Preparing Effective Oral & Poster Presentations
12 WAYS TO
Investing
Presenting your work
Audience
Purpose
Format
Que ens permet la tecnologia?

- Tecnologia
- Internet
- Navegació
- Xarxes socials
- Treball col·laboratiu
A D I O C T I O N P O T E N T I A L O F S E L E C T E D D R O U T H T O L E R A N T

Habiba F. Ali, Gabriel A. Atwine, & Janet P. Mwebaze, Makerere University
Kampala, Uganda.

Contact email: Patrick.anchokwe@gmail.com, panchokwe@agronomy.makerere.ac.ug

Abstract

The third most important food crop in Africa is sorghum. It is grown on about 30 million ha in the sub-Saharan Africa, particularly in drought prone areas. Sorghum production is important for food security, especially in semi-arid and arid regions of the world. In this study, we investigated the potential of selected drought tolerant sorghum lines for adoption in the USER聂 District of Uganda. The study was conducted in the smallholder farms of the District. The results showed that the selected sorghum lines were tolerant to drought and had higher yields compared to the local variety. The farmers also expressed interest in adopting the selected lines due to their high yields and drought tolerance. The study concluded that the selected sorghum lines have potential for adoption in the USER聂 District of Uganda. The findings of this study can be used to inform future research and development efforts for improved sorghum varieties.
Heat stress response in the closest algal relatives of land plants reveals conserved stress signaling circuits

Jan de Vries1,2,3,4,5, Sophie de Vries1,5,6, Bruce A. Curtis4, Hong Zhou6, Susanne Penny7, Kirstin Feussner2,5, Devanand M. Pinto1,8, Michael Steinert4, Alejandro M. Cohen1,8, Klaus von Schwartzenberg5 and John M. Archibald1,9,10

1Department of Biochemistry and Molecular Biology, Dalhousie University, Sir Charles Tupper Medical Building, 5650 College Street, Halifax, NS, B3H 4R2, Canada.
2Institute of Microbiology, Technische Universität Braunschweig, Stüdener Str. 7, 38106, Braunschweig, Germany.
3Department of Applied Bioinformatics, Institute for Microbiology and Genetics, University of Goettingen, Goldschmidtstr. 1, 37077, Goettingen, Germany.
4Goettingen Center for Molecular Biosciences (GZMB), University of Goettingen, 37077, Goettingen, Germany.
5Institute of Population Genetics, Heinrich-Heine University Dusseldorf, Universitätsstr. 1, 40225, Dusseldorf, Germany.
6Microalgae and Zygmematophyceae Collection Hamburg (MZCH) and Aquatic Ecophysiology and Phylogeny, Institute of Plant Science and Microbiology, Universität Hamburg, 22603, Hamburg, Germany.
7National Research Council, Human Health Therapeutics, 1411 Oxford Street, Halifax, NS, B3H 3Z1, Canada.
8Department of Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences, University of Goettingen, Justus-von-Liebig-Weg 11, 37077, Goettingen, Germany.
9Service Unit for Metabolomics and Lipidomics, Goettingen Center for Molecular Biosciences (GZMB), 37077, Goettingen, Germany.
10Department of Chemistry, Dalhousie University, 6274 Coburg Rd, Halifax, NS, B3H 4R2, Canada.
11Biological Spectrometry Core Facility, Life Sciences Research Institute, Dalhousie University, Halifax, NS, B3H 4R2, Canada, and
12Canadian Institute for Advanced Research, 861 University Ave, Suite 505, Toronto, ON, M5G 1M1, Canada.

Received 20 December 2019; revised 29 March 2020; accepted 8 April 2020.
*For correspondence (e-mail: deivejas@达尔-哥廷根.de; john.archibald@dal.ca).
This work is not used for commercial purposes.

SUMMARY

All land plants (embryophytes) share a common ancestor that likely evolved from a filamentous freshwater alga. Elucidating the transition from algae to embryophytes — and the eventual conquering of Earth’s surface — is one of the most fundamental questions in plant evolutionary biology. Here, we investigated one of the organismal properties that might have enabled this transition: resistance to drastic temperature shifts. We explored the effect of heat stress in Mougeotia and Spirogyra, two representatives of Zygematophyceae — the closest known algal sister lineage to land plants. Heat stress induced pronounced phenotypic alterations in their plastids, and high-performance liquid chromatography-tandem mass spectrometry-based profiling of 565 transitions for the analysis of main central metabolites revealed significant shifts in 43 compounds. We also analyzed the global differential gene expression responses triggered by heat, generating 92.8 Gbp of sequence data and assembling a combined set of 8905 well-expressed genes. Each organism had its own distinct gene expression profile; less than one-half of their shared genes showed concordant gene expression trends. We nevertheless detected common signature responses to heat such as elevated transcript levels for molecular chaperones, thylakoid components, and corroborating our metabolomic data — amino acid metabolism. We also uncovered the heat-stress responsiveness of genes for phosphorelay-based signal transduction that links environmental cues, calcium signatures and plastid biology. Our data allow us to infer the molecular heat stress response that the earliest land plants might have used when facing the rapidly shifting temperature conditions of the terrestrial habitat.

Keywords: early plant evolution, stress physiology, streptophyte algae, plant terrestrialization, signal transduction, charophytes, heat stress, RNA-seq, metabolomics.
ONE SIZE DOES NOT FIT ALL
DESIGN
Contrast

R

A

P
Contrast
Contrast

Repetition

A

P
CONTRAST
REPETITION
A
P
CONTRAST

REPETITION

ALIGNMENT
CONTRAST

REPETITION

ALIGNMENT

P
CONTRAST

ALIGNMENT

REPetITION
CONTRAST
REPETITION
ALIGNMENT
carrots apples
milk napkins
lettuce eggs
bananas paper
vegetables cucumber
meat hamburger
chicken fruit
tomatoes cheese
grapefruit paper towels
dairy potatoes
peppers
Vegetables
carrots
lettuce
tomatoes
peppers
cucumber
potatoes

Fruit
bananas
grapefruit
apples

Meat
chicken
hamburger

Dairy
milk
eggs
cheese

Paper
napkins
paper towels
CONTRAST
REPETITION
ALIGNMENT
PROXIMITY
Oral presentation elements:
First slide

• Title
• Your name
• Your mentor
• Affiliation
Salt Ion Removal from a Brine Solution

Germiamah Junkere, Chad Siemeon

Dr. Salim Azzouz

McCoy School of Engineering
CONTRAST
Salt Ion Removal from a Brine Solution

Germiamah Junkere, Chad Siemeon

Dr. Salim Azzouz

McCoy School of Engineering
REPETITION
Salt Ion Removal from a Brine Solution

Germiamah Junkere, Chad Siemeon
Dr. Salim Azzouz
McCoy School of Engineering
ALIGNMENT
Salt Ion Removal from a Brine Solution
Germiamah Junkere, Chad Siemeon
Dr. Salim Azzouz
McCoy School of Engineering
PROXIMITY
Salt Ion Removal from a Brine Solution

Germiamah Junkere, Chad Siemeon

Dr. Salim Azzouz

McCoy School of Engineering
Salt Ion Removal from a Brine Solution
Germiamah Junkere
Chad Siemeon

Dr. Salim Azzouz
McCoy School of Engineering
<table>
<thead>
<tr>
<th>Sans-serif</th>
<th>Serif</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
</tr>
</tbody>
</table>
Sans-serif tends to be easier to read on a screen

Serif tends to be harder to read on a screen
COLORS
CONTRAST
THIS IS EASY TO READ
THIS IS EASY TO READ
THIS IS NOT EASY TO READ
THIS IS NOT EASY TO READ
Oral Presentations

Microsoft PowerPoint
PowerPoint is a VISUAL aid, not a TEXTUAL aid.
You will get 6X better recall if you use visuals to support what you say
You will get 6X better recall if you use visuals to support what you say.

Source: http://www.brainrules.net/vision
Recognition doubles when pictures are used instead of text

Source: http://www.brainrules.net/vision
GRAPHS
You will get 6X better recall if you use visuals to support what you say.
You will get 6X better recall if you use visuals to support what you say.
OTHER POWERPOINT TIPS
Design for the person in the back of the room
✓ Pick a simple theme
✓ Keep your slides simple
✓ Apply design principles (CRAP)
✓ Use visuals that support your message
✓ Save often
Questions to ask yourself

• What are the key points I want the audience to know?
• Have I communicated them as simply as possible, but not simpler?
• Do I have one message per slide?
• Have I used visuals to support my message?
• Have I applied design principles effectively?
• Does every image or word help convey my message?
Oral presentation delivery tips: Audience

• Why should they care?
• Grab their attention at beginning—connect with them
• Make eye contact
• Talk, don’t read
• Dress with respect for them
• Be enthusiastic
• Practice, practice, practice, especially attention material and concluding remarks
Oral presentation delivery tips: Audience

• Why should they care?
• Grab their attention at beginning—connect with them
• Make eye contact
• Talk, don’t read
• Dress with respect for them
• Be enthusiastic
• Practice, practice, practice, especially attention material and concluding remarks
<table>
<thead>
<tr>
<th>A good poster</th>
</tr>
</thead>
<tbody>
<tr>
<td>Good science, case study, theory</td>
</tr>
<tr>
<td>Uncluttered</td>
</tr>
<tr>
<td>Organized</td>
</tr>
<tr>
<td>Well designed/visually appealing</td>
</tr>
<tr>
<td>Legible</td>
</tr>
<tr>
<td>Easy to read</td>
</tr>
<tr>
<td>Brevity of text</td>
</tr>
<tr>
<td>Straightforward</td>
</tr>
</tbody>
</table>
What is a poster?

- A **visual** communication tool
- An effective poster will help you ...

... engage colleagues in conversation.
An effective poster will help you ...

... get your main point across to as many people as possible.
An effective poster …

- is easily read from 1-2 meters away

Use BIG Text

Keep Posters Visual!!

George R. Hess
Department of Forestry &
Environmental Resources
North Carolina State University
Raleigh, North Carolina 27695-8002 USA
Know your audience

- Specialists only
- Wide-ranging discipline
- Very general audience
A good poster shows good composition and is:

- Well designed
- Uncluttered
- Legible
- Straightforward
- Easy to read
- Visuals tell the story you want to convey that incorporates appropriate, brief text
Headings identify key sections

Balance placement of text & graphics

Use white space creatively

Don’t fight “reader gravity”

Use a column format
- Keep text elements short
- Use phrases and active voice
- Use serif font for text
- San-serif font OK for title & headings
DESIGN
Typical poster elements

- Title
- Your name
- Your mentor
- Affiliation
Typical poster elements

• Abstract
• Introduction
• Materials & methods
• Results
• Discussion
• Conclusions
• Further studies
• Literature cited or references
• Acknowledgements
Undergraduate Research and Creative Activity forum
Presentation Categories

- Oral
- Posters
 - Full
 - Emerging
An Example of Oral Presentation
An Example of a Full Poster
An Example of Emerging Research