SECTION 230593
TESTING, ADJUSTING, AND BALANCING FOR HVAC

PART 1 - GENERAL

1.1 SUMMARY

A. This Section includes TAB to produce design objectives for the following:

1. Air Systems:
 a. Constant-volume air systems.
 b. Variable-air-volume systems.

2. Hydronic Piping Systems:
 a. Constant-flow systems.
 b. Variable-flow systems.

3. Steam systems.
4. HVAC equipment quantitative-performance settings.
5. Space pressurization testing and adjusting.
6. Smoke-control systems testing and adjusting.
7. Verifying that automatic control devices are functioning properly.
8. Reporting results of activities and procedures specified in this Section.

1.2 DEFINITIONS

A. Adjust: To regulate fluid flow rate and air patterns at the terminal equipment, such as to reduce fan speed or adjust a damper.

B. Balance: To proportion flows within the distribution system, including submains, branches, and terminals, according to indicated quantities.

C. Barrier or Boundary: Construction, either vertical or horizontal, such as walls, floors, and ceilings that are designed and constructed to restrict the movement of airflow, smoke, odors, and other pollutants.

D. Draft: A current of air, when referring to localized effect caused by one or more factors of high air velocity, low ambient temperature, or direction of airflow, whereby more heat is withdrawn from a person's skin than is normally dissipated.

E. NC: Noise criteria.

F. Procedure: An approach to and execution of a sequence of work operations to yield repeatable results.

G. RC: Room criteria.

H. Report Forms: Test data sheets for recording test data in logical order.
I. Smoke-Control System: An engineered system that uses fans to produce airflow and pressure differences across barriers to limit smoke movement.

J. Smoke-Control Zone: A space within a building that is enclosed by smoke barriers and is a part of a zoned smoke-control system.

K. Stair Pressurization System: A type of smoke-control system that is intended to positively pressurize stair towers with outdoor air by using fans to keep smoke from contaminating the stair towers during an alarm condition.

L. Static Head: The pressure due to the weight of the fluid above the point of measurement. In a closed system, static head is equal on both sides of the pump.

M. Suction Head: The height of fluid surface above the centerline of the pump on the suction side.

N. System Effect: A phenomenon that can create undesired or unpredicted conditions that cause reduced capacities in all or part of a system.

O. System Effect Factors: Allowances used to calculate a reduction of the performance ratings of a fan when installed under conditions different from those presented when the fan was performance tested.

P. TAB: Testing, adjusting, and balancing.

Q. Terminal: A point where the controlled medium, such as fluid or energy, enters or leaves the distribution system.

R. Test: A procedure to determine quantitative performance of systems or equipment.

S. Testing, Adjusting, and Balancing (TAB) Firm: The entity responsible for performing and reporting TAB procedures.

1.3 INFORMATIONAL SUBMITTALS

A. Qualification Data: Within 30 days from Contractor's Notice to Proceed, submit 6 copies of evidence that TAB firm and this Project's TAB team members meet the qualifications specified in "Quality Assurance" Article.

D. System Readiness Checklists: Within 30 days of Contractor's Notice to Proceed, submit system readiness checklists as specified in "Preparation" Article.

E. Examination Report: Submit a summary report of the examination review based on system readiness reports and pre-functional check lists.

F. Certified TAB Reports: Submit two copies of reports prepared, as specified in this Section, on approved forms certified by TAB firm.
G. Sample Report Forms: Submit two sets of sample TAB report forms.

H. Instrument calibration reports, to include the following:
 1. Instrument type and make.
 2. Serial number.
 3. Application.
 4. Dates of use.
 5. Dates of calibration.

I. Warranties specified in this Section.

1.4 QUALITY ASSURANCE

A. The TAB firm shall be organized to provide independent professional testing and balancing services. The firm shall have a minimum of one (1) Professional Engineer licensed in the project’s state, in good standing with the board and have a current registration.

B. All personnel used on the job site shall be either TAB engineers or TAB technicians, who shall have been permanent, full-time employees of the Tab firm for a minimum of six (6) months prior to working on the project.

C. Upon request, the TAB Firm shall submit the following to the Architect/Engineer and/or Owner for approval prior to commencing services:
 1. Name and biographical data of the Professional Engineer and all personnel to be assigned to this project.
 2. Proof of company operation for minimum of five (5) years.

D. TAB Firm Qualifications: Engage a TAB firm certified by AABC.

E. TAB Conference: Meet with Owner's and Architect's representatives on approval of TAB strategies and procedures plan to develop a mutual understanding of the details. Ensure the participation of TAB team members, equipment manufacturers' authorized service representatives, HVAC controls installers, and other support personnel. Provide seven days' advance notice of scheduled meeting time and location.
 1. Agenda Items: As a minimum, include the following:
 a. Submittal distribution requirements.
 c. TAB plan.
 d. Work schedule and Project-site access requirements.
 e. Coordination and cooperation of trades and subcontractors.
 f. Coordination of documentation and communication flow.
 g. Coordinate submission of FMS sequence and schematics for review by TAB firm.

F. Certification of TAB Reports: Certify TAB field data reports. This certification includes the following:
 1. Review field data reports to validate accuracy of data and to prepare certified TAB reports.
 2. Certify that TAB team complied with approved TAB plan and the procedures specified and referenced in this Specification.
G. TAB Report Forms: Use standard forms from AABC’s “National Standards for Testing and Balancing Heating, Ventilating, and Air Conditioning Systems.”

H. Instrumentation Type, Quantity, and Accuracy: As described in AABC’s “National Standards for Testing and Balancing Heating, Ventilating, and Air Conditioning Systems.”

I. Instrumentation Calibration: Calibrate instruments at least every six months or more frequently if required by instrument manufacturer.
 1. Keep an updated record of instrument calibration that indicates date of calibration and the name of party performing instrument calibration.

1.5 COORDINATION

A. Notice: Provide minimum seven days’ advance notice for each test. Include scheduled test dates and times.

B. Perform TAB after leakage and pressure tests on air and water distribution systems have been satisfactorily completed.

C. The Contractor shall start up and test all materials and equipment which normally require testing. All piping, etc., shall be tested to meet code requirements or the specification requirements, whichever is the more stringent. All equipment shall operate a sufficient length of time at the Contractor’s expense to prove to the Architect/Engineer and/or Owner that the equipment is free from mechanical defects, runs smoothly and quietly and performs satisfactorily to meet the requirements set forth in the mechanical plans and specifications.

D. In order that all HVAC systems can be properly tested, adjusted and balanced, the Contractor shall operate the HVAC systems at his expense for the length of time necessary to properly verify their completion and readiness for TAB, and shall further operate and pay all costs of operation during the TAB period. Operating expenses to be paid for by the Contractor will include, but not necessarily be limited to, the following:
 1. Utility costs; electrical, water, gas, etc.
 2. Personnel costs to start, operate and stop all HVAC equipment.
 3. All start-up labor and material costs.
 4. All maintenance costs.

E. The plans and specifications have indicated valves, dampers and miscellaneous adjustment devices for the purpose of testing and balancing the HVAC systems to obtain optimum operating conditions. The Contractor shall install these devices in a manner that will leave them accessible and readily adjustable. Should any such device not be readily accessible, the Contractor shall provide access as required.

F. The Contractor shall provide and coordinate services to repair or replace any and all deficient items or conditions found before and during the TAB period.

G. As a part of this Project Contract, the Contractor shall make any changes in the sheaves, belts, motors, dampers and valves or the addition of dampers and/or valves as required to correctly balance the HVAC systems as required at no additional cost.

H. Provide sufficient time in Project Contract completion schedule to permit the completion of TAB services prior to Owner occupancy of the Project.
I. The Contractor shall furnish without charge to the TAB Firm:

1. One set of mechanical specifications and all addenda.
2. All pertinent change orders.
3. Complete set of mechanical plans with latest revisions.
4. “As-installed” drawings.
5. Approved control diagrams and submittals.
6. Approved manufacturer's submittals for all HVAC equipment.

1.6 WARRANTY

A. National Project Performance Guarantee: Provide a guarantee on AABC's "National Standards for Testing and Balancing Heating, Ventilating, and Air Conditioning Systems" forms stating that AABC will assist in completing requirements of the Contract Documents if TAB firm fails to comply with the Contract Documents. Guarantee includes the following provisions:

1. The certified TAB firm has tested and balanced systems according to the Contract Documents.
2. Systems are balanced to optimum performance capabilities within design and installation limits.

PART 2 - PRODUCTS (Not Applicable)

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine the Contract Documents to become familiar with Project requirements.

1. Contract Documents are defined in the General and Supplementary Conditions of Contract.
2. Verify that balancing devices, such as test ports, gage cocks, thermometer wells, flow-control devices, balancing valves and fittings, and manual volume dampers, are required by the Contract Documents. Verify that quantities and locations of these balancing devices are accessible and appropriate for effective balancing and for efficient system and equipment operation.
3. Based on examination of the Contract Documents, to recommend changes and additions to systems' balancing devices to facilitate proper performance measuring and balancing. Recommend changes and additions to HVAC systems and general construction to allow access for performance measuring and balancing devices.

B. Examine approved submittal data of HVAC systems and equipment.

C. Examine Project Record Documents described in Division 01 Section "Project Record Documents."

D. Examine design data, including HVAC system descriptions, statements of design assumptions for environmental conditions and systems' output, and statements of philosophies and assumptions about HVAC system and equipment controls.
E. Examine equipment performance data including fan and pump curves. Relate performance data to Project conditions and requirements, including system effects that can create undesired or unpredicted conditions that cause reduced capacities in all or part of a system. Calculate system effect factors to reduce performance ratings of HVAC equipment when installed under conditions different from those presented when the equipment was performance tested at the factory. To calculate system effects for air systems, use tables and charts found in AMCA 201, "Fans and Systems," Sections 7 through 10; or in SMACNA’s "HVAC Systems--Duct Design," Sections 5 and 6. Compare this data with the design data and installed conditions.

F. Examine system and equipment installations to verify that they are complete and that testing, cleaning, adjusting, and commissioning specified in individual Sections have been performed.

G. Examine system and equipment test reports.

H. Examine HVAC system and equipment installations to verify that indicated balancing devices, such as test ports, gage cocks, thermometer wells, flow-control devices, balancing valves and fittings, and manual volume dampers, are properly installed, and that their locations are accessible and appropriate for effective balancing and for efficient system and equipment operation.

I. Examine systems for functional deficiencies that cannot be corrected by adjusting and balancing.

J. Examine terminal units, such as variable-air-volume boxes, to verify that they are accessible and their controls are connected and functioning.

K. Examine heat-transfer coils for correct piping connections and for clean and straight fins.

L. Examine system pumps to ensure absence of entrained air in the suction piping.

M. Examine equipment for installation and for properly operating safety interlocks and controls.

N. Examine control system components to verify the following:

1. Dampers, valves, and other controlled devices are operated by the intended controller.
2. Dampers and valves are in the position indicated by the controller.
3. Integrity of valves and dampers for free and full operation and for tightness of fully closed and fully open positions. This includes dampers in multizone units, mixing boxes, and variable-air-volume terminals.
4. Automatic modulating and shutoff valves, including two-way valves and three-way mixing and diverting valves, are properly connected.
5. Thermostats and humidistats are located to avoid adverse effects of sunlight, drafts, and cold walls.
6. Sensors are located to sense only the intended conditions.
7. Sequence of operation for control modes is according to the Contract Documents.
8. Controller set points are set at indicated values.
9. Interlocked systems are operating.
10. Changeover from heating to cooling mode occurs according to indicated values.

O. Report deficiencies discovered before and during performance of TAB procedures. Observe and record system reactions to changes in conditions. Record default set points if different from indicated values.
3.2 PREPARATION

A. Coordinate the efforts of factory-authorized service representatives for systems and equipment, HVAC controls installers, and other mechanics to operate HVAC systems and equipment to support and assist TAB activities.

B. Prepare a TAB plan that includes strategies and step-by-step procedures.

C. The Contractor shall complete system readiness checks, prepare system readiness reports, and prefunctional tests including the following:

1. Permanent electrical power wiring is complete.
2. Hydronic systems are filled, clean, and free of air.
3. Control systems are operational.
4. Equipment and duct access doors are securely closed.
5. Balance, smoke, and fire dampers are open.
6. Isolating and balancing valves are open and control valves are operational.
7. Ceilings are installed in critical areas where air-pattern adjustments are required and access to balancing devices is provided.
8. Windows and doors can be closed so indicated conditions for system operations can be met.

3.3 GENERAL PROCEDURES FOR TESTING AND BALANCING

A. TAB firm shall coordinate with Contractor to gather all required system points and data without voiding manufacturers’ warranties. Facility personnel and factory-authorized service representatives may also be required.

B. Perform testing and balancing procedures on each system according to the procedures contained in AABC's "National Standards for Testing and Balancing Heating, Ventilating, and Air Conditioning Systems" and this Section.

C. Cut insulation, penetrate pipes, and equipment cabinets for installation of test probes to the minimum extent necessary to allow adequate performance of procedures. After testing and balancing, close probe holes and patch insulation with new materials identical to those removed. Restore vapor barrier and finish according to insulation Specifications for this Project.

D. Mark equipment and balancing device settings with paint or other suitable, permanent identification material, including damper-control positions, valve position indicators, fan-speed-control levers, and similar controls and devices, to show final settings.

E. Take and report testing and balancing measurements in inch-pound (IP) units.

3.4 GENERAL PROCEDURES FOR BALANCING AIR SYSTEMS

A. Prepare test reports for both fans and outlets. Obtain manufacturer's outlet factors and recommended testing procedures. Crosscheck the summation of required outlet volumes with required fan volumes.

B. Provide a marked-up set of mechanical plans or "as-built" duct layouts of systems that includes numbering of each HVAC device that corresponds to the respective item in the TAB report.

C. For variable-air-volume systems, develop a plan to simulate diversity.
D. Determine the best locations in main and branch ducts for accurate duct airflow measurements.

E. Locate start-stop and disconnect switches, electrical interlocks, and motor starters.

F. Verify that motor starters are equipped with properly sized thermal protection.

G. Check dampers for proper position to achieve desired airflow path.

H. Check for airflow blockages.

I. Check condensate drains for proper connections and functioning.

J. Check for proper sealing of air-handling unit components.

K. Check for proper sealing of air duct system.

3.5 GENERAL PROCEDURES FOR HYDRONIC SYSTEMS

A. Prepare test reports for pumps, coils, and heat exchangers. Obtain approved submittals and manufacturer-recommended testing procedures. Crosscheck the summation of required coil and heat exchanger flow rates with pump design flow rate.

B. Prepare schematic diagrams of systems’ "as-built" piping layouts.

C. In addition to requirements in "Preparation" Article, prepare hydronic systems for testing and balancing as follows:

1. Check liquid level in expansion tank.
2. Check highest vent for adequate pressure.
3. Check flow-control valves for proper position.
4. Locate start-stop and disconnect switches, electrical interlocks, and motor starters.
5. Verify that motor starters are equipped with properly sized thermal protection.
6. Check that air has been purged from the system.

3.6 GENERAL PROCEDURES FOR DOMESTIC HOT WATER SYSTEMS

A. Balance domestic hot water recirculation, to ensure proper flow through all mains and branches. Tune system until hot water is delivered to the most remote fixture within the allowable time as required by the AHJ.

3.7 PROCEDURES FOR SPACE PRESSURIZATION MEASUREMENTS AND ADJUSTMENTS

A. Pressure testing shall be limited to the following room types:

1. Soiled / Decontamination.

B. Before testing for space pressurization, observe the space to verify the integrity of the space boundaries. Verify that windows and doors are closed and applicable safing, gaskets, and sealants are installed. Report deficiencies and postpone testing until after the reported deficiencies are corrected.
C. Measure, adjust, and record the pressurization of each room, each zone, and each building by adjusting the supply, return, and exhaust airflows to achieve the indicated conditions.

D. Measure space pressure differential where pressure is used as the design criteria, and measure airflow differential where differential airflow is used as the design criteria for space pressurization.

1. For pressure measurements, measure and record the pressure difference between the intended spaces at the door with all doors in the space closed. Record the high-pressure side, low-pressure side, and pressure difference between each adjacent space.
2. For applications with cascading levels of space pressurization, begin in the most critical space and work to the least critical space.
3. Test room pressurization first, then zones, and finish with building pressurization.

E. To achieve indicated pressurization, set the supply airflow to the indicated conditions and adjust the exhaust and return airflow to achieve the indicated pressure or airflow difference.

F. For spaces with pressurization being monitored and controlled automatically, observe and adjust the controls to achieve the desired set point.

1. Compare the values of the measurements taken to the measured values of the control system instruments and report findings.
2. Check the repeatability of the controls by successive tests designed to temporarily alter the ability to achieve space pressurization. Test overpressurization and underpressurization, and observe and report on the system’s ability to revert to the set point.
3. For spaces served by variable-air-volume supply and exhaust systems, measure space pressurization at indicated airflow and minimum airflow conditions.

G. In spaces that employ multiple modes of operation, such as normal mode and emergency mode or occupied mode and unoccupied mode, measure, adjust, and record data for each operating mode.

H. Record indicated conditions and corresponding initial and final measurements. Report deficiencies.

3.8 PROCEDURES FOR SMOKE-CONTROL SYSTEM TESTING

A. Before testing smoke-control systems, verify that construction is complete and verify the integrity of each smoke-control zone boundary. Verify that windows and doors are closed and that applicable safing, gasket, and sealants are installed. Report deficiencies and postpone testing until after the reported deficiencies are corrected.

B. Measure and record wind speed and direction, outside-air temperature, and relative humidity on each test day.

C. Measure, adjust, and record airflow of each smoke-control system with all fans that are a part of the system operating as intended by the design.

D. Measure, adjust, and record the airflow of each fan. For ducted systems, measure the fan airflow by duct Pitot-tube traverse.

E. After air balancing is complete, perform the following pressurization testing for each smoke-control zone in the system:
1. Verify the boundaries of each smoke-control zone.

2. With the HVAC systems in their normal mode of operation and smoke control not operating, measure and record the pressure difference across each smoke-control zone. Make measurements after closing doors that separate the zones. Make one measurement across each door. Clearly indicate the high and low pressure side of each door.

3. With the system operating in the smoke-control mode and with each zone in the smoke-control system activated, perform the following:
 a. Measure and record the pressure difference across each door that separates the smoke zone from adjacent zones. Make measurements with doors that separate the smoke zone from the other zones closed. Clearly indicate the high and low pressure side of the door. Doors that have a tendency to open slightly due to the pressure difference should have one pressure measurement made while held closed and another measurement made with the door open.
 b. Continue to activate each separate zoned smoke-control system and make pressure difference measurements.
 c. After testing a smoke zone’s smoke-control system, deactivate the HVAC systems involved and return them to their normal operating mode before activating another zone’s smoke-control system.
 d. Verify that controls necessary to prevent excessive pressure differences are functional.

F. Operational Tests:

1. Check the proper activation of each zoned smoke-control system in response to all means of activation, both automatic and manual.

2. Check automatic activation in response to fire alarm signals received from the building’s fire alarm and detection system. Initiate a separate alarm for each means of activation to ensure that the proper operation of the correct zoned smoke-control system occurs.

3. TAB firm involvement shall provide air flow and pressure measurements and verification of HVAC equipment and EMS control activation when Smoke-Control system is activated by others.

4. Check and record the proper operation of fans, dampers, and related equipment as outlined below for each separate zone of the smoke-control system.
 a. Fire zone in which a smoke-control system automatically activates.
 b. Type of signal that activates a smoke-control system, such as pull station, sprinkler water flow, or smoke detector.
 c. Smoke zone(s) where maximum mechanical exhaust to the outside is implemented and no supply air is provided.
 d. Positive pressure smoke-control zone(s) where maximum air supply is implemented and no exhaust to the outside is provided.
 e. Fan(s) "ON" as required to implement the smoke-control system. Multiple- or variable-speed fans should be further noted as "MAX. VOLUME" to verify that the intended control configuration is achieved.
 f. Fan(s) "OFF" as required to implement the smoke-control system.
 g. Damper(s) "OPEN" where maximum airflow must be achieved.
 h. Damper(s) "CLOSED" where no airflow should take place.
 i. Auxiliary functions to achieve the smoke-control system configuration such as changes or override of normal operating pressure and temperature-control set points.
 j. If standby power is provided for the smoke-control system, test to verify that the system functions while operating under both normal and standby power.
G. Conduct additional tests required by authorities having jurisdiction. Unless required by authorities having jurisdiction, perform testing without the use of smoke or products that simulate smoke.

H. Using the air flow and pressure measurements taken by the TAB firm, the Contractor shall prepare a complete report of observations, measurements, and deficiencies.

3.9 TEMPERATURE-CONTROL VERIFICATION

A. Verify that controllers are calibrated and commissioned.

B. Check transmitter and controller locations and note conditions that would adversely affect control functions.

C. Record controller settings and note variances between set points and actual measurements.

D. Check the operation of limiting controllers (i.e., high- and low-temperature controllers).

E. Check free travel and proper operation of control devices such as damper and valve operators.

F. Check the sequence of operation of control devices. Note air pressures for systems with pneumatic components and device positions and correlate with airflow and water flow measurements.

G. Check the interaction of electrically operated switch transducers.

H. Check the interaction of interlock and lockout systems.

I. For pneumatic systems, check main control supply-air pressure and observe compressor and dryer operations.

J. Note operation of electric actuators using spring return for proper fail-safe operations.

3.10 TOLERANCES

A. Set HVAC system airflow and water flow rates within the following tolerances:

1. Supply, Return, and Exhaust Fans and Equipment with Fans:
 a. Up to 5000 cfm: 0 to plus 10 percent.
 b. Larger than 5000 cfm: 0 to plus 5 percent.

2. Air Devices
 a. Exhaust: 0 to -10 percent.
 b. Return: +/-5 percent.
 c. Supply: 0 to +10 percent.

3. Hydronic Flow Rates
 a. Pumps: 0 to +10 percent.
 b. Equipment: 0 to +5 percent.
3.11 REPORTING

A. Status Reports: As Work progresses, prepare reports to describe completed procedures, procedures in progress, and scheduled procedures. Include a list of deficiencies and problems found in systems being tested and balanced. Prepare a separate report for each system and each building floor for systems serving multiple floors.

3.12 FINAL REPORT

A. General: Typewritten, or computer printout in letter-quality font, on standard bond paper, in three-ring binder, tabulated and divided into sections by tested and balanced systems. A single, PDF document with navigational bookmarks by section may be substituted for a manual binder.

B. Include a certification sheet in front of binder signed and sealed by the certified testing and balancing engineer.
 1. Include a list of instruments used for procedures, along with proof of calibration.

C. Final Report Contents: In addition to certified field report data, include the following:
 1. Pump curves.
 2. Fan curves.
 3. Manufacturers’ test data.
 4. Field test reports prepared by system and equipment installers.
 5. Other information relative to equipment performance, but do not include Shop Drawings and Product Data.

D. General Report Data: In addition to form titles and entries, include the following data in the final report, as applicable:
 1. Title page.
 2. Name and address of TAB firm.
 3. Project name.
 4. Project location.
 5. Architect’s name and address.
 6. Engineer’s name and address.
 7. Contractor’s name and address.
 9. Signature of TAB firm who certifies the report.
 10. Table of Contents with the total number of pages defined for each section of the report. Number each page in the report.
 11. Summary of contents including the following:
 a. Indicated versus final performance.
 b. Notable characteristics of systems.
 c. Description of system operation sequence if it varies from the Contract Documents.
 12. Nomenclature sheets for each item of equipment.
 13. Data for terminal units, including manufacturer, type size, and fittings.
 14. Notes to explain why certain final data in the body of reports varies from indicated values.

E. Provide a marked-up set of mechanical plans or “as-built” layouts of systems that include numbering of each HVAC device that corresponds to the respective item in the TAB report.
1. Quantities of outside, supply, return, and exhaust airflows.
2. Water and steam flow rates.
3. Duct, outlet, and inlet sizes.
4. Pipe and valve sizes and locations.
5. Terminal units.

F. Air-Handling Unit Test Reports: For air-handling units with coils, include the following:

1. Unit Data: Include the following:
 a. Unit identification.
 b. Location.
 c. Make and type.
 d. Model number and unit size.
 e. Manufacturer's serial number.
 f. Unit arrangement and class.
 g. Discharge arrangement.
 h. Sheave make, size in inches, and bore.
 i. Sheave dimensions, center-to-center, and amount of adjustments in inches.
 j. Number of belts, make, and size.
 k. Number of filters, type, and size.

2. Motor Data:
 a. Make and frame type and size.
 b. Horsepower and rpm.
 c. Volts, phase, and hertz.
 d. Full-load amperage and service factor.
 e. Sheave make, size in inches, and bore.
 f. Sheave dimensions, center-to-center, and amount of adjustments in inches.

3. Test Data (Indicated and Actual Values):
 a. Total airflow rate in cfm.
 b. Total system static pressure in inches wg.
 c. Fan rpm.
 d. Discharge static pressure in inches wg.
 e. Filter static-pressure differential in inches wg.
 f. Filter condition.
 g. Preheat coil static-pressure differential in inches wg.
 h. Cooling coil static-pressure differential in inches wg.
 i. Heating coil static-pressure differential in inches wg.
 j. Outside airflow in cfm.
 k. Return airflow in cfm.
 l. Relief airflow in cfm (L/s).
 m. Outside-air damper position.
 n. Return-air damper position.
 o. Relief-air damper position.
 p. Fan drive settings including VFD settings and percentage of maximum pitch diameter.
 q. Settings for supply-air static-pressure controller.

G. Apparatus-Coil Test Reports:
1. **Coil Data:**
 - b. Location.
 - c. Coil type.
 - d. Number of rows.
 - e. Fin spacing in fins per inch o.c.
 - f. Make and model number.
 - g. Face area in sq. ft.
 - h. Tube size in NPS.
 - i. Tube and fin materials.
 - j. Circuiting arrangement.

2. **Test Data (Indicated and Actual Values):**
 - a. Airflow rate in cfm.
 - b. Average face velocity in fpm.
 - c. Air pressure drop in inches wg.
 - d. Outside-air, wet- and dry-bulb temperatures in deg F.
 - e. Return-air, wet- and dry-bulb temperatures in deg F.
 - f. Entering-air, wet- and dry-bulb temperatures in deg F.
 - g. Leaving-air, wet- and dry-bulb temperatures in deg F.
 - h. Water flow rate in gpm.
 - i. Water pressure differential in feet of head or psig.
 - j. Entering-water temperature in deg F.
 - k. Leaving-water temperature in deg F.
 - l. Refrigerant expansion valve and refrigerant types.
 - m. Refrigerant suction pressure in psig.
 - n. Refrigerant suction temperature in deg F.
 - o. Inlet steam pressure in psig.

H. **Gas- and Oil-Fired Heat Apparatus Test Reports:** In addition to manufacturer's factory startup equipment reports, include the following:

1. **Unit Data:**
 - b. Location.
 - c. Make and type.
 - d. Model number and unit size.
 - e. Manufacturer's serial number.
 - f. Fuel type in input data.
 - g. Output capacity in Btuh.
 - h. Ignition type.
 - i. Burner-control types.
 - j. Motor horsepower and rpm.
 - k. Motor volts, phase, and hertz.
 - l. Motor full-load amperage and service factor.
 - m. Sheave make, size in inches, and bore.
 - n. Sheave dimensions, center-to-center, and amount of adjustments in inches.

2. **Test Data (Indicated and Actual Values):**
 - a. Total airflow rate in cfm.
 - b. Entering-air temperature in deg F.
 - c. Leaving-air temperature in deg F.
d. Air temperature differential in deg F.
e. Entering-air static pressure in inches wg.
f. Leaving-air static pressure in inches wg.
g. Air static-pressure differential in inches wg.
h. Low-fire fuel input in Btuh.
i. High-fire fuel input in Btuh.
j. Manifold pressure in psig.
k. High-temperature-limit setting in deg F.
l. Operating set point in Btuh.
m. Motor voltage at each connection.
n. Motor amperage for each phase.
o. Heating value of fuel in Btuh.

I. Electric-Coil Test Reports: For electric furnaces, duct coils, and electric coils installed in central-station air-handling units, include the following:

1. Unit Data:

a. System identification.
b. Location.
c. Coil identification.
d. Capacity in Btuh.
e. Number of stages.
f. Connected volts, phase, and hertz.
g. Rated amperage.
h. Airflow rate in cfm.
i. Face area in sq. ft..
j. Minimum face velocity in fpm.

2. Test Data (Indicated and Actual Values):

a. Heat output in Btuh.
b. Airflow rate in cfm.
c. Air velocity in fpm.
d. Entering-air temperature in deg F.
e. Leaving-air temperature in deg F.
f. Voltage at each connection.
g. Amperage for each phase.

J. Fan Test Reports: For supply, return, and exhaust fans, include the following:

1. Fan Data:

a. System identification.
b. Location.
c. Make and type.
d. Model number and size.
e. Manufacturer’s serial number.
f. Arrangement and class.
g. Sheave make, size in inches, and bore.
h. Sheave dimensions, center-to-center, and amount of adjustments in inches.

2. Motor Data:

a. Make and frame type and size.
b. Horsepower and rpm.
c. Volts, phase, and hertz.
d. Full-load amperage and service factor.
e. Sheave make, size in inches, and bore.
f. Sheave dimensions, center-to-center, and amount of adjustments in inches.
g. Number of belts, make, and size.

3. Test Data (Indicated and Actual Values):

a. Total airflow rate in cfm.
b. Total system static pressure in inches wg.
c. Fan rpm.
d. Discharge static pressure in inches wg.
e. Suction static pressure in inches wg.

K. Round, Flat-Oval, and Rectangular Duct Traverse Reports: Include a diagram with a grid representing the duct cross-section and record the following:

1. Report Data:

a. System and air-handling unit number.
b. Location and zone.
c. Traverse air temperature in deg F.
d. Duct static pressure in inches wg.
e. Duct size in inches.
f. Duct area in sq. ft..
g. Indicated airflow rate in cfm.
h. Indicated velocity in fpm.
i. Actual airflow rate in cfm.
j. Actual average velocity in fpm.
k. Barometric pressure in psig.

L. Air-Terminal-Device Reports:

1. Unit Data:

a. System and air-handling unit identification.
b. Location and zone.
c. Test apparatus used.
d. Area served.
e. Air-terminal-device make.
f. Air-terminal-device number from system diagram.
g. Air-terminal-device type and model number.
h. Air-terminal-device size.
i. Air-terminal-device effective area in sq. ft..

2. Test Data (Indicated and Actual Values):

a. Airflow rate in cfm.
b. Air velocity in fpm.
c. Preliminary airflow rate as needed in cfm.
d. Preliminary velocity as needed in fpm.
e. Final airflow rate in cfm.
f. Final velocity in fpm.
M. System-Coil Reports: For reheat coils and water coils of terminal units, include the following:

1. Unit Data:
 a. System and air-handling unit identification.
 b. Location and zone.
 c. Room or riser served.
 d. Coil make and size.
 e. Flowmeter type.

2. Test Data (Indicated and Actual Values):
 a. Airflow rate in cfm.
 b. Entering-water temperature in deg F.
 c. Leaving-water temperature in deg F.
 d. Water pressure drop in feet of head or psig.
 e. Entering-air temperature in deg F.
 f. Leaving-air temperature in deg F.

N. Compressor and Condenser Reports: Utilize chiller data display for some of the information below. Indicate which items are not available on the display panel and rely on data provided by manufacturer instead. For refrigerant side of unitary systems, stand-alone refrigerant compressors, air-cooled condensing units, or water-cooled condensing units, include the following:

1. Unit Data:
 a. Unit identification.
 b. Location.
 c. Unit make and model number.
 d. Compressor make.
 e. Compressor model and serial numbers.
 f. Refrigerant weight in lb.
 g. Low ambient temperature cutoff in deg F.

2. Test Data (Indicated and Actual Values):
 a. Inlet-duct static pressure in inches wg.
 b. Outlet-duct static pressure in inches wg.
 c. Entering-air, dry-bulb temperature in deg F.
 d. Leaving-air, dry-bulb temperature in deg F.
 e. Condenser entering-water temperature in deg F.
 f. Condenser leaving-water temperature in deg F.
 g. Condenser-water temperature differential in deg F.
 h. Condenser entering-water pressure in feet of head or psig.
 i. Condenser leaving-water pressure in feet of head or psig.
 j. Condenser-water pressure differential in feet of head or psig.
 k. Low-pressure-cutout set point in psig.
 l. High-pressure-cutout set point in psig.
 m. Suction pressure in psig.
 n. Suction temperature in deg F.
 o. Condenser refrigerant pressure in psig.
 p. Condenser refrigerant temperature in deg F.
 q. Oil pressure in psig.
 r. Oil temperature in deg F.
s. Voltage at each connection.
t. Amperage for each phase.
u. Kilowatt input.
v. Crankcase heater kilowatt.
w. Number of fans.
x. Condenser fan rpm.
y. Condenser fan motor make, frame size, rpm, and horsepower.
z. Condenser fan motor voltage at each connection.
aa. Condenser fan motor amperage for each phase.

O. Heat-Exchanger/Converter Test Reports: For steam and hot-water heat exchangers, include the following:

1. Unit Data:
 a. Unit identification.
 b. Location.
 c. Service.
 d. Make and type.
 e. Model and serial numbers.
 f. Ratings.

2. Steam Test Data (Indicated and Actual Values):
 a. Inlet pressure in psig.

3. Primary Water Test Data (Indicated and Actual Values):
 a. Entering-water temperature in deg F.
 b. Leaving-water temperature in deg F.
 c. Entering-water pressure in feet of head or psig.
 d. Water pressure differential in feet of head or psig.
 e. Water flow rate in gpm.

4. Secondary Water Test Data (Indicated and Actual Values):
 a. Entering-water temperature in deg F.
 b. Leaving-water temperature in deg F.
 c. Entering-water pressure in feet of head or psig.
 d. Water pressure differential in feet of head or psig.
 e. Water flow rate in gpm.

P. Pump Test Reports:

1. Unit Data:
 a. Unit identification.
 b. Location.
 c. Service.
 d. Make and size.
 e. Model and serial numbers.
 f. Water flow rate in gpm.
 g. Water pressure differential in feet of head or psig.
 h. Required net positive suction head in feet of head or psig.
 i. Pump rpm.
j. Impeller diameter in inches.
k. Motor make and frame size.
l. Motor horsepower and rpm.
m. Voltage at each connection.
n. Amperage for each phase.
o. Full-load amperage and service factor.
p. Seal type.

2. Test Data (Indicated and Actual Values):
 a. Static head in feet of head or psig.
 b. Pump shutoff pressure in feet of head or psig.
 c. Actual impeller size in inches.
 d. Full-open flow rate in gpm.
 e. Full-open pressure in feet of head or psig.
 f. Final discharge pressure in feet of head or psig.
 g. Final suction pressure in feet of head or psig.
 h. Final total pressure in feet of head or psig.
 i. Final water flow rate in gpm.
 j. Voltage at each connection.
 k. Amperage for each phase.
 l. Impeller size.

Q. Boiler Test Reports:

1. Unit Data:
 a. Unit identification.
 b. Location.
 c. Service.
 d. Make and type.
 e. Model and serial numbers.
 f. Fuel type and input in Btuh.
 g. Number of passes.
 h. Ignition type.
 i. Burner-control types.
 j. Voltage at each connection.
 k. Amperage for each phase.

2. Test Data (Indicated and Actual Values):
 a. Operating pressure in psig.
 b. Operating temperature in deg F.
 c. Entering-water temperature in deg F.
 d. Leaving-water temperature in deg F.
 e. Number of safety valves and sizes in NPS.
 f. Safety valve settings in psig.
 g. High-limit setting in psig.
 h. Operating-control setting.
 i. High-fire set point.
 j. Low-fire set point.
 k. Voltage at each connection.
 l. Amperage for each phase.
 m. Draft fan voltage at each connection.
 n. Draft fan amperage for each phase.
 o. Manifold pressure in psig.
R. Instrument Calibration Reports:

1. Report Data:
 a. Instrument type and make.
 b. Serial number.
 c. Application.
 d. Dates of use.
 e. Dates of calibration.

3.13 INSPECTIONS

A. Initial Inspection:

1. After testing and balancing are complete, operate each system and randomly check measurements to verify that the system is operating according to the final test and balance readings documented in the Final Report.
2. Randomly check the following for each system:
 a. Measure airflow of at least 10 percent of air outlets.
 b. Measure water flow of at least 5 percent of terminals.
 c. Measure room temperature at each thermostat/temperature sensor. Compare the reading to the set point.
 d. Measure sound levels at two locations.
 e. Measure space pressure of at least 10 percent of locations.
 f. Verify that balancing devices are marked with final balance position.
 g. Note deviations to the Contract Documents in the Final Report.

B. Final Inspection:

1. After initial inspection is complete and evidence by random checks verifies that testing and balancing are complete and accurately documented in the final report, request that a final inspection be made by Owner.
2. TAB firm test and balance engineer shall conduct the inspection in the presence of Owner.
3. Owner shall randomly select measurements documented in the final report to be rechecked. The rechecking shall be limited to either 10 percent of the total measurements recorded, or the extent of measurements that can be accomplished in a normal 8-hour business day.
4. If the rechecks yield measurements that differ from the measurements documented in the final report by more than the tolerances allowed, the measurements shall be noted as "FAILED."
5. If the number of "FAILED" measurements is greater than 10 percent of the total measurements checked during the final inspection, the testing and balancing shall be considered incomplete and shall be rejected.
6. TAB firm shall recheck all measurements and make adjustments. Revise the final report and balancing device settings to include all changes and resubmit the final report.
7. Request a second final inspection. If the second final inspection also fails, Owner shall contract the services of another TAB firm to complete the testing and balancing in accordance with the Contract Documents and deduct the cost of the services from the final payment.
3.14 ADDITIONAL TESTS

A. Within 90 days of completing TAB, perform additional testing and balancing to verify that balanced conditions are being maintained throughout and to correct unusual conditions.

B. Seasonal Periods: If initial TAB procedures were not performed during near-peak summer and winter conditions, perform additional testing, inspecting, and adjusting during near-peak summer and winter conditions.

END OF SECTION