. Consolidation points may be used only for making a direct connection to telecommunications outlet/connectors:
 a. Do not use consolidation point as a cross-connect point, as a patch connection, or for direct connection to workstation equipment.
 b. Locate consolidation points for UTP at least 49 feet from communications equipment room.
 5. Terminate conductors; no cable shall contain unterminated elements. Make terminations only at indicated outlets, terminals, cross-connects, and patch panels.
 6. Cables may not be spliced. Secure and support cables at intervals not exceeding 30 inches and not more than 6 inches from cabinets, boxes, fittings, outlets, racks, frames, and terminals.
 7. Install lacing bars to restrain cables, to prevent straining connections, and to prevent bending cables to smaller radii than minimums recommended by manufacturer.
 8. Bundle, lace, and train conductors to terminal points without exceeding manufacturer's limitations on bending radii, but not less than radii specified in BICSI ITSIM, "Cabling Termination Practices" Chapter. Install lacing bars and distribution spools.
 9. Do not install bruised, kinked, scored, deformed, or abraded cable. Do not splice cable between termination, tap, or junction points. Remove and discard cable if damaged during installation and replace it with new cable.
 10. Cold-Weather Installation: Bring cable to room temperature before dereeling. Heat lamps shall not be used for heating.
11. In the communications equipment room, install a 12-foot long service loop on each end of cable.
12. Pulling Cable: Comply with BICSI ITSIM, Ch. 4, "Pulling Cable." Monitor cable pull tensions.

C. UTP Cable Installation:
 2. Do not untwist UTP cables more than 1/2 inch from the point of termination to maintain cable geometry.

D. Open-Cable Installation:
 1. Install cabling with horizontal and vertical cable guides in telecommunications spaces with terminating hardware and interconnection equipment.
 2. Suspend UTP cable not in a wireway or pathway a minimum of 8 inches above ceilings by cable supports not more than 60 inches apart.
 3. Cable shall not be run through structural members or in contact with pipes, ducts, or other potentially damaging items.

E. Group connecting hardware for cables into separate logical fields.

F. Separation from EMI Sources:
 1. Comply with BICSI TDMM and TIA/EIA-569-A for separating unshielded copper voice and data communication cable from potential EMI sources, including electrical power lines and equipment.
 2. Separation between open communications cables or cables in nonmetallic raceways and unshielded power conductors and electrical equipment shall be as follows:
 b. Electrical Equipment Rating between 2 and 5 kVA: A minimum of 12 inches.
 3. Separation between communications cables in grounded metallic raceways and unshielded power lines or electrical equipment shall be as follows:
 b. Electrical Equipment Rating between 2 and 5 kVA: A minimum of 6 inches.
 4. Separation between communications cables in grounded metallic raceways and power lines and electrical equipment located in grounded metallic conduits or enclosures shall be as follows:
 b. Electrical Equipment Rating between 2 and 5 kVA: A minimum of 3 inches.
 5. Separation between Communications Cables and Electrical Motors and Transformers, 5 kVA or HP and Larger: A minimum of 48 inches.
6. Separation between Communications Cables and Fluorescent Fixtures: A minimum of 5 inches.

3.4 GROUNDING

A. Install grounding according to BICSI TDMM, "Grounding, Bonding, and Electrical Protection" Chapter.

B. Comply with ANSI-J-STD-607-A.

C. Locate grounding bus bar to minimize the length of bonding conductors. Fasten to wall allowing at least 2-inch clearance behind the grounding bus bar. Connect grounding bus bar with a minimum No. 4 AWG grounding electrode conductor from grounding bus bar to suitable electrical building ground.

D. Bond metallic equipment to the grounding bus bar, using not smaller than No. 6 AWG equipment grounding conductor.

3.5 IDENTIFICATION

A. Cable and Wire Identification:

1. Coordinate with Tarrant County College District, for campus specific labeling requirements.

2. Label each cable within 4 inches of each termination and tap, where it is accessible in a cabinet or junction or outlet box, and elsewhere as indicated.

3. Each wire connected to building-mounted devices is not required to be numbered at device if color of wire is consistent with associated wire connected and numbered within panel or cabinet.

4. Exposed Cables and Cables in Cable Trays and Wire Troughs: Label each cable at intervals not exceeding 15 feet.

5. Label each terminal strip and screw terminal in each cabinet, rack, or panel.

 a. Individually number wiring conductors connected to terminal strips, and identify each cable or wiring group being extended from a panel or cabinet to a building-mounted device shall be identified with name and number of particular device as shown.

 b. Label each unit and field within distribution racks and frames.

6. Identification within Connector Fields in Equipment Rooms and Wiring Closets: Label each connector and each discrete unit of cable-terminating and connecting hardware. Where similar jacks and plugs are used for both voice and data communication cabling, use a different color for jacks and plugs of each service.

B. Labels shall be preprinted or computer-printed type with printing area and font color that contrasts with cable jacket color but still complies with requirements in TIA/EIA-606-A.

 1. Cables use flexible vinyl or polyester that flex as cables are bent.
3.6 FIELD QUALITY CONTROL

A. Perform tests and inspections.

B. Tests and Inspections:

2. Visually confirm Category 6, marking of outlets, cover plates, outlet/connectors, and patch panels.

3. Visually inspect cable placement, cable termination, grounding and bonding, equipment and patch cords, and labeling of all components.

4. Test UTP backbone copper cabling for DC loop resistance, shorts, opens, intermittent faults, and polarity between conductors. Test operation of shorting bars in connection blocks. Test cables after termination but not cross-connection.

 a. Test instruments shall meet or exceed applicable requirements in TIA/EIA-568-B.2. Perform tests with a tester that complies with performance requirements in "Test Instruments (Normative)" Annex, complying with measurement accuracy specified in "Measurement Accuracy (Informative)" Annex. Use only test cords and adapters that are qualified by test equipment manufacturer for channel or link test configuration.

5. UTP Performance Tests:

 a. Test for each outlet and MUTOA. Perform the following tests according to TIA/EIA-568-B.1 and TIA/EIA-568-B.2:

 1) Wire map.
 2) Length (physical vs. electrical, and length requirements).
 3) Insertion loss.
 4) Near-end crosstalk (NEXT) loss.
 5) Power sum near-end crosstalk (PSNEXT) loss.
 6) Equal-level far-end crosstalk (ELFEXT).
 7) Power sum equal-level far-end crosstalk (PSELFEXT).
 8) Return loss.
 9) Propagation delay.
 10) Delay skew.

6. Coaxial Cable Tests: Conduct tests according to Division 27 Section "Master Antenna Television System."

7. Final Verification Tests: Perform verification tests for UTP and optical fiber systems after the complete communications cabling and workstation outlet/connectors are installed.

 a. Voice Tests: These tests assume that dial tone service has been installed. Connect to the network interface device at the demarcation point. Go off-hook and listen and receive a dial tone. If a test number is available, make and receive a local, long distance, and digital subscription line telephone call.

 b. Data Tests: These tests assume the Information Technology Staff has a network installed and is available to assist with testing. Connect to the network interface...
device at the demarcation point. Log onto the network to ensure proper connection to the network.

C. Document data for each measurement. Data for submittals shall be printed in a summary report that is formatted similar to Table 10.1 in BICSI TDMM, or transferred from the instrument to the computer, saved as text files, and printed and submitted.

D. End-to-end cabling will be considered defective if it does not pass tests and inspections.

E. Prepare test and inspection reports.

3.7 DEMONSTRATION

A. The contractor shall train the Owner's maintenance personnel in cable-plant management operations, including changing signal pathways for different workstations, rerouting signals in failed cables, and keeping records of cabling assignments and revisions when extending wiring to establish new workstation outlets.

END OF SECTION
PART 1 –GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

Section includes: furnishing, installing, testing and documenting audio-visual systems for Early College High School South Campus.

A. Audio-Visual Systems shall consist of multiple systems with various configurations per the AV Room Type Device Schedules and the design specifications and drawings.

B. These systems include some or all of the following:

1. Wall mounted, ceiling mounted and ceiling hung speaker systems.
3. Audio input/output panels, microphones, wireless microphone systems, mixers, switchers, audio processors and amplifiers.
4. Video input/output panels, PTZ cameras, DVD players, switchers and scalers.
5. Video conferencing codecs, microphones, cameras, mounts and cables.
6. Programmable audio-visual remote and automated control system and associated support devices for controlling: audio and video systems, etc.
7. Floor, wall and desktop connection hubs for audio, video, broadband, LAN, remote control signaling, computer and power connections.
8. Cabling, termination, connector and pull junction boxes.
1.3 OVERVIEW

A. The work detailed by these specifications and drawings has been specified to meet certain requirements for performance. Some information, such as exact equipment models, layout, wire routing, additional conduit and power requirements, etc. has been omitted. It shall be the responsibility of the Contractor to translate these specifications and drawings into a complete design package containing all necessary elements for a complete turnkey installation including all material, labor, warranties, shipping and permits.

B. General elements of the work shall consists of but not limited to:

1. Procure all permits and license required to complete this installation.
2. Submission of Part 3.14 Pricing Forms for all equipment, materials and labor.
3. Attend pre-construction/pre-submittal meeting with Owner and Consultant to review design package for the Audio-Video Systems.
4. Prepare schedule of work.
5. Submittal preparation and processing prior to ordering equipment.
6. Attend submittal review meeting.
7. Provide materials necessary to complete the Audio-Video Systems.
8. Perform camera pre-installation sign-off walk through with Owner and Consultant.
9. Installation of cameras and camera cabling
10. Provide all required software and licenses to the Owner.
11. Contractor shall provide continuous on-site supervision of the installation technicians. On-site supervision shall include: daily supervision of the work, updating work site progress drawings to reflect changes and installations details, preparing weekly progress reports and attendance at site coordination meetings as directed by the Owner and Consultant.
12. The Contractor shall provide all miscellaneous hardware including cable management devices, termination cabinets, wire and cable labeling materials, fasteners, hangers and brackets as required.
13. The contractor shall provide all materials, equipment, labor and all other incidental material, tools, appliances and transportation as required for a complete and functional video system (VS) as described herein and supplementary drawings.

14. Coordinate receipt of Owner furnished equipment.

15. Perform installation according to contract documents and manufacturers recommendations.

16. Protect new facilities finishes and equipment.

18. Clean the work area at the end of each day.

19. Provide system software and programming and other materials necessary for the Audio-Video Systems to function by standard industry practices.

20. Program Audio-Video Systems and load with user define text and specified operations per design specifications and drawings.

21. All touch panel and internet controls must have “User interface” (Basic functionality) and Lockable / password “Admin user interface” (Advance functionality). Coordinate all programming with Owner and Consultant for approval.

22. Providing (2) final programming changes for all systems within warranty period after acceptance date.

23. Perform initial testing, programming and adjustments with written reports.

24. Make final adjustments, calibrations and programming modifications as directed by the Owner and Consultant.

25. Demonstrate all systems for final acceptance.

26. Preparation of O&M manuals and as-built documents for Owner’s use.

27. Providing training for Owner’s staff, facility personnel and technical staff.

28. Providing warranty service for a period of one year from acceptance date.

29. Provide extended system support.

30. 6-Months prior to “Owner Move-In” date, Owner and AV Design Consultant reserve the right to review and modify the AV systems design and specifications. The Contractor shall arrange date and task with Owner and AV Design Consultant. Contractor shall not proceed with installation (including wiring) and material procurement till Owner review is conducted. The Contractor shall provide an itemized bid outlining AV equipment, labor, and mark-up costs. The Contractor shall permit the Owner and/or AV Design Consultant to modify the AV system
design and products without incurring additional cost, fees, and mark-ups. The Contractor shall allow the Owner to exchange products of equal cost without incurring additional cost, fees and mark-ups. Should the Contractor deem product exchange and/or labor cost is significantly higher in cost, the Contractor shall provide Owner/AV Design Consultant an itemized “Change Order Form” for review and approval. Owner/AV Design Consultant reserve the right to deem the Contractor’s “Change Order” admissible.

1.4 DEFINITIONS

B. OWNER: Midwestern State University as described herein and supplementary drawings.

C. OFOI: Owner Furnished Owner Installed.

D. CONTRACTOR: Contractor or subcontractor providing and installing the Audio-Visual System.

E. PROVIDE: Furnish, install, commission, test and warrant.

G. WORK: Action required furnishing, installing, commissioning, testing and warranting the Audio-Visual Systems.

H. COMPONENT: Any individual item of equipment or material which is an element of the Audio-Visual Infrastructure System.

I. ZONE – Separate parallel signal path with independent processing and alternate program capabilities.

J. AGC: Automatic gain control.

K. CCD: Charge-coupled device.

L. CTS -D: Certified Technology Specialist-Design

M. MPEG: Moving picture experts group.

N. NTSC: National Television System Committee. O. UPS: Uninterruptible power supply.

P. PoE: Power over Ethernet

1.5 PERFORMANCE REQUIREMENTS
A. These specialized AVS systems are designed to efficiently support the Owner’s various facilities and activity areas in a manner, which can be proficiently managed by the staff. Work shall include the complete turnkey installation and commissioning of these systems per the following specifications and drawings.

1.6 SUBMITTALS

A. Product Data:
 1. List all system components including manufacturer and model number.
 2. Manufacturer’s literature sheets for all materials and equipment, including warranty information, recommended preventative maintenance and spare part inventory recommendations. Literature containing more than one device shall be clearly marked to delineate item(s) included in the Work.
 3. Clearly indicate color or special finishes.
 5. Contractor’s on-site CTS -D supervisor shall review, approve and sign off all submittal documents.

B. Pricing Forms: Contractor shall submit completed pricing form that includes an itemized listing of all equipment, materials and labor required for the installation of the system as specified herein for Change Order pricing. The listing shall contain: item description, item model number, quantity, unit cost and extended labor, material and installation cost required to provide a complete and functional system. Note that Schematics show rooms both with and without Video Conferencing functionality; provide itemized pricing by room for both options.

C. Programming:
 1. Provide and coordinate with the Owner all possible control functionalities based on project drawing and specifications.
 2. Provide screen shots / templates and a narrative description of all “User Interfaces” and “Admin Interfaces” functionality. Contractor must have written approval of control lay-out and functionality prior to installation of programming. Provide Owner with a full functioning control system.
 3. The Contractor shall provide a certified Extron Control Specialist to perform all audio-visual control system programming.

D. Shop Drawings:
1. Contractor’s on-site CTS -D supervisor shall review, approve and sign off all shop drawings, coordination drawings As Built Drawings documents.

2. Reproducing Contract Documents for shop drawing is not acceptable.

3. Shop drawings to include the following:
 a. Drawing legend sheet describing all symbols used on the drawings.
 b. Floor plans with all devices and wiring raceway depicted.
 c. Wire runs with tags for type, gauge, quantities and cable identifiers.
 d. System riser diagram indicating all field devices, riser paths and room designations.
 e. Block diagram for each system showing all equipment and signal pathways.
 f. Point schedules defining interconnection of all inputs and outputs for all equipment including data connections and other systems with cable identifiers.
 g. Elevations of equipment racks and teaching consoles.
 h. Fabrication shop drawings for all custom components.
 i. Diagrams for power, signal, control wiring and grounding.
 j. Include plans, elevations, sections, details, and attachments to other work.

E. Coordination Drawings: Reflected ceiling plans, drawn to scale, with ceiling-mounted including lighting fixtures, diffusers, grilles, speakers, sprinklers, access panels, and special moldings are shown and coordinated, using input from installers of the items involved. Provide similar elevation drawings for wall-mounted items.

F. Samples: Provide as requested for colors and texture coordination.

G. Partial submittals shall not be acceptable without prior approval by Owner.

H. No portion of the work shall commence or equipment ordered until the Owner has approved the submittals.

I. The Contractor shall not be relieved from any contract-required responsibility by the Owner’s approval of submittals.

J. Nothing in the specification shall relieve Contractor of system package design responsibility, including, but not limited to, all equipment furnished under this Contract. The Contractor is, in all cases, solely responsible for the performance of the delivered AVS, and for furnishing complete system documentation for each and every part of the system.

K. Extended AVS Support.
1. Provide pricing for AVS hardware and software support including necessary reconfiguration and data base changes for years 2 through 5.

L. Resubmitting.

1. Make corrections or changes in Submittals as required by the Consultant’s stamped instructions and attached comments and resubmit.

2. Identify changes on resubmittals by clouding. Only indicated changes will be reviewed when resubmitted.

3. Added drawings shall be clearly identified.

4. Contractor shall be responsible for project delays caused by rejected submittals.

5. Consultant shall be compensated for additional services for submittals rejected more than twice. The amount of such compensation shall be incorporated by change order and withheld from the Contractor’s Application for Payment.

1.7 QUALITY ASSURANCE

A. Installer Qualifications:

1. The Contractor performing the installation shall have a minimum of 5 years experience in the installation of AVS systems of similar size and scope.

2. An Infocomm CTS -D shall supervise and approve all on-site work as a recognized member of the Contractor’s installation team. All installation team members must demonstrate knowledge and compliance with all Infocomm, TIA, UL, and NEC methods, standards and codes. Submit resumes of the entire team and completed training courses and certifications.

3. All members of the installation team must be certified by the Manufacturer as having completed the necessary training to complete their part of the installation.

4. Owner’s representative may make such investigations as deemed necessary to determine that the Contractor is responsive, responsible and qualified in the area of work contemplated by the Contract. In this regard, the Contractor shall furnish to the Owner such information as requested for this purpose. Information and data may include (but not necessarily be limited to): Date of organization and/or incorporation and number of years engaged in this business under present firm’s names; list of major equipment owned by the company; list of principal personnel who will be involved in the execution of this contract with the experience and
qualifications of each person.

5. Contractor shall have local in-house engineering and project management capability consistent with the requirements of this project. The Contractor shall provide a project manager that shall be the same individual throughout the project and shall be the person responsible for system programming, preparation of Operation and Maintenance Manuals, Training, Programs, Schedules and Test Protocols, documentation of system testing, maintenance of record drawings and coordination and scheduling of all labor.

6. Contractor shall be or have direct relations through their subcontractors, an authorized manufacturer’s representative for all products they furnish or install.

7. Contractor shall have a local organization capable of providing maintenance and service for the specified system. Facility shall be no more than 100 miles from Owner’s site.

8. Contractor shall be capable of providing emergency service on a 24-hour, 7 days a week basis.

9. The Contractor shall provide a certified Extron Control Specialist to perform all audio-visual control system programming.

10. All members of the audio-visual installation team shall be certified and completed the Extron AV Associate program to perform and complete the AV installation.

B. Conflicts:

1. In the event of any conflicts between documents referenced herein and the contents of this specification, the Contractor shall notify in writing to Consultant of any such occurrences before the purchasing of any equipment, materials and/or installation. The Consultant will notify the Contractor of any actions required to resolve these conflicts. Such actions may include but are not limited to: design changes, equipment, materials and/or installation changes. In any event, Contractor shall not supersede specifications and standards from the latest NFPA and NEC publications.

C. The Contractor shall provide all materials, equipment and installation in compliance with the latest applicable standards from ANSI, ASTM, FCC, IEEE, NCTA, NEC, NEMA, NFPA, REA, TIA/EIA, and UL including but not limited to:

2. ANSI T1.404 (DS3) and CATV Applications.

5. EIA/TIA-569 Standard, Commercial Building Standard for Telecommunications Pathways and Spaces.
6. EIA/TIA-607 Commercial Building Grounding and Bonding Requirements for Telecommunications.
7. National Cable Television Association (NCTA).
8. NCTA-02 NCTA Recommended Practices for Measurements on Cable Television Systems.
 a. Article 250, Grounding.
 b. Article 300, Part A. Wiring Method.
 c. Article 310, Conductors for General Wiring.
 d. Article 800, Communication Systems.
11. Underwriters Laboratories (UL).

D. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use.

E. NECA 1 Good Workmanship in Electrical Contracting.

1.08 PROJECT CONDITIONS

A. Environmental Limitations: System components shall be equipped and rated for the environments where installed.

B. Environmental Conditions.
 1. Capable of withstanding the following environmental conditions without mechanical or electrical damage or degradation of operating capability:
a. Interior, Controlled Environment: System components installed in conditioned interior environments shall be rated for continuous operation in ambient conditions of 36 to 122 deg F (2 to 50 deg C) dry bulb and 20 to 90 percent relative humidity, non-condensing.

b. Interior, Uncontrolled Environment: System components installed in non-conditioned interior environments shall be rated for continuous operation in ambient conditions of 0 to 122 deg F (minus 18 to plus 50 deg C) dry bulb and 20 to 90 percent relative humidity, non-condensing.

c. Exterior Environment: System components installed in locations exposed to weather shall be rated for continuous operation in ambient conditions of minus 30 to plus 122 deg F (minus 34 to plus 50 deg C) dry bulb and 20 to 90 percent relative humidity, condensing. Rate for continuous operation when exposed to rain as specified in NEMA 250, winds up to 85 mph (137 km/h) and snow cover up to 24 inches (610 mm) thick.

1.9 PROJECT COORDINATION AND PLAN

A. Contractor shall submit a project plan detailing the steps and associated timeframe to meet the General Contractor’s schedule requirements. Project plan should include benchmarks for items such as regular project meetings, equipment order and delivery, installations, configuration and calibrations, testing and burn-in, training, substantial completion notification, testing and final acceptance.

B. Contractor assumes total responsibility for coordinating with building trades or other parties as may be identified by the General Contractor.

C. Coordinate size and location of conduit systems, back boxes, and provisions for electrical power to equipment of this Section.

D. The Contractor must obtain written permission from the General Contractor prior to routing and/or installing cable, equipment or service through the facility.

E. Contractor shall prepare the installation schedule to coordinate sequencing, dependencies and priorities of the system installation including work by other trades.
PART 2 – PRODUCTS

2.1 MANUFACTURERS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the manufacturers specified.

B. Approved manufacturers:

1. Chief Manufacturing
2. CommScope Properties, LLC.
3. Da-Lite
4. Elmo
5. Epson
6. Extron
7. Furman
8. Middle Atlantic Products
9. Samsung
10. Shure
11. Sony
12. Spectrum Furniture
13. Wiremold

2.2 AUDIO VISUAL TYPES

A. Verify all quantities with AV drawings and Specifications. Provide all necessary elements for a complete turnkey installation including all material, labor, programming, warranties, shipping and permits.

B. Audio Visual Control System to be composed of approved components and software. Provide necessary cables, connector and other components a required for the systems to function per the drawings and specifications.

C. Coordinate with Owner to develop basis for control system GUI “look and feel” for all A/V room types. D. Coordinate and verify all AV programming with Owner prior to installation.

2.3 AVS CONTROL SYSTEMS- Models and count as required by schematic control requirements.
A. Approved manufacturers

1. Extron
 a. MLC 226IP AAP Keypad Controller
 1) Provide (1) CM-3BLB 3 button expansion

2.4 VIDEO SWITCHER

A. Approved manufacturers

1. Extron
 a. IN1608MA

2.5 TRANSMITTER AND RECEIVER

A. Approved manufacturers:

1. Extron
 a. DTP HDMI 230 Rx Receiver

2.6 EXTENDERS

A. Approved manufacturers:

1. C2G
 a. 29341 USB BOOSTER KIT

2.7 AUDIO SPEAKERS

A. Approved manufacturers:

1. Extron
 a. FF220T

2.10 PROJECTOR

A. Approved Products:

Moffett Library Renovation Phase II 274000-12 Audio Video Systems
1. Panasonic
 a. PT-RW430/470

2.15 POWER CONDITIONER & UPS

A. Approved products:
 1. APC
 a. SCM450RM1U. Provide (1) at each lectern
 2. Furman
 a. PL8C Power Conditioner. Provide (1) at each Classroom lectern

B. All AV racks and lecterns equipment must be power conditioned protected.

2.19 CABLES

A. All AV is to be provided by AV Contractor.

B. All cables will be plenum rated per NEC.

C. Contractor to provide proper rated cable type per installation OSP, riser, or plenum.

D. All cabling installed underground in concrete slabs, in direct contact with the earth, locations subject to saturation with liquids and unprotected locations exposed to weather proofing compounds and sheathing.

E. Provide types and quantities per drawings and schedules.

F. Conductor Sizing:
 1. Insulation shall be rated for a minimum of 300 volts.
 2. Wire types and minimum sizes:
 a. 70 Volt Speaker Cable - 18AWG, twisted, stranded CMP.
 b. Microphone Level Cable - 22 AWG, with 22 AWG drain wire, shielded, twisted, stranded CL2/CL2P.
 d. Line Level Cable - 22 AWG, with 22 AWG drain wire, shielded, twisted, stranded CL2/CL2P.
 e. Low Voltage Control Cable - 22 AWG twisted, stranded L2/CL2P.
 f. CAT-5e/6 shielded
G. Minimum acceptable AVS systems wiring performance standards shall be as follows:

1. Speaker cable - Per ANSI WC57 standard test.
2. CAT-5/6 - Per ANSI/TIA/EIA-568-8.1 standard test.
3. RS 232 - Per ANSI/ WC66 standard test.
4. Line level shielded audio cable - Per ANSI WC66 standard test.
5. Microphone level shielded audio cable - Per ANSI WC66 standard test.

H. Approved manufacturers:

1. Liberty
2. West Penn Wire/CDT; a division of Cable Design Technologies, Inc.
4. Extron

2.21 AV PATHWAY

A. Approved manufacturers:

1. Erico Caddy
2. Cooper B-Line
3. Panduit
4. Or approved equal

B. J-hooks or saddle bags shall be installed 4ft to 5ft apart. Uniform spacing should be avoided to minimize problems with signal degradation.

C. J-hooks or saddle bags shall be supported from decking or building structure using methods approved by the manufacturer.

D. Cable count shall not exceed manufacturer’s recommended maximum. Add separate parallel J-hook pathway when cable count requires it.

2.22 CABLE CONNECTORS

A. Approved manufacturers:

1. Liberty
2. Extron
PART 3 - EXECUTION

3.1 CONSTRUCTION MEETINGS

A. The Consultant and/or Owner will hold regular construction meetings to review the installation schedule. It is mandatory that the Contractor’s project manager attend each meeting.

3.2 SITE INSPECTION

A. Continuously verify that the site conditions are in agreement with the Contract Documents and the AVS design. Notify Owner’s representative immediately of conditions that affect the performance of the installed system.

B. Coordinate any required work that is not specified in the Contract Documents.

3.3 COORDINATION

A. Adequate conduit and back boxes are provided for the specified system installation.

B. Adequate power has been provided for the specified system installation.

C. Verify mounting location of all devices with Owner prior to installation.

3.4 GENERAL

A. The Contractor shall be responsible for providing all wire and cable as required for complete and operational system.

B. All cables must be continuous runs from device location to the final point of termination. No mid run cable splices will be allowed.

C. Make connections and splices with solderless devices that are mechanically and electrically secure in accordance with manufacturer’s recommendations.
D. The cable installation techniques shall be such that the mechanical and communications characteristics of the cables are not degraded at the time of installation. Any special environmental requirements for equipment shall be specified.

E. Wiring Method: Install cables in raceways except in accessible indoor ceiling spaces, in hollow gypsum-board partitions, and as otherwise indicated. Conceal raceways and wiring except in unfinished spaces.

F. Distribution of the cabling will be accomplished through cable trays, J-hooks, cable runways, conduit raceways, ducts, core holes, extended columns, false half columns and plenums. Horizontal cable segments will be placed in cable trays and when they leave cable trays will be supported by distribution rings. Where cables converge at equipment room locations, they will be supported by cable runways and distribution rings. All cable placements shall be based on the enclosed drawings.

G. The Contractor shall not place wiring in the same conduit or raceway with wire for electrical power distribution.

H. Connectors to all devices in system shall be protected against moisture. Approval of the method shall not relieve the Contractor of full responsibility for proper application and workmanship of the materials in the manner specifically approved. All connector threads shall be treated with an approved silicone lubricant.

I. The Contractor shall be responsible for providing approved grounds for all AVS system equipment per the manufactures recommendations. The Contractor shall also be responsible for ensuring ground continuity by properly bonding all appropriate cabling, closures, cabinets, service boxes, and framework. All ground connections shall consist of minimum 12 AWG copper wires and shall be supplied from an approved building ground and bonded to the main electrical ground. Contractor must notify the Owner prior to making any changes in submitted system design and/or installation.

J. Wiring within Enclosures: Bundle, lace, and train conductors to terminal points with no excess and without exceeding manufacturer’s limitations on bending radii. Provide and use lacing bars and distribution spools.

K. Splices, Taps, and Terminations: For power and control wiring, use numbered terminal strips in junction, pull, and outlet boxes; terminal cabinets; and equipment enclosures. Tighten electrical connectors and terminals according to manufacturer’s published torque-tightening values. If manufacturer’s torque values are not indicated, use those specified in UL 486A and UL 486B.

L. Grounding: Provide independent-signal circuit grounding per practices published by the manufacturer.
3.5 IDENTIFICATION, LABELING AND DOCUMENTATION

A. The Contractor shall label all termination devices, panels, enclosures and equipment rooms. The Contractor will mark each unit with permanently attached markings that will not impair the equipment or present a hazard to maintenance personnel.

B. Place wire identification numbers ¼” on each end of all conductors and or connectors by using sleeve type heat shrinkable markers. Install markers to be readable from left to right or top to bottom. Wire numbers shall be computer printed (Brady TLS2200 with Permasleeve cable marking labels or equivalent). Hand written labels are not acceptable.

C. Mark all spare conductors.

D. Contractor to maintain a progress set of design documents on the Project site. These documents shall be updated daily to reflect the current condition of the work and available for review by the Consultant and Owner when requested.

E. If changes occur prior to acceptance testing altering the documentation previously furnished. The Contractor shall formally update and reissue the relevant documentation to the Consultant and Owner.

F. Consultant and Owner will review all documentation for accuracy and completeness and may reject substandard submittals.

G. The Contractor shall establish and maintain complete system documentation, including documentation procedures, operational information, configuration information and drawings. Documentation shall include the following:

1. Floor plan drawings indicating device locations, unique system point numbers with device legends indicating manufacturers and model numbers for each device.

2. The unique system point number of a device shall identify either through the software or hardware connection, the specific device or group of devices associated with the unique point number in the system.

3. Floor plan drawings indicating conduit and wire routing and junction box locations.

4. Wire routing shall include cable identification and terminal strip numbers.

5. Mounting details for all equipment and hardware.
6. Functional block diagrams for each system.

7. Wiring details showing rack elevations, equipment wiring and terminations and inter-rack wiring.

3.6 FIELD QUALITY CONTROL

A. Inspection: Verify that units and controls are properly installed, connected, and labeled, and that interconnecting wires and terminals are identified.

B. Pre-testing: Align and adjust system and pretest components, wiring, and functions to verify that they comply with specified requirements.

C. Test Schedule: Schedule tests after pre-testing has been successfully completed and system has been in normal functional operation for at least 14 days. Provide a minimum of 10 days' notice of test schedule.

D. Operational Tests: Perform operational system tests to verify that system complies with Specifications. Include all modes of system operation. Test equipment for proper operation in all functional modes.

E. Remove and replace malfunctioning items and retest as specified above.

F. Record test results for each piece of equipment.

G. Re-test: Correct deficiencies identified by tests and observations and retest until specified requirements are met.

3.7 ADJUSTING

A. Programming:

1. Owner may use AV control system 1-3 months after substantial completion / warranty period Contractor must provide the Owner (2) final programming change to any aspect of the AV control systems including, but not limited to:

 a. Touch Panels
 b. Key Pads
 c. Functionality
 d. Control
 e. Lay-out
 f. Added equipment
B. Speaker Systems

1. Equalize speaker systems flat from 80 Hz to 2 KHz with a 2dB per octave roll-off thereafter. Program a high pass filter at 60Hz with 12dB per octave roll off and a low pass filter 15 KHz with 12 dB per octave roll off.

2. Use a minimum of three measurement locations in the system’s intended coverage area to calibrate the system response.

3. Verify system gain and amplifier levels.

4. Verify speaker polarity

5. Adjust appropriate speaker delays.

6. Set and adjust limiters.

7. Contractor shall provide for calibration of the system:
 a. Sound analyzer (SmartLive, TEF SoundLab, Meyer’s SIM or equivalent) with trained operator for adjusting and verifying delay timing, cabinet aim and equalization.
 b. Suitable calibrated microphone.

8. The Contractor shall coordinate this testing and calibration. It is anticipated that this work will take 1 hour per classroom. It will be necessary to have a quiet room during these times.

9. Contractor to record all measurements, settings and adjustment for inclusion in the O&M manuals.

C. Adjust limit switches on electric operated projection screens.

D. Adjust back focus on all video cameras.

E. Occupancy Adjustments: When requested within 12 months following the of date of Substantial Completion, provide on-site assistance in adjusting systems to suit actual occupied conditions and to optimize performance of the installed equipment. Tasks shall include, but are not limited to, the following:

1. Check cable connections.

2. Check proper operation of equipment.
3. Adjust all presets; consult Owner’s personnel.
4. Recommend changes to the AVS to improve Owner’s utilization of the system.
5. Provide a written report of adjustments and recommendations.

3.8 TEST EQUIPMENT

A. Sensitive AC voltmeter, -80 dBu sensitivity, 20-30 kHz response, able to measure signal to noise ratio, THD, electrical audio levels within the system. Note that some systems require measurements up to 100 volts and may require an external pad.

B. Sound Pressure Level Meter, ANSI Type II, with A and C weighting filters, fast or time-averaged.

C. Audio Signal generator, 20-30 kHz, sine wave, pink noise.

D. Analog Video Signal Generator NTSC/PAL, plus computer patterns at all required resolutions and refresh rates required for the systems under test. For systems with composite video, include PLUGE pattern.

E. Digital Video Signal Generator for computer patterns for all resolutions and refresh rates required for the systems under test, HDMI/DVI.

F. The ability to measure STI-PA (source and analyzer).

G. Infrared Thermometer.

H. Testing material with known levels (audio, video, etc): CD’s, VHS, DVD’s, etc. IAC/DC Multi-Meter.

J. Cable sets, cable assemblies, adapters as required to sample and measure in-or out of circuit as required.

3.9 STAGING TEST (PRE COMMISSIONING)

A. Sanity Check: Is there any reason why this system should NOT be released for installation? Is everything plumb and square, clean and blemish-free? Prepare document report, certifying the product, performance, and practices are in compliance, and noting any exceptions below. The Staging checklist must be reviewed and signed by someone within
the organization, with the proper competencies (CTS-D or CTS-I with Testing and Verification Specialist Certification) to attest that the system being installed has been completely staged, with the exceptions noted, all items on the checklist have been completed, that rack elevations are as specified, that all the equipment is new, and the system is complete and in accordance with the specification in product, practice, and performance. Distribute accordingly.

B. All the equipment can be pulled for repairs or replacement without hindrance to cabling and or other equipment.

C. All cables, input / output plates, devices, equipment inputs/outputs, devices and racks are identified in a consistent, permanent, non-slipping manner, and all identification tags are visible. All labeling have clearly legible, unambiguous identifying labels, and labels are oriented and positioned consistently.

D. Terminations are free from stress due to gravity acting on the form.

E. Terminations have sufficient service loop, allowing a re-termination or two without having to open a form to lay in a new cable.

F. Cable supports are used when unsupported cable lengths exceed 12 inches (depending on size and stiffness of cables).

G. Screw terminals have spade or ring lugs on wires.

H. Cables have “signal separation”; that is, cables carrying voltages varying by 20 dB or more are in different forms separated by at least 4 inches to prevent cross talk.

I. All unbalanced and balanced terminations are in agreement with the equipment manufacturer's recommendations.

J. List all equipment in the system NOT present, and why.

K. All equipment installed. All mounts for all racks and field equipment (rack mounts, ceiling mounts, wall mounts, loudspeaker mounts, etc.) have been verified and tested.

L. Racks are “clean” - grease markings removed, etc.

M. All blanks installed.

N. ALL equipment hooked up as per flow diagram: microphones, loudspeakers, video monitors, projectors, PC’s, USB switchers, etc.

O. Audio Tested (all lines marked). Test with sound generator or test CD with pass/ fail result
or which device at what frequencies.

1. Balance all inputs and output

2. Proper gain structure

3. Polarity

4. Sound generator and CD

P. Video tested (all lines marked). Test with test video pattern generator with pass/ fail result.

1. When HDMI signals are included in the system, confirm that an acceptable signal is being displayed on the monitor from each source using a HDMI generator with HDCP. All the staged cabling should be either the actual cables and converters to be installed, or using connections and converters that emulate the field conditions with as close to the installed cable lengths as possible. Whenever possible, the actual display to be installed should be tested with the cables and converters as well: 1920x1200@60, 1920x1080@60, 1280x720@60, 1366x768@60, 1024x768@60, 800x600@60, 1600x1200@60.

2. Inspect each, leaving the signal on for three minutes (no “sparklies” or other artifacts). Note: If the signal is going to a codec, HDCP should be turned off (codecs do not support HDCP). If the signal is going to a display, HDCP should be turned on for a complete HDMI test to verify cables and display input.

Q. Control tested (all lines marked - emulate closures for screens, motors, etc.)

R. IP information provided by client and loaded into system, including IP address, subnet mask, gateway, timeserver, Gatekeeper, etc.

S. Confirm IP information on all devices with a NIC card have IP address, DHCP enabled, or can otherwise be accessed over a LAN before leaving the shop. List IP settings for each piece of equipment on the network at the bottom of this report, or attached as a separate document.

T. Any web-based system control or monitoring features and other IP functionality of system thoroughly tested.

U. All serial controlled equipment properly configured and communications established.

V. Confirm control system functions as design intent.
W. All programming installed (control system, DSP devices), and properly communicating with the equipment intended. If a control specification is present, it has been thoroughly tested.

X. When system is powered down, system “up” sequence presents the system in a desirable state with no objectionable anomalies.

Y. Thermal gradient inspected; all equipment operating within manufacturers’ guidelines.

Z. Inspect camera(s) image quality.

AA. Video – record or photograph any non-conformances, anomalies, etc.

3.10 COMMISSIONING

A. Sanity Check: Is there any reason why this system should NOT be released for installation? Is everything plumb and square, clean and blemish-free? Prepare document report, certifying the product, performance, and practices are in compliance, and noting any exceptions below. The Commissioning Checklist must be reviewed and signed by someone within the organization with the proper competencies (CTS -D or CTS -I with Testing and Verification Specialist Certification) to attest that the system installed is complete, all items on the above checklist have been completed, that rack elevations are as specified, that all equipment is new, and that all engineering, fabrication, programming, installation, testing, and checkout is in accordance with the specification in product, practice and performance. Distribute accordingly.

B. Inspect and verify that all exceptions from the “Staging” checklist have been successfully completed.

C. Full inventory to be all new equipment, in full compliance with the specification, or as modified by approved submission. Record test results as pass/fail, and list exceptions.

D. Record all equipment not present, and why.

E. Thermal gradient inspected; all equipment operating within manufacturers’ guidelines.

F. Cable inspection: labeling, cable dress, signal separation, cable stress, serviceability, tie wraps too tight (none on Category cable, only Velcro ties). Cable labeling is positioned and oriented in a consistent manner, are legible and unambiguous.

G. Confirm rack elevation and flow drawings, cable and other labels and engravings are an accurate paper model of the furnished system, and in compliance with latest revised specifications. Record test results as pass/fail.
H. All inputs and outputs of switchers tested are labeled.

I. All channels on amplifiers, especially on multi-channel amplifiers are tested properly labeled.

J. Record ambient noise, A-weighted, slow.

K. Produce a nominal operating level of (65) dB SPL (Sound Pressure Level) for conference speech, (60) dB SPL for program material, “A” weighted at all listeners’ ears +/- (2) dB (“Uniformity of Coverage”) (or at least (15) dB above the ambient noise, A-weighted, whichever is greater), with the control system volume control indicating “normal” or default setting. Record results for each channel and source.

L. The speech reinforcement system shall be stable (no feedback).

M. For Audio /Video conference systems, at the (65) dB SPL listening level, be able to demonstrate full duplex operation, with no reports of echo or “speech trails” (as detected from the far end). Adjust microphone input gain so as to demonstrate that “standard talker” (60 dB SPL at 1 m), positioned at each talker position in the room, produces a “0 dB” level at the input of the mixer bus of the audio conference DSP device. If there is local reinforcement (“mix-minus”), AGC and ALC may need to be restricted. Record test results as pass/fail. Record level across analog telephone line. Inspect DSP mixer telephone line levels, both transmit and receive, when normal speech is encountered in the room.

N. Equalizers shall be adjusted for best intelligibility, and in accordance with the preferred acoustic level response curves. (For installations with equalizers) Record the “house curve” before equalization, as well as after the equalizers have been tuned, with and without microphone input filters. If requested by the Consultant, produce this documentation for systems without equalizers, as this test may apply to the preamp filter settings in cases where intelligibility can be improved.

O. For wireless microphone systems, with all wireless microphones turned on, confirm that throughout the specified operating area for the transmitter, there are no dropouts, inter-modulation interaction between wireless systems, or RF caused artifacts.

P. Video projector, if any, must have ‘blue screen’ or ‘no image screen’ disabled, or as directed by the user.

Q. When several displays are visible in the same space, demonstrate consistencies in colors across all of them.

R. Confirm acceptable TV levels, and any channel presets are accurate.
S. Displays have On-Screen Displays/Menus Are Disabled, or as specified by the user.

T. Image size relative to furthest viewer ratio: (1:6) Record each, compare to recommended ratio.

U. Displays are focused, centered, and evenly illuminated and mounted at the recommended heights.

V. Display stable images, with no scaling-related visual artifacts when switching between, at a minimum, (1024 x 768), (1280 x 1024), (1920 x 1080) and (1280 x 720) sources, and/or all those specified in the performance criteria for this system. Record test results.

1. When HDMI signals are included in the system, confirm that an acceptable signal is being displayed on the monitor from each source using a HDMI generator with HDCP. All the staged cabling should be either the actual cables and converters to be installed, or using connections and converters that emulate the field conditions with as close to the installed cable lengths as possible. Whenever possible, the actual display to be installed should be tested with the cables and converters as well: 1920x1200@60, 1920x1080@60, 1280x720@60, 1366x768@60, 1024x768@60, 800x600@60, 1600x1200@60.

2. Inspect each, leaving the signal on for three minutes (no “sparklies” or other artifacts). Note: If the signal is going to a codec, HDCP should be turned off (codecs do not support HDCP). If the signal is going to a display, HDCP should be turned on for a complete HDMI test to verify cables and display input.

W. The Control System performs all the functions as indicated on the function list (“control system specification”) provided, with stability, and in sync with the equipment being controlled without the need to reset any item of equipment.

X. Any web-based system control or monitoring features, and other IP functionality of system (time servers, system-generated e-mail, processor, etc.) thoroughly tested.

Y. Be serviceable. This includes accessibility to equipment to be easily pulled for repair by one person, neatly dressed cables, bundled in forms having no excessive pressure on cables at termination points and connectors, utilize service loops, and have each cable number in agreement with the as-built drawings. This includes the equipment rack itself. All switches and receptacles shall be logically and permanently labeled.

Z. Confirm all nomenclature for consistency: drawings, touch screen, wallplates, floorboxes, patch panels, equipment, etc.

AA. Inspect camera image quality.
1. Camera presets are programmed as specified by the user.

AB. Log all test conference calls (audio and video). Log should include time, line used, number called, success of connection, who we spoke with, success of full duplex, success of auto disconnect, level in the room, note static or jitter/packet loss, etc. Note if auto disconnect functions as specified.

3.11 TRAINING

A. AVS training shall be provided for the operator/user and technical staff. Operator/user training shall minimally consist of 8 ea. 1-hour sessions. Technical operation and maintenance training session shall minimally consist of 8 ea. 1-hour session. Training sessions to be coordinated with the Owner and scheduled throughout the 1-year warranty period.

B. The contractor shall train the Owner’s maintenance personnel in the procedures and schedules involved in operating, troubleshooting, servicing, and preventative maintenance of the system. This training will be in accordance with the training as outlined in this specification. In addition to the Training Materials provided, the contractor will also furnish Operators Manuals and Users Guides at the time of this training.

C. A complete operation and maintenance manuals and preliminary as-built drawings shall be delivered to the Owner one week prior to the training sessions.

D. Operator/user training shall minimally consist of:

1. Provide custom system specific printed reference material for each trainee that documents and explains in layman’s terms:
 a. System block diagram.
 b. Normal day-to-day operation.
 c. Operator selectable features.
 d. Provide a hands-on training with Q & A session.

2. Provide and review a custom, system specific, quick reference guide for the inexperienced operator.

E. Technical Operations and Maintenance training shall consist of:

1. The technical explanation shall be sufficiently thorough that: staff personnel shall be
able to make any programming changes required, analyze malfunctions and make equipment substitutions or bypasses necessary to maintain system operation except for the malfunctioning equipment or circuits.

2. Provide printed reference material for each trainee that documents and explains in technical terms:
 a. System block diagram with technical features.
 b. Technical operation, adjustments and programming.
 c. System features and programming.
 d. Review of as-built drawings.
 e. Provide a hands-on training with Q & A session.

3.12 WARRANTY

A. The Contractor shall warrant the system for parts and labor for one (1) year. Warranty commences at the time of substantial project completion and acceptance by Owner. Nothing shall be construed to limit this obligation to a shorter period.

B. Warranty service shall be rendered on-site by request of Owner to repair or replace any defective materials, equipment and workmanship without cost to the Owner, unless the Owner has previously given the Contractor a written acceptance of such condition.

C. The Owner shall give prompt notice of the defect(s) either verbally or in writing to Contractor.

D. Perform preventative maintenance during the warranty period, which includes:

E. Cleaning and inspection of all devices every 6 months.

F. Clean and vacuum console and rack equipment every 6 months.

G. Service technician performing service / warranty work shall check-in and out with Owner for each visit.

H. Provide a written report to Owner documenting any work performed during the warranty period within 24 hours of such event. Report shall detail work performed, equipment repaired or replaced, etc.

I. Provide loner equipment that is equivalent to the malfunction equipment for any equipment not field repairable.
J. Repair or Replacement Service.

1. Repair or replacement service during the warranty period shall be performed 7 days a week, 24 hours a day and with a 4 hour response time.

2. Emergency repair or replacement service during the warranty period shall be performed 7 days a week, 24 hours a day and with a 1 hour response time.

3. If the Contractor cannot restore system operation during the warranty period within 2 business days of the system failure, the Owner reserves the right to require the Contractor to provide on-site manufacturer’s service technicians at no additional cost.

4. The Owner reserves the right to expand or add to the system during the warranty period using firm(s) other than the Contractor for such expansion without affecting the Contractor’s responsibilities, provided the expansion is performed by an authorized dealer for the affected equipment.

3.13 SUBSTANTIAL COMPLETION

A. Work must meet the following requirements to qualify for the Owner’s consideration of Substantial Completion:

1. All AVS devices shall be fully installed, powered, online and fully operational.

2. All sub-system interfaces must be complete and operational.

3. All training complete.

4. Owner may utilize the system for its designed intent.

5. Contractor to provide final programming A/V source code to remain property of Owner. Provided copies of all A/V room types compiled and uncompiled source code, to Owner for backup and future reference as part of the Final Acceptance.

B. Contractor will provide a list of remaining work items and approximate completion date.

C. Contractor will certify in writing that all remaining work is minor in nature and will be completed in less than 30 days.
3.14 TESTING REQUIREMENTS
A. The Contractor shall perform sample tests in the presence of the Consultant and Owner. Performing the testing procedures specified herein assures that the communication cabling and system electronics meets the performance characteristics specified.

B. All testing shall comply with EIA/TIA Standards and that of the equipment manufacturers. If testing indicates that the performance characteristics are not met, the test shall be failed test and any other test that may be affected by the modification and/or repair shall be rerun and verified.

C. Test equipment will be provided by the Contractor to test and to certify the 100% operational condition of all materials and equipment.

D. The Contractor shall prepare and submit all test procedures and data forms for the pre-installation, post installation and subsystem test to Owner. The test procedures shall have Owner approval before the tests.

3.15 SYSTEM CHECK OUT AND VERIFICATION
A. Verify continuity of cabling between field devices and controllers.

B. Commission all devices from field to front end.

C. Contractor supplied “As Built” Drawings shall show conduit routing.

D. Review all as-built documentation and Operation and Maintenance manuals with Owner. Revise and reissue as required.

E. Provide as-built documentation in hard copy, PDF and AutoCAD formats.

F. Demonstrate proper sequences of operation for all devices.

G. Within ten days receipt of the final acceptance notice, the Contractor and Owner’s representatives shall schedule and perform the final inspection. When the work is found acceptable under the contract documents and the contract is fully performed, declare the project complete.

3.16 FINAL ACCEPTANCE OF SYSTEMS
A. All deliverables listed in the plain-language narrative have been satisfactorily delivered.
B. Each area of construction completed and submitted as complete shall meet the following criteria under testing:

1. There are no remaining punch-list items.
2. System must meet all specifications as described in these instructions.
3. Operational prints, manuals, signal logs, an as built prints must be furnished.
4. Visual testing and signal verification will be conducted at random locations to determine that equipment performs satisfactorily.

C. All promised training of designated personnel has taken place.

D. Specifications set forth for construction of the system have been devised in order to insure system compatibility and performance. Compliance to these specifications will be determined during periodic observances of construction. Repeated failure to comply with the specification will be considered before the initial acceptance phase of the plant commences.

E. All promised documentation has been delivered.

F. All complaints have been satisfied.

3.17 PRICING FORMS

A. In addition to all other required bid forms, Contractor shall prepare and present to Owner and Owner’s representative pricing based on the requirements of 27 40 00.

B. Pricing shall include the list of equipment and labor in tabular form including; part number, item description, unit price, number of units, extended price and totals. The pricing shall breakdown the material and labor in the categories.

C. Contractor shall provide Service Agreement pricing levels for terms of 1, 2 and 3 years. Breakout service pricing levels by response times of within 2 hours, 24 hours or more than 24 hours.
END OF SECTION
This page intentionally left blank
SECTION 283111 - DIGITAL, ADDRESSABLE FIRE-ALARM SYSTEM

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:
 1. Fire-alarm control unit.
 3. System smoke detectors.
 4. Air-sampling smoke detectors.
 5. Nonsystem smoke detectors.
 6. Heat detectors.
 8. Device guards.
 9. Firefighters' two-way telephone communication service.
 10. Firefighters' smoke-control station.

B. Related Requirements:
 1. Section 280513 "Conductors and Cables for Electronic Safety and Security" for cables and conductors for fire-alarm systems.

1.3 DEFINITIONS

A. EMT: Electrical Metallic Tubing.

B. FACP: Fire Alarm Control Panel.

C. HLI: High Level Interface.

E. PC: Personal computer.
1.4 ACTION SUBMITTALS

A. Product Data: For each type of product, including furnished options and accessories.
 1. Include construction details, material descriptions, dimensions, profiles, and finishes.
 2. Include rated capacities, operating characteristics, and electrical characteristics.

B. Shop Drawings: For fire-alarm system.
 1. Comply with recommendations and requirements in the "Documentation" section of the "Fundamentals" chapter in NFPA 72.
 2. Include plans, elevations, sections, details, and attachments to other work.
 3. Include details of equipment assemblies. Indicate dimensions, weights, loads, required clearances, method of field assembly, components, and locations. Indicate conductor sizes, indicate termination locations and requirements, and distinguish between factory and field wiring.
 4. Detail assembly and support requirements.
 5. Include voltage drop calculations for notification-appliance circuits.
 6. Include battery-size calculations.
 7. Include input/output matrix.
 8. Include statement from manufacturer that all equipment and components have been tested as a system and meet all requirements in this Specification and in NFPA 72.
 9. Include performance parameters and installation details for each detector.
 10. Verify that each duct detector is listed for complete range of air velocity, temperature, and humidity possible when air-handling system is operating.
 11. Provide program report showing that air-sampling detector pipe layout balances pneumatically within the airflow range of the air-sampling detector.
 12. Include plans, sections, and elevations of heating, ventilating, and air-conditioning ducts, drawn to scale; coordinate location of duct smoke detectors and access to them.
 a. Show critical dimensions that relate to placement and support of sampling tubes, detector housing, and remote status and alarm indicators.
 b. Show field wiring required for HVAC unit shutdown on alarm.
 c. Show field wiring and equipment required for HVAC unit shutdown on alarm and override by firefighters' control system.
 d. Show field wiring and equipment required for HVAC unit shutdown on alarm and override by firefighters' smoke-evacuation system.
 e. Locate detectors according to manufacturer's written recommendations.
 f. Show air-sampling detector pipe routing.
 13. Include voice/alarm signaling-service equipment rack or console layout, grounding schematic, amplifier power calculation, and single-line connection diagram.
 14. Include floor plans to indicate final outlet locations showing address of each addressable device. Show size and route of cable and conduits and point-to-point wiring diagrams.

C. General Submittal Requirements:
 1. Submittals shall be approved by authorities having jurisdiction prior to submitting them to Architect.
 2. Shop Drawings shall be prepared by persons with the following qualifications:
a. Trained and certified by manufacturer in fire-alarm system design.
b. NICET-certified, fire-alarm technician; Level III minimum.
c. Licensed or certified by authorities having jurisdiction.

D. Delegated-Design Submittal: For notification appliances and smoke and heat detectors, in addition to submittals listed above, indicate compliance with performance requirements and design criteria, including analysis data signed and sealed by the qualified professional engineer responsible for their preparation.

1. Drawings showing the location of each notification appliance and smoke and heat detector, ratings of each, and installation details as needed to comply with listing conditions of the device.
2. Design Calculations: Calculate requirements for selecting the spacing and sensitivity of detection, complying with NFPA 72. Calculate spacing and intensities for strobe signals and sound-pressure levels for audible appliances.
3. Indicate audible appliances required to produce square wave signal per NFPA 72.

1.5 INFORMATIONAL SUBMITTALS

A. Qualification Data: For Installer.

B. Seismic Qualification Certificates: For fire-alarm control unit, accessories, and components, from manufacturer.

1. Basis for Certification: Indicate whether withstand certification is based on actual test of assembled components or on calculation.
2. Dimensioned Outline Drawings of Equipment Unit: Identify center of gravity and locate and describe mounting and anchorage provisions.
3. Detailed description of equipment anchorage devices on which the certification is based and their installation requirements.

C. Field quality-control reports.

1.6 Sample Warranty: For special warranty.

1.7 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For fire-alarm systems and components to include in emergency, operation, and maintenance manuals.

1. In addition to items specified in Section 017823 "Operation and Maintenance Data," include the following:
 a. Comply with the "Records" section of the "Inspection, Testing and Maintenance" chapter in NFPA 72.
 b. Provide "Fire Alarm and Emergency Communications System Record of Completion Documents" according to the "Completion Documents" Article in the "Documentation" section of the "Fundamentals" chapter in NFPA 72.
c. Complete wiring diagrams showing connections between all devices and equipment. Each conductor shall be numbered at every junction point with indication of origination and termination points.
d. Riser diagram.
e. Device addresses.
f. Air-sampling system sample port locations and modeling program report showing layout meets performance criteria.
g. Record copy of site-specific software.
h. Provide "Inspection and Testing Form" according to the "Inspection, Testing and Maintenance" chapter in NFPA 72, and include the following:
 1) Equipment tested.
 2) Frequency of testing of installed components.
 3) Frequency of inspection of installed components.
 4) Requirements and recommendations related to results of maintenance.
 5) Manufacturer's user training manuals.
i. Manufacturer's required maintenance related to system warranty requirements.
j. Abbreviated operating instructions for mounting at fire-alarm control unit and each annunciator unit.

B. Software and Firmware Operational Documentation:
 1. Software operating and upgrade manuals.
 2. Program Software Backup: On magnetic media or compact disk, complete with data files.
 3. Device address list.
 4. Printout of software application and graphic screens.

1.8 QUALITY ASSURANCE
A. Installer Qualifications: Personnel shall be trained and certified by manufacturer for installation of units required for this Project.

B. Installer Qualifications: Installation shall be by personnel certified by NICET as fire-alarm Level II technician.

1.9 PROJECT CONDITIONS
A. Perform a full test of the existing system prior to starting work. Document any equipment or components not functioning as designed.

B. Interruption of Existing Fire-Alarm Service: Do not interrupt fire-alarm service to facilities occupied by Owner or others unless permitted under the following conditions and then only after arranging to provide temporary guard service according to requirements indicated:
 1. Notify Architect no fewer than 14 days in advance of proposed interruption of fire-alarm service.
 2. Do not proceed with interruption of fire-alarm service without owner’s written permission.
C. Use of Devices during Construction: Protect devices during construction unless devices are placed in service to protect the facility during construction.

1.10 SEQUENCING AND SCHEDULING

A. Existing Fire-Alarm Equipment: Maintain existing equipment fully operational until new equipment has been tested and accepted. As new equipment is installed, label it "NOT IN SERVICE" until it is accepted. Remove labels from new equipment when put into service, and label existing fire-alarm equipment "NOT IN SERVICE" until removed from the building.

B. Equipment Removal: After acceptance of new fire-alarm system, remove existing disconnected fire-alarm equipment and wiring.

1.11 WARRANTY

A. Special Warranty: Manufacturer agrees to repair or replace fire-alarm system equipment and components that fail in materials or workmanship within specified warranty period.

1. Warranty Extent: All equipment and components not covered in the Maintenance Service Agreement.

2. Warranty Period: Five years from date of Substantial Completion.

PART 2 - PRODUCTS

2.1 SYSTEM DESCRIPTION

A. Source Limitations for Fire-Alarm System and Components: Components shall be compatible with, and operate as an extension of, existing system. Provide system manufacturer's certification that all components provided have been tested as, and will operate as, a system.

B. Noncoded, UL-certified addressable system, with multiplexed signal transmission and horn/strobe evacuation.

C. Automatic sensitivity control of certain smoke detectors.

D. All components provided shall be listed for use with the selected system.

E. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

2.2 SYSTEMS OPERATIONAL DESCRIPTION

A. Fire-alarm signal initiation shall be by one or more of the following devices and systems:

2. Heat detectors.
3. Flame detectors.
4. Smoke detectors.
5. Duct smoke detectors.
6. Carbon monoxide detectors.
7. Combustible gas detectors.
8. Automatic sprinkler system water flow.
9. Preaction system.
10. Fire-extinguishing system operation.
11. Fire standpipe system.
12. Dry system pressure flow switch.
13. Fire pump running.

B. Fire-alarm signal shall initiate the following actions:
 1. Continuously operate alarm notification appliances, including voice evacuation notices.
 2. Identify alarm and specific initiating device at fire-alarm control unit and remote annunciators.
 3. Transmit an alarm signal to the remote alarm receiving station.
 4. Unlock electric door locks in designated egress paths.
 5. Release fire and smoke doors held open by magnetic door holders.
 6. Activate voice/alarm communication system.
 7. Switch heating, ventilating, and air-conditioning equipment controls to fire-alarm mode.
 8. Activate smoke-control system (smoke management) at firefighters' smoke-control system panel.
 9. Activate stairwell and elevator-shaft pressurization systems.
 10. Close smoke dampers in air ducts of designated air-conditioning duct systems.
 11. Activate preaction system.
 12. Recall elevators to primary or alternate recall floors.
 13. Activate elevator power shunt trip.
 15. Activate emergency shutoffs for gas and fuel supplies.
 16. Record events in the system memory.
 17. Record events by the system printer.
 18. Indicate device in alarm on the graphic annunciator.

C. Supervisory signal initiation shall be by one or more of the following devices and actions:
 1. Valve supervisory switch.
 2. High- or low-air-pressure switch of a dry-pipe or preaction sprinkler system.
 3. Alert and Action signals of air-sampling detector system.
 4. Elevator shunt-trip supervision.
 5. Fire pump running.
 6. Fire-pump loss of power.
 7. Fire-pump power phase reversal.
 8. Independent fire-detection and -suppression systems.
 9. User disabling of zones or individual devices.
 10. Loss of communication with any panel on the network.

D. System trouble signal initiation shall be by one or more of the following devices and actions:
 1. Open circuits, shorts, and grounds in designated circuits.
2. Opening, tampering with, or removing alarm-initiating and supervisory signal-initiating devices.
3. Loss of communication with any addressable sensor, input module, relay, control module, remote annunciator, printer interface, or Ethernet module.
4. Loss of primary power at fire-alarm control unit.
5. Ground or a single break in internal circuits of fire-alarm control unit.
6. Abnormal ac voltage at fire-alarm control unit.
7. Break in standby battery circuitry.
8. Failure of battery charging.
9. Abnormal position of any switch at fire-alarm control unit or annunciator.
11. Hose cabinet door open.

E. System Supervisory Signal Actions:

1. Initiate notification appliances.
2. Identify specific device initiating the event at fire-alarm control unit and remote annunciators.
3. Record the event on system printer.
4. After a time delay of 200 seconds, transmit a trouble or supervisory signal to the remote alarm receiving station.
5. Transmit system status to building management system.
6. Display system status on graphic annunciator.

2.3 FIRE-ALARM CONTROL PANEL (FACP)

A. Fire Alarm Control Panel is existing. Contractor shall provide new power supplies, batteries and battery cabinets, expansion modules, and any and all additional hardware, material and programming necessary for a fully functional and code-compliant system. All new devices shall be compatible with the existing system.

B. If existing panel will not support the required number of detection devices, contractor shall replace existing FACP with a new addressable FACP, and re-connect all existing devices to the new panel.

2.4 PREACTION SYSTEM

A. Initiate Presignal Alarm: This function shall cause an audible and visual alarm and indication to be provided at the FACP. Activation of an initiation device connected as part of a preaction system shall be annunciated at the FACP only, without activation of the general evacuation alarm.

2.5 MANUAL FIRE-ALARM BOXES

A. General Requirements for Manual Fire-Alarm Boxes: Comply with UL 38. Boxes shall be finished in red with molded, raised-letter operating instructions in contrasting color; shall show visible indication of operation; and shall be mounted on recessed outlet box. If indicated as surface mounted, provide manufacturer's surface back box.
1. Single-action mechanism, breaking-glass or plastic-rod type; with integral addressable module arranged to communicate manual-station status (normal, alarm, or trouble) to fire-alarm control unit.
2. Double-action mechanism requiring two actions to initiate an alarm, breaking-glass or plastic-rod type; with addressable module arranged to communicate manual-station status (normal, alarm, or trouble) to fire-alarm control unit.
3. Station Reset: Key- or wrench-operated switch.
4. Weatherproof Protective Shield: Factory-fabricated, clear plastic enclosure hinged at the top to permit lifting for access to initiate an alarm.

2.6 SYSTEM SMOKE DETECTORS

A. General Requirements for System Smoke Detectors:
 1. Comply with UL 268; operating at 24-V dc, nominal.
 2. Detectors shall be two-wire type except where four wire type is needed for AHU shutdown or other similar functions.
 3. Integral Addressable Module: Arranged to communicate detector status (normal, alarm, or trouble) to fire-alarm control unit.
 4. Base Mounting: Detector and associated electronic components shall be mounted in a twist-lock module that connects to a fixed base. Provide terminals in the fixed base for connection to building wiring.
 5. Self-Restoring: Detectors do not require resetting or readjustment after actuation to restore them to normal operation.
 6. Integral Visual-Indicating Light: LED type, indicating detector has operated and power-on status.

B. Photoelectric Smoke Detectors:
 1. Detector address shall be accessible from fire-alarm control unit and shall be able to identify the detector's location within the system and its sensitivity setting.
 2. An operator at fire-alarm control unit, having the designated access level, shall be able to manually access the following for each detector:
 a. Primary status.
 b. Device type.
 c. Present average value.
 d. Present sensitivity selected.
 e. Sensor range (normal, dirty, etc.).

C. Duct Smoke Detectors: Photoelectric type complying with UL 268A.
 1. Detector address shall be accessible from fire-alarm control unit and shall be able to identify the detector's location within the system and its sensitivity setting.
 2. An operator at fire-alarm control unit, having the designated access level, shall be able to manually access the following for each detector:
 a. Primary status.
 b. Device type.
 c. Present average value.
d. Present sensitivity selected.
e. Sensor range (normal, dirty, etc.).

3. Weatherproof Duct Housing Enclosure: NEMA 250, Type 4X; NRTL listed for use with the supplied detector for smoke detection in HVAC system ducts.
4. Each sensor shall have multiple levels of detection sensitivity.
5. Sampling Tubes: Design and dimensions as recommended by manufacturer for specific duct size, air velocity, and installation conditions where applied.

2.7 PROJECTED BEAM SMOKE DETECTORS

A. Projected Beam Light Source and Receiver: Designed to accommodate small angular movements and continue to operate and not cause nuisance alarms.

B. Detector Address: Accessible from fire-alarm control unit and able to identify the detector's location within the system and its sensitivity setting.

C. An operator at fire-alarm control unit, having the designated access level, shall be able to manually access the following for each detector:

1. Primary status.
2. Device type.
3. Present average value.
4. Present sensitivity selected.
5. Sensor range (normal, dirty, etc.).

2.8 CARBON MONOXIDE DETECTORS

A. General: Carbon monoxide detector listed for connection to fire-alarm system.

1. Mounting: Adapter plate for outlet box mounting.
2. Testable by introducing test carbon monoxide into the sensing cell.
3. Detector shall provide alarm contacts and trouble contacts.
4. Detector shall send trouble alarm when nearing end-of-life, power supply problems, or internal faults.
5. Comply with UL 2075.
6. Locate, mount, and wire according to manufacturer's written instructions.
7. Provide means for addressable connection to fire-alarm system.
8. Test button simulates an alarm condition.

2.9 HEAT DETECTORS

A. General Requirements for Heat Detectors: Comply with UL 521.

1. Temperature sensors shall test for and communicate the sensitivity range of the device.
B. Heat Detector, Combination Type: Actuated by either a fixed temperature of 135 deg F or a rate of rise that exceeds 15 deg F per minute.
 1. Mounting: Twist-lock base interchangeable with smoke-detector bases.
 2. Integral Addressable Module: Arranged to communicate detector status (normal, alarm, or trouble) to fire-alarm control unit.

C. Heat Detector, Fixed-Temperature Type: Actuated by temperature that exceeds a fixed temperature of 190 deg F.
 1. Mounting: Twist-lock base interchangeable with smoke-detector bases.
 2. Integral Addressable Module: Arranged to communicate detector status (normal, alarm, or trouble) to fire-alarm control unit.

2.10 NOTIFICATION APPLIANCES

A. General Requirements for Notification Appliances: Individually addressed, connected to a signaling-line circuit, equipped for mounting as indicated, and with screw terminals for system connections.

B. General Requirements for Notification Appliances: Connected to notification-appliance signal circuits, zoned as indicated, equipped for mounting as indicated, and with screw terminals for system connections.
 1. Combination Devices: Factory-integrated audible and visible devices in a single-mounting assembly, equipped for mounting as indicated, and with screw terminals for system connections.

C. Chimes, Low-Level Output: Vibrating type, 75-dBA minimum rated output.

D. Chimes, High-Level Output: Vibrating type, 81-dBA minimum rated output.

E. Horns: Electric-vibrating-polarized type, 24-V dc; with provision for housing the operating mechanism behind a grille. Comply with UL 464. Horns shall produce a sound-pressure level of 90 dBA, measured 10 feet from the horn, using the coded signal prescribed in UL 464 test protocol.

F. Visible Notification Appliances: Xenon strobe lights complying with UL 1971, with clear or nominal white polycarbonate lens mounted on an aluminum faceplate. The word "FIRE" is engraved in minimum 1-inch-high letters on the lens.
 1. Rated Light Output:
 a. Candella level as required by the dimensions and conditions in each space, or 15/30/75/110 cd, selectable in the field.
 2. Mounting: Ceiling mounted where allowed by code. Wall mounted where ceiling height is too high to allow for ceiling mounted.
 3. For units with guards to prevent physical damage, light output ratings shall be determined with guards in place.
4. Flashing shall be in a temporal pattern, synchronized with other units.
5. Strobe Leads: Factory connected to screw terminals.

G. Voice/Tone Notification Appliances:
1. Comply with UL 1480.
2. Speakers for Voice Notification: Locate speakers for voice notification to provide the intelligibility requirements of the "Notification Appliances" and "Emergency Communications Systems" chapters in NFPA 72.
3. High-Range Units: Rated 2 to 15 W.
4. Low-Range Units: Rated 1 to 2 W.
5. Mounting: semirecessed or surface mounted and bidirectional.
6. Matching Transformers: Tap range matched to acoustical environment of speaker location.

H. Exit Marking Audible Notification Appliance:
1. Exit marking audible notification appliances shall meet the audibility requirements in NFPA 72.
2. Provide exit marking audible notification appliances at the entrance to all building exits.
3. Provide exit marking audible notification appliances at the entrance to areas of refuge with audible signals distinct from those used for building exit marking.

2.11 MAGNETIC DOOR HOLDERS
A. Description: Units are equipped for wall or floor mounting as indicated and are complete with matching doorplate.
1. Electromagnets: Require no more than 3 W to develop 25-lbf holding force.
2. Wall-Mounted Units: Flush mounted unless otherwise indicated.
3. Rating: 24-V ac or dc.

B. Material and Finish: Match door hardware.

2.12 REMOTE ANNUNCIATOR
A. Description: Annunciator functions shall match those of fire-alarm control unit for alarm, supervisory, and trouble indications. Manual switching functions shall match those of fire-alarm control unit, including acknowledging, silencing, resetting, and testing.
1. Mounting: Flush cabinet, NEMA 250, Type 1.

B. Display Type and Functional Performance: Alphanumeric display and LED indicating lights shall match those of fire-alarm control unit. Provide controls to acknowledge, silence, reset, and test functions for alarm, supervisory, and trouble signals.
2.13 ADDRESSABLE INTERFACE DEVICE

A. General:
 1. Include address-setting means on the module.
 2. Store an internal identifying code for control panel use to identify the module type.
 3. Listed for controlling HVAC fan motor controllers.

B. Monitor Module: Microelectronic module providing a system address for alarm-initiating devices for wired applications with normally open contacts.

C. Integral Relay: Capable of providing a direct signal to elevator controller to initiate elevator recall.
 1. Allow the control panel to switch the relay contacts on command.
 2. Have a minimum of two normally open and two normally closed contacts available for field wiring.

D. Control Module:
 1. Operate notification devices.
 2. Operate solenoids for use in sprinkler service.

2.14 NETWORK COMMUNICATIONS

A. Provide network communications for fire-alarm system according to fire-alarm manufacturer's written requirements.

B. Provide network communications pathway per manufacturer's written requirements and requirements in NFPA 72 and NFPA 70.

C. Provide integration gateway using for connection to building automation system. Coordinate with controls contractor to determine protocol type.

2.15 DEVICE GUARDS

A. Description: Welded wire mesh of size and shape for the manual station, smoke detector, gong, or other device requiring protection.
 1. Factory fabricated and furnished by device manufacturer.
 2. Finish: Paint of color to match the protected device.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine areas and conditions for compliance with requirements for ventilation, temperature, humidity, and other conditions affecting performance of the Work.
1. Verify that manufacturer's written instructions for environmental conditions have been permanently established in spaces where equipment and wiring are installed, before installation begins.

B. Examine roughing-in for electrical connections to verify actual locations of connections before installation.

C. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 EQUIPMENT INSTALLATION

A. Comply with NFPA 72, NFPA 101, and requirements of authorities having jurisdiction for installation and testing of fire-alarm equipment. Install all electrical wiring to comply with requirements in NFPA 70 including, but not limited to, Article 760, "Fire Alarm Systems."

1. Devices placed in service before all other trades have completed cleanup shall be replaced.
2. Devices installed but not yet placed in service shall be protected from construction dust, debris, dirt, moisture, and damage according to manufacturer's written storage instructions.

B. Connecting to Existing Equipment: Verify that existing fire-alarm system is operational before making changes or connections.

1. Connect new equipment to existing control panel in existing part of the building.
2. Connect new equipment to existing monitoring equipment at the supervising station.
3. Expand, modify, and supplement existing control and monitoring equipment as necessary to extend existing control and monitoring functions to the new points. New components shall be capable of merging with existing configuration without degrading the performance of either system.

C. Install wall-mounted equipment, with tops of cabinets not more than 78 inches above the finished floor.

D. Manual Fire-Alarm Boxes:

1. Install manual fire-alarm box in the normal path of egress within 60 inches of the exit doorway.
3. The operable part of manual fire-alarm box shall be between 42 inches and 48 inches above floor level. All devices shall be mounted at the same height unless otherwise indicated.

E. Smoke- or Heat-Detector Spacing:

1. Comply with the "Smoke-Sensing Fire Detectors" section in the "Initiating Devices" chapter in NFPA 72, for smoke-detector spacing.
2. Comply with the "Heat-Sensing Fire Detectors" section in the "Initiating Devices" chapter in NFPA 72, for heat-detector spacing.
3. Smooth ceiling spacing shall not exceed 30 feet.
4. Spacing of detectors for irregular areas, for irregular ceiling construction, and for high ceiling areas shall be determined according to Annex A in NFPA 72.

5. HVAC: Locate detectors not closer than 60 inches from air-supply diffuser or return-air opening.

6. Lighting Fixtures: Locate detectors not closer than 12 inches from any part of a lighting fixture and not directly above pendant mounted or indirect lighting.

F. Install a cover on each smoke detector that is not placed in service during construction. Cover shall remain in place except during system testing. Remove cover prior to system turnover.

G. Duct Smoke Detectors: Comply with NFPA 72 and NFPA 90A. Install sampling tubes so they extend the full width of duct. Tubes more than 36 inches long shall be supported at both ends.

1. Do not install smoke detector in duct smoke-detector housing during construction. Install detector only during system testing and prior to system turnover.

H. Air-Sampling Smoke Detectors: If using multiple pipe runs, the runs shall be pneumatically balanced.

I. Elevator Shafts: Coordinate temperature rating and location with sprinkler rating and location. Do not install smoke detectors in sprinklered elevator shafts.

J. Single-Station Smoke Detectors: Where more than one smoke alarm is installed within a dwelling or suite, they shall be connected so that the operation of any smoke alarm causes the alarm in all smoke alarms to sound.

K. Remote Status and Alarm Indicators: Install in a visible location near each smoke detector, sprinkler water-flow switch, and valve-tamper switch that is not readily visible from normal viewing position.

L. Audible Alarm-Indicating Devices: Install not less than 6 inches below the ceiling. Install bells and horns on flush-mounted back boxes with the device-operating mechanism concealed behind a grille. Install all devices at the same height unless otherwise indicated.

M. Visible Alarm-Indicating Devices: Install adjacent to each alarm bell or alarm horn and at least 6 inches below the ceiling. Install all devices at the same height unless otherwise indicated.

N. Device Location-Indicating Lights: Locate in public space near the device they monitor.

3.3 PATHWAYS

A. Pathways above recessed ceilings and in nonaccessible locations may be routed exposed.

1. Exposed pathways located less than 96 inches above the floor shall be installed in EMT.

B. Where exposed below 10’, fire alarm wire shall be installed in EMT. Exposed EMT shall be painted red enamel or shall be factory colored red conduit.
3.4 CONNECTIONS

A. For fire-protection systems related to doors in fire-rated walls and partitions and to doors in smoke partitions, comply with requirements in Section 087100 "Door Hardware." Connect hardware and devices to fire-alarm system.

1. Verify that hardware and devices are listed for use with installed fire-alarm system before making connections.

B. Make addressable connections with a supervised interface device to the following devices and systems. Install the interface device less than 36 inches from the device controlled. Make an addressable confirmation connection when such feedback is available at the device or system being controlled.

1. Alarm-initiating connection to smoke-control system (smoke management) at firefighters' smoke-control system panel.
2. Alarm-initiating connection to stairwell and elevator-shaft pressurization systems.
3. Smoke dampers in air ducts of designated HVAC duct systems.
4. Magnetically held-open doors.
5. Electronically locked doors and access gates.
6. Alarm-initiating connection to elevator recall system and components.
7. Alarm-initiating connection to activate emergency lighting control.
8. Alarm-initiating connection to activate emergency shutoffs for gas and fuel supplies.
10. Supervisory connections at low-air-pressure switch of each dry-pipe sprinkler system.
11. Supervisory connections at elevator shunt-trip breaker.
12. Data communication circuits for connection to building management system.
13. Data communication circuits for connection to mass notification system.
15. Supervisory connections at fire-pump power failure including a dead-phase or phase-reversal condition.
16. Supervisory connections at fire-pump engine control panel.

3.5 IDENTIFICATION

A. Identify system components, wiring, cabling, and terminals. Comply with requirements for identification specified in Section 260553 "Identification for Electrical Systems."

B. Install framed instructions in a location visible from fire-alarm control unit.

3.6 GROUNDING

A. Ground fire-alarm control unit and associated circuits; comply with IEEE 1100. Install a ground wire from main service ground to fire-alarm control unit.

B. Ground shielded cables at the control panel location only. Insulate shield at device location.
3.7 FIELD QUALITY CONTROL

A. Perform the following tests and inspections:

1. Visual Inspection: Conduct visual inspection prior to testing.
 a. Inspection shall be based on completed record Drawings and system documentation that is required by the "Completion Documents, Preparation" table in the "Documentation" section of the "Fundamentals" chapter in NFPA 72.
 b. Comply with the "Visual Inspection Frequencies" table in the "Inspection" section of the "Inspection, Testing and Maintenance" chapter in NFPA 72; retain the "Initial/Reacceptance" column and list only the installed components.

3. Test audible appliances for the public operating mode according to manufacturer's written instructions. Perform the test using a portable sound-level meter complying with Type 2 requirements in ANSI S1.4.
4. Test audible appliances for the private operating mode according to manufacturer's written instructions.
5. Test visible appliances for the public operating mode according to manufacturer's written instructions.
6. Factory-authorized service representative shall prepare the "Fire Alarm System Record of Completion" in the "Documentation" section of the "Fundamentals" chapter in NFPA 72 and the "Inspection and Testing Form" in the "Records" section of the "Inspection, Testing and Maintenance" chapter in NFPA 72.

B. Reacceptance Testing: Perform reacceptance testing to verify the proper operation of added or replaced devices and appliances.

C. Fire-alarm system will be considered defective if it does not pass tests and inspections.

D. Prepare test and inspection reports.

E. Maintenance Test and Inspection: Perform tests and inspections listed for weekly, monthly, quarterly, and semiannual periods. Use forms developed for initial tests and inspections.

F. Annual Test and Inspection: One year after date of Substantial Completion, test fire-alarm system complying with visual and testing inspection requirements in NFPA 72. Use forms developed for initial tests and inspections.

3.8 MAINTENANCE SERVICE

A. Initial Maintenance Service: Beginning at Substantial Completion, maintenance service shall include 12 months' full maintenance by skilled employees of manufacturer's designated service organization. Include preventive maintenance, repair or replacement of worn or defective components, lubrication, cleaning, and adjusting as required for proper operation. Parts and supplies shall be manufacturer's authorized replacement parts and supplies.
1. Include visual inspections according to the "Visual Inspection Frequencies" table in the "Testing" paragraph of the "Inspection, Testing and Maintenance" chapter in NFPA 72.

3.9 SOFTWARE SERVICE AGREEMENT

A. Comply with UL 864.

B. Technical Support: Beginning at Substantial Completion, service agreement shall include software support for two years.

C. Upgrade Service: At Substantial Completion, update software to latest version. Install and program software upgrades that become available within two years from date of Substantial Completion. Upgrading software shall include operating system and new or revised licenses for using software.

1. Upgrade Notice: At least 30 days to allow Owner to schedule access to system and to upgrade computer equipment if necessary.

END OF SECTION 283111
This page intentionally left blank
PART 1 GENERAL

1.1 GENERAL REQUIREMENTS

A. Work of this Section, as shown or specified, shall be in accordance with the requirements of the Contract Documents.

1.2 SECTION INCLUDES

A. The Work of this Section includes all labor, materials, equipment, and services necessary to complete the stone steps as shown on the drawings and/or specified herein, including, but not limited to, the following:

1. Stone steps.
2. Joint sealer and pointing mortar.
3. Anchors for stone steps.
4. Mortar setting bed.
5. Furnishing, cutting, fabricating, delivery, and setting of all stone.
6. Protection of stone during transit, storage, erection, and after installation. Cleaning of granite prior to acceptance.
7. Shop drawings, setting drawings, and samples for work of this Section.

1.3 RELATED SECTIONS

A. Concrete slab - Section 033000.

1.4 SUBMITTALS

A. Shop Drawings: Submit complete Cutting and Setting Drawings to Architect. Show sizes, shapes, thicknesses, jointing, connection with other work, typical and special details, dimensions, setting numbers, and color range for each piece of stone. Do not fabricate any stone (except for samples) until shop drawings have been accepted by the Architect.

B. Manufacturer's Data: Submit copies of manufacturer's specifications and installation instructions for anchors, mortar, and grout required. Include data substantiating that materials comply with specified requirements. Indicate that installer has received copy of manufacturer's instructions.

C. Samples
1. Stone: Submit three sets of 1' x 1' samples of each type and each finish of stone. Indicate in each set the full range of exposed color and texture to be expected in the completed work. Architect's review will be for color and texture only. Compliance with all other requirements is the exclusive responsibility of the Contractor.

2. Mortar Materials: Submit certification that mortar materials comply with specification requirements.

4. Anchors: Submit each type.

5. Joint sealant and back-up material.

1.5 CODES AND STANDARDS

A. All stonework shall conform, but not be limited to, conformation to the following codes and standards:

1. All applicable Federal, State and local laws and codes.

2. Except as limited or qualified by the requirements of this specification, the standards of the following organizations:

 d. Building Stone Institute (BSI).

1.6 QUALITY ASSURANCE

A. Statement of Application: The Contractor, by commencing the work of this Section, assumes overall responsibility, as a part of his warranty of the work, to assure that all assemblies, components, and parts shown or required within the work of this Section, comply with the Contract Documents. The Contractor shall further warrant:

1. That all components, specified or required to satisfactorily complete the installation, are compatible with each other and with the conditions of installation and expected use.

2. The overall effective integration and correctness of individual parts and the whole of the system.

3. Compatibility with adjoining substrates, materials, and work by other trades.

4. There shall be no material failure due to improper design and fabrication of the stone. All materials are to fully perform to their normal life expectancy.
B. Each and every piece of stone shall be subject to the Architect's acceptance, and any pieces which may be rejected after having been set shall be carefully cut out and replaced with new suitable stone without delay and without cost to the Owner. Any piece or pieces damaged in the removal and resetting of defective pieces shall also be removed and suitable, approved pieces provided and set. Patching or filling of stone not permitted. Stone having chipped arrises or broken corners shall be rejected.

1. Architect's inspection of the stone does not relieve the Contractor for this work from his responsibility to provide all stonework in accordance with the approved samples and shop drawings.

C. Subcontract fabrication and installation of stone to a firm or firms which have successfully fabricated and/or installed stone similar to the quality specified and in the quantity shown for a period of not less than five (5) years.

D. Examination Criteria: All examinations, selections, and acceptances shall be for the purpose of achieving a final appearance of stone with the greatest possible uniformity, and will be based upon the following criteria:

1. Color within pre-selected color ranges and finish.
2. Sequence matching of adjacent stone units.
3. Only one source of each type of stone shall be used throughout the work. Stone shall match the type, pattern, color, texture, and finish of samples available for inspection in the office of Architect.
4. Conformance to approved shop drawings and details within specified dimensions and tolerances.
5. Other criteria as specified in Part 2, Products, herein.

1.7 TOLERANCES

A. Tolerances: Conform to the following:

1. Joints: -0", +1/16".
2. Stone: Stone dimension tolerance shall be +0", -1/16" in both directions, with 90 degree angle for all corners.
3. Stone face dimension tolerance (flatness) shall be +/- 1/32" in all directions.
4. Offset at Joints: Do not exceed +/- 1/32", including joints on the wall and on the floor which are in alignment.
5. Stone thickness tolerance shall be +/- 1/8".

1.8 PRODUCT DELIVERY, STORAGE AND HANDLING

A. Protect stone during storage and construction against moisture, soiling, staining, and physical damage.
B. Handle stone to prevent chipping, breakage, soiling, or other damage. Do not use pinch or wrecking bars without protecting edges of stone with wood or other rigid materials. Lift with wide-belt type slings wherever possible; do not use wire rope or ropes containing tar or other substances which might cause staining. If required, use wood rollers and provide cushion at end of wood slides.

C. Store stone on wood skids or pallets, covered with non-staining, waterproof membrane. Place and stack skids and stones to distribute weight evenly and to prevent breakage or cracking of stones. Protect stored stone from weather with waterproof, non-staining covers or enclosures, but allow air to circulate around stones.

D. Protect mortar materials and stonework accessories from weather, moisture and contamination with earth and other foreign materials.

1.9 JOB CONDITIONS

A. Installer must review installation procedures and coordination with other work, and other subcontractors whose work will be affected by stonework.

B. Cold Weather Protection

1. Remove any ice or snow formed on stonework bed by carefully applying heat until top surface is dry to touch.

2. Remove stonework determined to be frozen or damaged by freezing conditions.

3. Perform the following construction procedures while work is progressing:

 a. When air temperature is from 40 deg. F. to 32 deg. F., heat sand or mixing water to produce mortar temperatures between 40 deg. F. and 120 deg. F.
 b. When air temperature is from 32 deg. F. to 25 deg. F., heat sand or water to produce mortar temperatures between 40 deg. F. and 120 deg. F.; maintain temperature of mortar on boards above freezing.
 c. When air temperature is from 25 deg. F. to 20 deg. F., heat sand and mixing water to produce mortar temperatures between 40 deg. F. and 120 deg. F.; maintain temperature of mortar on boards above freezing.
 d. When air temperature is 20 deg. F. and below, heat sand and mixing water to produce mortar temperatures between 40 deg. F. and 120 deg. F.; provide auxiliary heat to maintain air temperature above 32 deg. F.; do not lay units which have a surface temperature of 20 deg. F.

4. Perform the following protections for completed stonework and partially completed stonework set with mortar not being worked on:

 a. When mean daily air temperature is from 40 deg. F. to 32 deg. F., protect stonework from rain or snow for at least 24 hours by covering with weather-resistive membrane.
 b. When mean daily air temperature is from 32 deg. F. to 24 deg. F., completely cover stonework with weather-resistive membrane for at least 24 hours.
c. When mean daily air temperature is from 25 deg. F. to 20 deg. F., completely cover stonework with insulating blankets or similar protection for at least 24 hours. When mean daily temperature is 20 deg. F. and below, maintain stonework temperature above 32 deg. F. for 24 hours using enclosures and supplementary heat, electric heating blankets, infrared lamps, or other acceptable method.

5. Do not use frozen materials or materials mixed or coated with ice or frost. Do not use salt to thaw ice in anchor holes or slots. Do not lower the freezing point of mortar by use of admixtures or antifreeze agents, and do not use calcium chloride in mortar or grout.

6. Do not build on frozen work; remove and replace stonework damaged by frost or freezing.

1.10 PROTECTION

A. Protect adjacent surfaces from damage. Protect exposed surfaces of stone units from damage or defacement. Prevent materials used for installing work or this Section from staining or damaging the exposed surfaces of stone units of the exposed surfaces of the adjoining construction. Immediately remove mortar, grout, or other detrimental materials from exposed surfaces of stone or adjoining construction.

B. After installation, protect stonework from damage during subsequent construction activities.

C. Protect all stonework from materials that will cause staining or defacement. Stone subject to damage after setting shall be properly covered or protected.

D. No lumber or other material liable to stain or deface the granite shall be used.

1.11 CERTIFICATION

A. Manufacture of latex additive shall certify in writing that material shall not stain stone; submit test data from independent testing laboratory using stone specified herein showing no stain.

PART 2 PRODUCTS

2.1 STONE

A. Stone and finish to match existing.

B. Stone shall be nominal 2" thick unless otherwise shown on Drawings; see Drawings for stone sizes.

C. Quarrying Supervision

1. Quarrying shall be supervised and coordinated by the stone fabricator to insure that the as-quarried block orientations will yield finished material with characteristics as described herein.
2. All stone shall be cut from matched blocks. Matched blocks shall mean blocks extracted from a single bed of stratum in the quarry. The use of blocks chosen at random, though similar in general character and color to that of the approved stone, shall not be permitted except by written permission of the Architect.

D. Examinations

1. Examination at the Quarry: Quarried blocks shall be made available for inspection by the Architect at his request.

2. Examination at the Fabrication Plant: Production units shall be made available for inspection by the Architect at his request. To this end, the contractor shall, after approval of final shop drawings, advise the Architect when production has begun and of the earliest possible opportunity to inspect a representative sampling of production work.

3. Contractor shall provide lighting that is sufficient in intensity and color range to permit an adequate examination to the satisfaction of the Architect.

E. Visual Criteria for Stone: All examinations, selections, and approvals shall be for the purpose of achieving a final appearance of stone with greatest possible uniformity, and will be based upon the following criteria:

1. All stone shall be sound stock, and uniform texture, and shall be free from holes, seams, shakes, clay pockets, spalls, stains, starts, and other defects which would impair the strength, durability, and appearance of the work, as determined by the Architect.

2. Inherent variations characteristic of the stone and the quarry from which the stone is to be obtained shall be brought to the attention of the Architect at the time the samples are submitted for approval, and shall be subject to acceptance of the Architect.

3. All stone shall be selected for background color, veining, marking and matching, shall run in even shades, and shall be set accordingly.

F. Physical Properties: Physical properties shall have been derived from tests by an independent engineering laboratory acceptable to the Architect, and shall be furnished by the Contractor to the Architect for the stone selected. This performance data shall include:

1. ASTM C 97 - Absorption and Bulk Specific Gravity
2. ASTM C 880 - Flexural Strength
3. ASTM C 170 - Compressive Strength
4. ASTM C 99 - Modulus of Rupture
5. ASTM C 241 - Abrasion Resistance
2.2 ACCESSORY MATERIALS

A. Materials for installing and grouting stone steps shall be Portland cement/sand mortar gauged with Latex Setting Liquid and Latex Admixture as manufactured by Laticrete International, Inc., Mapei, or approved equal.

1. Portland Cement - ASTM C150 - Type I; white.

2. Aggregate for Cement Setting Beds: Sand as recommended in ASTM C-398, uniformly graded from coarse to fine, with 100% passing the No. 4 sieve and not more than 5% passing the No. 100 sieve.

3. Grout: Laticrete 1500 Series sanded grout mixed with 1776 Series Grout Admixture Plus; color selected by the Architect; do not add water.

4. Latex Additives for Setting Bed: As manufactured by Laticrete International, provide Laticrete 4237 Setting Liquid and Laticrete 1500 and mortar admixture. Installation shall be in strict accordance with manufacturer's instructions.

5. Water: Potable, clear and free of deleterious materials which would impair the quality of the mortar.

B. Reinforced mesh where required shall be 2" x 2" x 16 ga. welded galvanized reinforcing mesh.

C. Sealant and related materials shall conform to the following:

1. For joint filler provide closed cell extruded neoprene gasket conforming to ASTM C509, grade 4, black.

2. Sealant: Two (2) part self-leveling polyurethane sealant complying with ASTM C-920, Type M, Class 25, Grade P&NS, equal to Sikaflex-2c NS/SL made by Sika Chemical Co., or approved equal made by Tremco or Pecora. Color of sealant as selected by the Architect.

3. Back-up rod shall be "Ethafoam" or approved equal.

4. Prime joints using primer recommended by sealant manufacturer.

D. Stainless steel for anchors and fasteners - AISI Type 302/304, non-magnetic, ASTM A167.

2.3 FABRICATION

A. All stonework shall be executed by mechanics skilled in the trade. All stone shall be well-cured and seasoned before cutting. Cut stone units with bed, unless otherwise approved by the Architect.

B. Stone shall be accurately cut to sizes, shapes, profiles and dimensions. There shall be no deviation from jointing.
C. Exposed surfaces and edges of stone units shall be free from cracks, broken corners, chipped edges, scratches, or other defects affecting appearance. Patching or filling not permitted.

D. The use of stone with chipped edges or faces shall not be permitted.

E. Cut stone units full and true on faces, reveals, beds, joint and top, to the full dimensions required by drawings. All edges shall be straight and true with sharp and true arrises. All stone shall fit together accurately.

F. Make faces of stone units in same plane flush at joints. All finished surfaces shall be true in line and face.

G. Sawn surfaces and edges shall be cleaned of all rust stains and iron particles.

H. Cut stone to allow for uniform 1/4" wide joints.

2.4 CUTTING, DRILLING AND FITTING

A. Provide holes and sinkages required to accommodate anchors and other items which connect to or penetrate the stone.

B. Include all cutting, drilling, and fitting of stonework required to accommodate the work of other trades. In cutting and fitting, carefully cut and grind edges to a neat tight fit. Do cutting in such a manner so as not to impair strength or appearance of stone. Use physical templates for all cutting and drilling; obtain required templates from proper trades.

PART 3 EXECUTION

3.1 INSPECTION

A. Examine the areas and conditions under which stone steps is to be installed and correct any conditions detrimental to the proper and timely completion of the work. Do not proceed with the work until unsatisfactory conditions are corrected to permit proper installation of the work.

3.2 PREPARATION

A. Etch concrete substrate with 10% solution of muriatic acid as may be required to remove curing compounds or other substances that would interfere with proper bond of mortar. Rinse with water to remove all traces of acid.

B. Seal substrate with sealer as recommended by manufacturer of mortar.

3.3 INSTALLATION TOLERANCES

A. Allowable Variations in Finished Work: Do not exceed the following deviations from level and plumb, and from elevations, locations, slopes and alignment shown.
1. 1/16" in 10'-0" run, any direction; +/- 1/16" at any location; 1/32" offset at any location.

3.4 SETTING STONE

A. Application

1. Preparation of Subbase: Clean concrete subbase to remove dirt, dust, debris, film or curing compound, and loose particles. Saturate concrete subbase with clean water several hours before placing setting bed. About one hour prior to placing setting bed, remove surface water.

2. Latex-Modified, Portland Cement Setting-Bed Mortar: Proportion and mix Portland cement, sand, and latex additive for setting bed to comply with written instructions of latex-additive manufacturer and as necessary to produce stiff mixture with a moist surface when bed is ready to receive steps. Mortar mix must meet 2500 psi compressive strength.

3. Joint Grout Mix
 a. 1 bag Portland Cement
 b. 3 cu. ft. Coarse Sand (ASTM C33)
 c. 3 gal. Latex Admix (adjust quantity to proper consistency).

B. Setting

1. The prepared mortar shall be spread to the desired thickness. The mortar shall be rodded and compacted with a steel trowel.

2. Before placing the stone on a green or wet screed bed, a slurry coat shall be applied to the mortar bed using a flat trowel. Thickness of the bond coat shall be approximately 1/16". In addition, a skim coat shall be applied to the back of each stone, just prior to placing on the bed.

3. Stone shall be placed in the wet slurry coat before the surface dries. Uniform joints shall be maintained with a nominal width of 1/4".

4. After each piece is laid, it shall be beat in with a wooden block or rubber mallet to level the surface and embed the stone. Bearing shall be done before mortar takes initial set.

C. Mortar Joints: For stone steps, joints are 1/4" wide typically. After all stone units have been set and setting bed is thoroughly cured, brush all 1/4" wide joints clean. Thoroughly wet raked out portion of joints and then fill solid with joint mortar of approved color to match stone. Mortar shall be placed relatively dry and tooled in layers. Finished profile shall be slightly recessed. Grouting of joints as done in tile work is not permitted. Every effort must be made to keep mortar off stone face including applying masking tape to prevent staining of adjacent stone surfaces in continuous strips in alignment with joint edge. Remove tape immediately upon grout having achieved its finish set.
D. Joint Treatment for Joints to Receive Sealant

1. All exterior control joints as noted on the drawings and all joints in base work shall receive back-up fillers and sealant as specified herein.

2. General: Install all sealant in strict accordance with manufacturer's recommendations as approved by the Architect.
 a. Apply sealant under pressure with a hand or power actuated gun or other appropriate means. Guns shall have nozzle of proper size and provide sufficient pressure to completely fill joints as detailed. Neatly point or tool all joints to provide the contour as indicated on the drawings.
 b. For application of sealant when air temperature is below 40 deg. F., consult sealant manufacturer for recommendations.

3. Preparation: Thoroughly clean all joints, removing all foreign matter such as dust, oil, grease, water, surface dirt and frost. Sealant must be applied to the base surface. Previously applied paint or film must be entirely removed.

4. Application
 a. Install back-up material and joint filler, of type and size specified, using a blunt instrument so as not to puncture the surface skin, at proper depth in joint to provide sealant dimensions as detailed. Provide back-up material of suitable size and shape so that, when compressed (25 to 50%) it will fit in joints as required. Sealant shall not be applied without back-up materials, and, if necessary, bond breaker strip. When using back-up of rod stock, roll the material into the joint to avoid lengthwise stretching. Rod stock shall not be twisted or braided.
 b. Apply masking tape, where required, to prevent staining of adjacent stone surfaces, in continuous strips in alignment with joint edge. Remove tape immediately after joints have been sealed and tooled as directed.
 c. Prime surfaces of all stone to receive sealant.
 d. Apply, tool and finish sealant as required. When tooling light colored sealants, use dry tool or tooling solution recommended by sealant manufacturer.
 e. Clean adjacent surfaces free of sealant or soiling resulting from this work as work progresses. Use solvent or cleaning agent as recommended by sealant manufacturer. All finished work shall be left in a neat, clean condition.
 f. Sealants shall be applied in such a manner as to completely fill the joint.
 g. All sealants shall be tooled to insure complete filling of the joint to eliminate air pockets and voids and to insure positive adhesion of the sealant with the bonding surfaces.
 h. All joints shall be neatly finished.

E. Cleaning

1. Excess material shall be cleaned from the stone surface with water immediately as the work progresses. Cleaning shall be done while mortar is fresh and before it hardens on the surface.
2. Difficult to clean cement film or mortar shall be removed from the finished work using “Stand Off Grout and Tile Cleaner” made by ProSoCo or approved equal.

3.5 REPAIR AND CLEANING (AFTER INSTALLATION)

A. Remove and replace stone units which are broken, chipped, stained, or otherwise damaged. Where directed, remove and replace units which do not match adjoining stonework. Patching or hiding defects in granite will not be permitted. Provide new matching units, install as specified and reseal joints to eliminate evidence of replacement. Reseal defective and unsatisfactory joints to provide a neat, uniform appearance.

3.6 PROTECTION

A. After installation and cleaning, protect stonework from damage during subsequent construction activities.

B. Protect all stonework from other materials that will cause stain. Stone subject to damage after setting shall be properly covered or protected.

C. At completion of construction work, remove all temporary protection from the work of this Section.

D. Examine all work and repair all damage. Clean soiled or stained surfaces. In the event damage is irreparable, or soiled or stained surface cannot be cleaned, then remove and replace such items at no additional cost to Owner.

END OF SECTION